Search results for: Air quality prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3894

Search results for: Air quality prediction

3774 Efficient Lossless Compression of Weather Radar Data

Authors: Wei-hua Ai, Wei Yan, Xiang Li

Abstract:

Data compression is used operationally to reduce bandwidth and storage requirements. An efficient method for achieving lossless weather radar data compression is presented. The characteristics of the data are taken into account and the optical linear prediction is used for the PPI images in the weather radar data in the proposed method. The next PPI image is identical to the current one and a dramatic reduction in source entropy is achieved by using the prediction algorithm. Some lossless compression methods are used to compress the predicted data. Experimental results show that for the weather radar data, the method proposed in this paper outperforms the other methods.

Keywords: Lossless compression, weather radar data, optical linear prediction, PPI image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
3773 Perceived Quality of Regional Products in MS Region

Authors: M. Stoklasa, H. Starzyczna, K. Matusinska

Abstract:

This article deals with the perceived quality of regional products in the Moravian-Silesian region in the Czech Republic. Research was focused on finding out what do consumers perceive as a quality product and what characteristics make a quality product. The data were obtained by questionnaire survey andanalysed by IBM SPSS. From the thousands of respondents the representative sample of 719 for MS region was created based on demographic factors of gender, age, education and income. The research analysis disclosed that consumers in MS region are still price oriented and that the preference of quality over price does not depend on regional brand knowledge.

Keywords: Regional brands, quality products, characteristics of quality, quality over price.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
3772 Dust Storm Prediction Using ANNs Technique (A Case Study: Zabol City)

Authors: Jamalizadeh, M.R., Moghaddamnia, A., Piri, J., Arbabi, V., Homayounifar, M., Shahryari, A.

Abstract:

Dust storms are one of the most costly and destructive events in many desert regions. They can cause massive damages both in natural environments and human lives. This paper is aimed at presenting a preliminary study on dust storms, as a major natural hazard in arid and semi-arid regions. As a case study, dust storm events occurred in Zabol city located in Sistan Region of Iran was analyzed to diagnose and predict dust storms. The identification and prediction of dust storm events could have significant impacts on damages reduction. Present models for this purpose are complicated and not appropriate for many areas with poor-data environments. The present study explores Gamma test for identifying inputs of ANNs model, for dust storm prediction. Results indicate that more attempts must be carried out concerning dust storms identification and segregate between various dust storm types.

Keywords: Dust Storm, Gamma Test, Prediction, ANNs, Zabol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
3771 Prediction of Research Topics Using Ensemble of Best Predictors from Similar Dataset

Authors: Indra Budi, Rizal Fathoni Aji, Agus Widodo

Abstract:

Prediction of future research topics by using time series analysis either statistical or machine learning has been conducted previously by several researchers. Several methods have been proposed to combine the forecasting results into single forecast. These methods use fixed combination of individual forecast to get the final forecast result. In this paper, quite different approach is employed to select the forecasting methods, in which every point to forecast is calculated by using the best methods used by similar validation dataset. The dataset used in the experiment is time series derived from research report in Garuda, which is an online sites belongs to the Ministry of Education in Indonesia, over the past 20 years. The experimental result demonstrates that the proposed method may perform better compared to the fix combination of predictors. In addition, based on the prediction result, we can forecast emerging research topics for the next few years.

Keywords: Combination, emerging topics, ensemble, forecasting, machine learning, prediction, research topics, similarity measure, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
3770 Improving Air Temperature Prediction with Artificial Neural Networks

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.

Keywords: Decision support systems, frost protection, fruit, time-series prediction, weather modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725
3769 Useful Lifetime Prediction of Rail Pads for High Speed Trains

Authors: Chang Su Woo, Hyun Sung Park

Abstract:

Useful lifetime evaluation of railpads were very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of rail pads. In this study, we performed properties and accelerated heat aging tests of rail pads considering degradation factors and all environmental conditions including operation, and then derived a lifetime prediction equation according to changes in hardness, thickness, and static spring constants in the Arrhenius plot to establish how to estimate the aging of rail pads. With the useful lifetime prediction equation, the lifetime of e-clip pads was 2.5 years when the change in hardness was 10% at 25°C; and that of f-clip pads was 1.7 years. When the change in thickness was 10%, the lifetime of e-clip pads and f-clip pads is 2.6 years respectively. The results obtained in this study to estimate the useful lifetime of rail pads for high speed trains can be used for determining the maintenance and replacement schedule for rail pads.

