Search results for: learning community
1205 Ensemble Learning with Decision Tree for Remote Sensing Classification
Authors: Mahesh Pal
Abstract:
In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in the field of land cover classification is focused on improving classification accuracy. This study compares the performance of four ensemble approaches (boosting, bagging, DECORATE and random subspace) with a univariate decision tree as base classifier. Two training datasets, one without ant noise and other with 20 percent noise was used to judge the performance of different ensemble approaches. Results with noise free data set suggest an improvement of about 4% in classification accuracy with all ensemble approaches in comparison to the results provided by univariate decision tree classifier. Highest classification accuracy of 87.43% was achieved by boosted decision tree. A comparison of results with noisy data set suggests that bagging, DECORATE and random subspace approaches works well with this data whereas the performance of boosted decision tree degrades and a classification accuracy of 79.7% is achieved which is even lower than that is achieved (i.e. 80.02%) by using unboosted decision tree classifier.Keywords: Ensemble learning, decision tree, remote sensingclassification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25971204 Going beyond Social Maternage.The Principle of Brotherhood in the Community Psychology's Intervention
Authors: Gioacchino Lavanco, Elisabetta Di Giovanni, Floriana Romano
Abstract:
The aim of this paper is to study in depth some methodological aspects of social interventation, focusing on desirable passage from social maternage method to peer advocacy method. For this purpose, we intend analyze social and organizative components, that affect operator's professional action and that are part of his psychological environment, besides the physical and social one. In fact, operator's interventation should not be limited to a pure supply of techniques, nor to take shape as improvised action, but “full of good purposes".
Keywords: Advocacy, education, relationship, social mandate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11561203 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives
Authors: Andreas Theissler, Ian Dear
Abstract:
In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.
Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24821202 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17361201 Learning to Recognize Faces by Local Feature Design and Selection
Authors: Yanwei Pang, Lei Zhang, Zhengkai Liu
Abstract:
Studies in neuroscience suggest that both global and local feature information are crucial for perception and recognition of faces. It is widely believed that local feature is less sensitive to variations caused by illumination, expression and illumination. In this paper, we target at designing and learning local features for face recognition. We designed three types of local features. They are semi-global feature, local patch feature and tangent shape feature. The designing of semi-global feature aims at taking advantage of global-like feature and meanwhile avoiding suppressing AdaBoost algorithm in boosting weak classifies established from small local patches. The designing of local patch feature targets at automatically selecting discriminative features, and is thus different with traditional ways, in which local patches are usually selected manually to cover the salient facial components. Also, shape feature is considered in this paper for frontal view face recognition. These features are selected and combined under the framework of boosting algorithm and cascade structure. The experimental results demonstrate that the proposed approach outperforms the standard eigenface method and Bayesian method. Moreover, the selected local features and observations in the experiments are enlightening to researches in local feature design in face recognition.Keywords: Face recognition, local feature, AdaBoost, subspace analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16031200 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: G. Settanni, A. Panarese, R. Vaira, A. Galiano
Abstract:
Nowadays, artificial intelligence is used successfully in the field of e-commerce for its ability to learn from a large amount of data. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them the most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Also, Long Short-Term Memory algorithms have been implemented and trained on historical data in order to predict customer scores of the different items. Items with the highest scores are recommended to customers.
Keywords: Deep Learning, Long Short-Term Memory, Machine Learning, Recommender Systems, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3401199 The Effectiveness of Implementing Interactive Training for Teaching Kazakh Language
Authors: Samal Abzhanova, Saule Mussabekova
Abstract:
Today, a new system of education is being created in Kazakhstan in order to develop the system of education and to satisfy the world class standards. For this purpose, there have been established new requirements and responsibilities to the instructors. Students should not be limited with providing only theoretical knowledge. Also, they should be encouraged to be competitive, to think creatively and critically. Moreover, students should be able to implement these skills into practice. These issues could be resolved through the permanent improvement of teaching methods. Therefore, a specialist who teaches the languages should use up-to-date methods and introduce new technologies. The result of the investigation suggests that an interactive teaching method is one of the new technologies in this field. This paper aims to provide information about implementing new technologies in the process of teaching language. The paper will discuss about necessity of introducing innovative technologies and the techniques of organizing interactive lessons. At the same time, the structure of the interactive lesson, conditions, principles, discussions, small group works and role-playing games will be considered. Interactive methods are carried out with the help of several types of activities, such as working in a team (with two or more group of people), playing situational or role-playing games, working with different sources of information, discussions, presentations, creative works and learning through solving situational tasks and etc.Keywords: Games, interactive learning, Kazakh language, teaching methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14371198 A Holistic Conceptual Measurement Framework for Assessing the Effectiveness and Viability of an Academic Program