Keywords: Rail pads, accelerated test, Arrhenius plot, useful lifetime prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
3768 Drainage Prediction for Dam using Fuzzy Support Vector Regression

Authors: S. Wiriyarattanakun, A. Ruengsiriwatanakun, S. Noimanee

Abstract:

The drainage Estimating is an important factor in dam management. In this paper, we use fuzzy support vector regression (FSVR) to predict the drainage of the Sirikrit Dam at Uttaradit province, Thailand. The results show that the FSVR is a suitable method in drainage estimating.

Keywords: Drainage Estimation, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
3767 Objective Performance of Compressed Image Quality Assessments

Authors: Ratchakit Sakuldee, Somkait Udomhunsakul

Abstract:

Measurement of the quality of image compression is important for image processing application. In this paper, we propose an objective image quality assessment to measure the quality of gray scale compressed image, which is correlation well with subjective quality measurement (MOS) and least time taken. The new objective image quality measurement is developed from a few fundamental of objective measurements to evaluate the compressed image quality based on JPEG and JPEG2000. The reliability between each fundamental objective measurement and subjective measurement (MOS) is found. From the experimental results, we found that the Maximum Difference measurement (MD) and a new proposed measurement, Structural Content Laplacian Mean Square Error (SCLMSE), are the suitable measurements that can be used to evaluate the quality of JPEG200 and JPEG compressed image, respectively. In addition, MD and SCLMSE measurements are scaled to make them equivalent to MOS, given the rate of compressed image quality from 1 to 5 (unacceptable to excellent quality).

Keywords: JPEG, JPEG2000, objective image quality measurement, subjective image quality measurement, correlation coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
3766 Deadline Missing Prediction for Mobile Robots through the Use of Historical Data

Authors: Edwaldo R. B. Monteiro, Patricia D. M. Plentz, Edson R. De Pieri

Abstract:

Mobile robotics is gaining an increasingly important role in modern society. Several potentially dangerous or laborious tasks for human are assigned to mobile robots, which are increasingly capable. Many of these tasks need to be performed within a specified period, i.e, meet a deadline. Missing the deadline can result in financial and/or material losses. Mechanisms for predicting the missing of deadlines are fundamental because corrective actions can be taken to avoid or minimize the losses resulting from missing the deadline. In this work we propose a simple but reliable deadline missing prediction mechanism for mobile robots through the use of historical data and we use the Pioneer 3-DX robot for experiments and simulations, one of the most popular robots in academia.

Keywords: Deadline missing, historical data, mobile robots, prediction mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
3765 Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period

Authors: Jiakai Li, Gursel Serpen, Steven Selman, Matt Franchetti, Mike Riesen, Cynthia Schneider

Abstract:

This paper presents the development of a Bayesian belief network classifier for prediction of graft status and survival period in renal transplantation using the patient profile information prior to the transplantation. The objective was to explore feasibility of developing a decision making tool for identifying the most suitable recipient among the candidate pool members. The dataset was compiled from the University of Toledo Medical Center Hospital patients as reported to the United Network Organ Sharing, and had 1228 patient records for the period covering 1987 through 2009. The Bayes net classifiers were developed using the Weka machine learning software workbench. Two separate classifiers were induced from the data set, one to predict the status of the graft as either failed or living, and a second classifier to predict the graft survival period. The classifier for graft status prediction performed very well with a prediction accuracy of 97.8% and true positive values of 0.967 and 0.988 for the living and failed classes, respectively. The second classifier to predict the graft survival period yielded a prediction accuracy of 68.2% and a true positive rate of 0.85 for the class representing those instances with kidneys failing during the first year following transplantation. Simulation results indicated that it is feasible to develop a successful Bayesian belief network classifier for prediction of graft status, but not the graft survival period, using the information in UNOS database.

Keywords: Bayesian network classifier, renal transplantation, graft survival period, United Network for Organ Sharing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
3764 Identifying Quality Islamic Content in Community Question Answering Sites

Authors: Rabia Bibi, Muhammad Shahzad Faisal, Khalid Iqbal, Atif Inayat

Abstract:

Internet is growing rapidly and new community-based content is added by people every second. With this fast-growing community-based content, if a user requires answers of particular questions, then reviews are required from experts or community. However, it is difficult to get quality answers. The Muslim community all over the world is seeking help to get their questions and issues discussed to get answers. Online web portals of religious schools and community-based question answering sites are two big platforms to solve the issues of users. In the case of religious schools, there are experts and qualified religious scholars (mufti) who can give the expert opinion. However, the quality of community-based content cannot be guaranteed as it may not be an answer that satisfies the question of a user. Users on CQA sites may include spammers or individual criticizing the questioner instead of providing useful answers. In this paper, we research strategies to naturally distinguish the right content. As an experiment, we concentrate on Yahoo! Answers, and Quora, popular online QA sites, where questions are asked, answered, edited, and organized by a large community of users. We present the classification of data to categorize both relevant and irrelevant answers. Specifically, we demonstrate that the proposed framework can isolate quality answers from the rest with an exactness near that of people.

Keywords: Community-based question and answering, evaluation and prediction of quality answer, answer classification, Islamic content, answer ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81
3763 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation

Authors: Joseph C. Chen, Venkata Mohan Kudapa

Abstract:

Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.

Keywords: Surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
3762 Fuzzy Hierarchical Clustering Applied for Quality Estimation in Manufacturing System

Authors: Y. Q. Lv, C.K.M. Lee

Abstract:

This paper develops a quality estimation method with the application of fuzzy hierarchical clustering. Quality estimation is essential to quality control and quality improvement as a precise estimation can promote a right decision-making in order to help better quality control. Normally the quality of finished products in manufacturing system can be differentiated by quality standards. In the real life situation, the collected data may be vague which is not easy to be classified and they are usually represented in term of fuzzy number. To estimate the quality of product presented by fuzzy number is not easy. In this research, the trapezoidal fuzzy numbers are collected in manufacturing process and classify the collected data into different clusters so as to get the estimation. Since normal hierarchical clustering methods can only be applied for real numbers, fuzzy hierarchical clustering is selected to handle this problem based on quality standards.

Keywords: Quality Estimation, Fuzzy Quality Mean, Fuzzy Hierarchical Clustering, Fuzzy Number, Manufacturing system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
3761 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System

Authors: Vuk M. Popovic, Dunja D. Popovic

Abstract:

Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.

Keywords: Laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
3760 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps

Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with  high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1187
3759 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: Bioassay, machine learning, preprocessing, virtual screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
3758 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: Social Network, link prediction, granular computing, Type-2 fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
3757 A Study on Prediction of Cavitation for Centrifugal Pump

Authors: Myung Jin Kim, Hyun Bae Jin, Wui Jun Chung

Abstract:

In this study, to accurately predict cavitation of a centrifugal pump, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump. In this study, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump for reliable prediction on cavitation of a centrifugal pump. To improve validity of the numerical analysis, transient analysis was conducted on the calculated domain of full-type geometry, such as an experimental apparatus. The numerical analysis from the results was considered to be a reliable prediction of cavitaion.

Keywords: Centrifugal Pump, Cavitation, NPSH, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4222
3756 A Parallel Algorithm for 2-D Cylindrical Geometry Transport Equation with Interface Corrections

Authors: Wei Jun-xia, Yuan Guang-wei, Yang Shu-lin, Shen Wei-dong

Abstract:

In order to make conventional implicit algorithm to be applicable in large scale parallel computers , an interface prediction and correction of discontinuous finite element method is presented to solve time-dependent neutron transport equations under 2-D cylindrical geometry. Domain decomposition is adopted in the computational domain.The numerical experiments show that our parallel algorithm with explicit prediction and implicit correction has good precision, parallelism and simplicity. Especially, it can reach perfect speedup even on hundreds of processors for large-scale problems.