Authors: Munir Majdalawieh, Adam Marks
Abstract:
In today’s very competitive higher education industry (HEI), HEIs are faced with the primary concern of developing, deploying, and sustaining high quality academic programs. Today, the HEI has well-established accreditation systems endorsed by a country’s legislation and institutions. The accreditation system is an educational pathway focused on the criteria and processes for evaluating educational programs. Although many aspects of the accreditation process highlight both the past and the present (prove), the “program review” assessment is "forward-looking assessment" (improve) and thus transforms the process into a continuing assessment activity rather than a periodic event. The purpose of this study is to propose a conceptual measurement framework for program review to be used by HEIs to undertake a robust and targeted approach to proactively and continuously review their academic programs to evaluate its practicality and effectiveness as well as to improve the education of the students. The proposed framework consists of two main components: program review principles and the program review measurement matrix.Keywords: Academic program, program review principles, curriculum development, accreditation, evaluation, assessment, review measurement matrix, program review process, information technologies supporting learning, learning/teaching methodologies and assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10941197 Analysis of Plasmids and Restriction Fragment Length Polymorphisms of Acinetobacter baumannii Isolated from Hospitals- AL Jouf Region- KSA
Authors: Samy A. Selim, Nashwa I. Hagag
Abstract:
Abstract–The objectives of the current study are to determine the prevalence, etiological agents, drug susceptibility pattern and plasmid profile of Acinetobacter baumannii isolates from Hospital-Acquired Infections (HAI) at Community Hospital, Al Jouf Province, Saudi Arabia. A total of 1890 patients had developed infection during hospital admission and were included in the study. Among those who developed nosocomial infections, 15(9.4), 10(2.7) and 118 (12.7) had respiratory tract infection (RTI), blood stream infections (BSI) and urinary tract (UTI) respectively. A total of 268 bacterial isolates were isolated from nosocomial infection. S. aureus was reported in 23.5% for of the total isolates followed by Klebsiella pneumoniae (17.5%), E. coli (17.2%), P. aeruginosa (11.9%), coagulase negative staphylococcus (9%), A. baumannii (7.1%), Enterobacter spp. (3.4%), Citrobacter freundii (3%), Proteus mirabilis (2.6%), and Proteus vulgaris and Enterococcous faecalis (0.7%). Isolated organisms are multi-drug resistant, predominantly Gram-positive pathogens with a high incidence of methicillin-resistant S. aureus, extended spectrum beta lactamase and vancomycin resistant enterococci organisms. The RFLP (Fragment Length Polymorphisms) patterns of plasmid preparations from isolated A. baumannii isolates had altered RFLP patterns, possibly due to the presence of plasmid(s). Five A. baumannii isolates harbored plasmids all of which were not less than 2.71kbp in molecular weight. Hence, it showed that the gene coding for the isolates were located on the plasmid DNA while the remaining isolates which have no plasmid might showed gene coding for antibiotic resistance being located on chromosomal DNA. Nosocomial infections represent a current problem in Community Hospital, Al Jouf Province, Saudi Arabia. Problems associated with SSI include infection with multidrug resistant pathogens which are difficult to treat and are associated with increased mortality.Keywords: Hospital-Acquired Infections, Acinetobacter baumannii, antibiotic resistance, plasmid profile, RFLP patterns, Al Jouf Province, Saudi Arabia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21231196 Gas Detection via Machine Learning
Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso
Abstract:
We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25451195 Didactical and Semiotic Affordance of GeoGebra in a Productive Mathematical Discourse
Authors: I. Benning
Abstract:
Using technology to expand the learning space is critical for a productive mathematical discourse. This is a case study of two teachers who developed and enacted GeoGebra-based mathematics lessons following their engagement in a two-year professional development. The didactical and semiotic affordance of GeoGebra in widening the learning space for a productive mathematical discourse was explored. The approach of thematic analysis was used for lesson artefact, lesson observation, and interview data. The results indicated that constructing tools in GeoGebra provided a didactical milieu where students used them to explore mathematical concepts with little or no support from their teacher. The prompt feedback from the GeoGebra motivated students to practice mathematical concepts repeatedly in which they privately rethink their solutions before comparing their answers with that of their colleagues. The constructing tools enhanced self-discovery, team spirit, and dialogue among students. With regards to the semiotic construct, the tools widened the physical and psychological atmosphere of the classroom by providing animations that served as virtual concrete to enhance the recording, manipulation, testing of a mathematical idea, construction, and interpretation of geometric objects. These findings advance the discussion of widening the classroom for a productive mathematical discourse within the context of the mathematics curriculum of Ghana and similar sub-Saharan African countries.