Keywords: Transport Equation, Discontinuous Finite Element, Domain Decomposition, Interface Prediction And Correction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
3755 Deployment of Service Quality Characteristics

Authors: Shuki Dror

Abstract:

This work discusses an innovative methodology for deployment of service quality characteristics. Four groups of organizational features that may influence the quality of services are identified: human resource, technology, planning, and organizational relationships. A House of Service Quality (HOSQ) matrix is built to extract the desired improvement in the service quality characteristics and to translate them into a hierarchy of important organizational features. The Mean Square Error (MSE) criterion enables the pinpointing of the few essential service quality characteristics to be improved as well as selection of the vital organizational features. The method was implemented in an engineering supply enterprise and provides useful information on its vital service dimensions.

Keywords: HOQ, organizational features, service quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
3754 A Model Predicting the Microbiological Qualityof Aquacultured Sea Bream (Sparus aurata) According to Physicochemical Data: An Application in Western Greece Fish Aquaculture

Authors: Joan Iliopoulou-Georgudaki, Chris Theodoropoulos, Danae Venieri, Maria Lagkadinou

Abstract:

Monitoring of microbial flora in aquacultured sea bream, in relation to the physicochemical parameters of the rearing seawater, ended to a model describing the influence of the last to the quality of the fisheries. Fishes were sampled during eight months from four aqua farms in Western Greece and analyzed for psychrotrophic, H2S producing bacteria, Salmonella sp., heterotrophic plate count (PCA), with simultaneous physical evaluation. Temperature, dissolved oxygen, pH, conductivity, TDS, salinity, NO3 - and NH4 + ions were recorded. Temperature, dissolved oxygen and conductivity were correlated, respectively, to PCA, Pseudomonas sp. and Shewanella sp. counts. These parameters were the inputs of the model, which was driving, as outputs, to the prediction of PCA, Vibrio sp., Pseudomonas sp. and Shewanella sp. counts, and fish microbiological quality. The present study provides, for the first time, a ready-to-use predictive model of fisheries hygiene, leading to an effective management system for the optimization of aquaculture fisheries quality.

Keywords: Microbiological, model, physicochemical, Seabream.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
3753 Identification of Service Quality Determinants in the Hotel Sector: A Conceptual Review

Authors: Asem M. Othman

Abstract:

The expansion of the hospitality industry is distinctive in the 21st century. Services, by nature, are intangible. Hence, service quality, in general, is a complicated process to be measured and evaluated. Hotels, as a service sector and part of the hospitality industry, are growing rapidly. This research paper was carried out to identify the quality determinants that may affect hotel guests’ service quality perception. In this research paper, each quality determinant will be discussed, illustrated, and justified thoroughly via a systematic literature review. This paper sets the stage to measure the significant influence of the service quality determinants on guest satisfaction. The knowledge contribution from this study proposes to practitioners and/or hotel service providers, fundamental elements to adopt the implications into their policies.

Keywords: Hotel service, service quality, quality determinants, quality management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463
3752 Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image

Authors: Guo Xiuhua, Sun Tao, Wu Haifeng, He Wen, Liang Zhigang, Zhang Mengxia, Guo Aimin, Wang Wei

Abstract:

Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.

Keywords: CT image, Curvelet transform, Small pulmonary nodules, Support vector machines, Texture extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
3751 A New Image Psychovisual Coding Quality Measurement based Region of Interest

Authors: M. Nahid, A. Bajit, A. Tamtaoui, E. H. Bouyakhf

Abstract:

To model the human visual system (HVS) in the region of interest, we propose a new objective metric evaluation adapted to wavelet foveation-based image compression quality measurement, which exploits a foveation setup filter implementation technique in the DWT domain, based especially on the point and region of fixation of the human eye. This model is then used to predict the visible divergences between an original and compressed image with respect to this region field and yields an adapted and local measure error by removing all peripheral errors. The technique, which we call foveation wavelet visible difference prediction (FWVDP), is demonstrated on a number of noisy images all of which have the same local peak signal to noise ratio (PSNR), but visibly different errors. We show that the FWVDP reliably predicts the fixation areas of interest where error is masked, due to high image contrast, and the areas where the error is visible, due to low image contrast. The paper also suggests ways in which the FWVDP can be used to determine a visually optimal quantization strategy for foveation-based wavelet coefficients and to produce a quantitative local measure of image quality.

Keywords: Human Visual System, Image Quality, ImageCompression, foveation wavelet, region of interest ROI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
3750 Empirical Exploration of Correlations between Software Design Measures: A Replication Study

Authors: Jehad Al Dallal

Abstract:

Software engineers apply different measures to quantify the quality of software design. These measures consider artifacts developed at low or high level software design phases. The results are used to point to design weaknesses and to indicate design points that have to be restructured. Understanding the relationship among the quality measures and among the design quality aspects considered by these measures is important to interpreting the impact of a measure for a quality aspect on other potentially related aspects. In addition, exploring the relationship between quality measures helps to explain the impact of different quality measures on external quality aspects, such as reliability and maintainability. In this paper, we report a replication study that empirically explores the correlation between six well known and commonly applied design quality measures. These measures consider several quality aspects, including complexity, cohesion, coupling, and inheritance. The results indicate that inheritance measures are weakly correlated to other measures, whereas complexity, coupling, and cohesion measures are mostly strongly correlated.  

Keywords: Quality attribute, quality measure, software design quality, spearman correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
3749 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron

Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni

Abstract:

The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.

Keywords: Bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
3748 Model-free Prediction based on Tracking Theory and Newton Form of Polynomial

Authors: Guoyuan Qi , Yskandar Hamam, Barend Jacobus van Wyk, Shengzhi Du

Abstract:

The majority of existing predictors for time series are model-dependent and therefore require some prior knowledge for the identification of complex systems, usually involving system identification, extensive training, or online adaptation in the case of time-varying systems. Additionally, since a time series is usually generated by complex processes such as the stock market or other chaotic systems, identification, modeling or the online updating of parameters can be problematic. In this paper a model-free predictor (MFP) for a time series produced by an unknown nonlinear system or process is derived using tracking theory. An identical derivation of the MFP using the property of the Newton form of the interpolating polynomial is also presented. The MFP is able to accurately predict future values of a time series, is stable, has few tuning parameters and is desirable for engineering applications due to its simplicity, fast prediction speed and extremely low computational load. The performance of the proposed MFP is demonstrated using the prediction of the Dow Jones Industrial Average stock index.

Keywords: Forecast, model-free predictor, prediction, time series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
3747 Predicting Bankruptcy using Tabu Search in the Mauritian Context

Authors: J. Cheeneebash, K. B. Lallmamode, A. Gopaul

Abstract:

Throughout this paper, a relatively new technique, the Tabu search variable selection model, is elaborated showing how it can be efficiently applied within the financial world whenever researchers come across the selection of a subset of variables from a whole set of descriptive variables under analysis. In the field of financial prediction, researchers often have to select a subset of variables from a larger set to solve different type of problems such as corporate bankruptcy prediction, personal bankruptcy prediction, mortgage, credit scoring and the Arbitrage Pricing Model (APM). Consequently, to demonstrate how the method operates and to illustrate its usefulness as well as its superiority compared to other commonly used methods, the Tabu search algorithm for variable selection is compared to two main alternative search procedures namely, the stepwise regression and the maximum R 2 improvement method. The Tabu search is then implemented in finance; where it attempts to predict corporate bankruptcy by selecting the most appropriate financial ratios and thus creating its own prediction score equation. In comparison to other methods, mostly the Altman Z-Score model, the Tabu search model produces a higher success rate in predicting correctly the failure of firms or the continuous running of existing entities.

Keywords: Predicting Bankruptcy, Tabu Search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
3746 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study

Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng

Abstract:

MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.

Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
3745 Artificial Neural Network based Parameter Estimation and Design Optimization of Loop Antenna

Authors: Kumaresh Sarmah, Kandarpa Kumar Sarma

Abstract:

Artificial Neural Network (ANN)s are best suited for prediction and optimization problems. Trained ANNs have found wide spread acceptance in several antenna design systems. Four parameters namely antenna radiation resistance, loss resistance, efficiency, and inductance can be used to design an antenna layout though there are several other parameters available. An ANN can be trained to provide the best and worst case precisions of an antenna design problem defined by these four parameters. This work describes the use of an ANN to generate the four mentioned parameters for a loop antenna for the specified frequency range. It also provides insights to the prediction of best and worst-case design problems observed in applications and thereby formulate a model for physical layout design of a loop antenna.

Keywords: MLP, ANN, parameter, prediction, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557