Keywords: GeoGebra, theory of didactical situation, semiotic mediation, mathematics laboratory, mathematical discussion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4241194 Careers-Outreach Programmes for Children: Lessons for Perceptions of Engineering and Manufacturing
Authors: Niall J. English, Sylvia Leatham, Maria Isabel Meza Silva, Denis P. Dowling
Abstract:
The training and education of under- and post-graduate students can be promoted by more active learning especially in engineering, overcoming more passive and vicarious experiences and approaches in their documented effectiveness. However, the possibility of outreach to young pupils and school-children in primary and secondary schools is a lesser explored area in terms of Education and Public Engagement (EPE) efforts – as relates to feedback and influence on shaping 3rd-level engineering training and education. Therefore, the outreach and school-visit agenda constitutes an interesting avenue to observe how active learning, careers stimulus and EPE efforts for young children and teenagers can teach the university sector, to improve future engineering-teaching standards and enhance both quality and capabilities of practice. This intervention involved careers-outreach efforts to lead to statistical determinations of motivations towards engineering, manufacturing and training. The aim was to gauge to what extent this intervention would lead to an increased careers awareness in engineering, using the method of the schools-visits programme as the means for so doing. It was found that this led to an increase in engagement by school pupils with engineering as a career option and a greater awareness of the importance of manufacturing.
Keywords: outreach, education and public engagement, careers, peer interactions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5151193 Use of Information Technology in the Government of a State
Authors: Pavel E. Golosov, Vladimir I. Gorelov, Oksana L. Karelova
Abstract:
There are visible changes in the world organization, environment and health of national conscience that create a background for discussion on possible redefinition of global, state and regional management goals. Authors apply the sustainable development criteria to a hierarchical management scheme that is to lead the world community to non-contradictory growth. Concrete definitions are discussed in respect of decision-making process representing the state mostly. With the help of system analysis it is highlighted how to understand who would carry the distinctive sign of world leadership in the nearest future.
Keywords: Decision-making, information technology, public administration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11171192 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings
Authors: G. Candel, D. Naccache
Abstract:
t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embedding. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic, and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n2) to O(n2/k), and the memory requirement from n2 to 2(n/k)2 which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.
Keywords: Concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4941191 Impact of Revenue Reform on Vulnerable Communities in Tonga
Authors: Pauliasi Tony Fakahau
Abstract:
This paper provides an overview of the impact of the revenue reform programme on vulnerable communities in the Kingdom of Tonga. Economic turmoil and mismanagement during the late 1990s forced the government to seek technical and financial assistance from the Asian Development Bank to undertake a comprehensive Economic and Public Sector Reform (EPSR) programme. The EPSR is a Western model recommended by donor agencies as the solution to Tonga’s economic challenges. The EPSR programme included public sector reform, private sector growth, and revenue generation. Tax reform was the main tool for revenue generation, which set out to strengthen tax compliance and administration as well as implement a value-added consumption tax. The EPSR is based on Western values and ideology but failed to recognise that Tongan cultural values are important to the local community. Two participant groups were interviewed. Participant group one consisted of 51 people representing vulnerable communities. Participant group two consisted of six people from the government and business sector who were from the elite of Tongan society. The Kakala Research Methodology provided the framework for the research, and the Talanoa Research Method was used to conduct semi-structured interviews in the homes of the first group and in the workplaces of the second group. The research found a heavy burden of the consumption tax on the purchasing power of participant group one (vulnerable participants), having an impact on nearly every financial transaction they made. Participant group one’s main financial priorities were kavenga fakalotu (obligations to the church), kavenga fakafāmili (obligations to the family) and kavenga fakafonua (obligations to cultural events for the village, nobility, and royalty). The findings identified inequalities of the revenue reform, especially from consumption tax, for vulnerable people and communities compared to the elite of society. The research concluded that government and donor agencies need ameliorating policies to reduce the burden of tax on vulnerable groups more susceptible to the impact of revenue reform.
Keywords: Tax reform, Tonga vulnerable community revenue, revenue reform, public sector reform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2951190 Toward a Measure of Appropriateness of User Interfaces Adaptations Solutions
Authors: A. Siam, R. Maamri, Z. Sahnoun
Abstract:
The development of adaptive user interfaces (UI) presents for a long time an important research area in which researcher attempt to call upon the full resources and skills of several disciplines, The adaptive UI community holds a thorough knowledge regarding the adaptation of UIs with users and with contexts of use. Several solutions, models, formalisms, techniques and mechanisms were proposed to develop adaptive UI. In this paper, we propose an approach based on the fuzzy set theory for modeling the concept of the appropriateness of different solutions of UI adaptation with different situations for which interactive systems have to adapt their UIs.Keywords: Adaptive user interfaces, adaptation solution’s appropriateness, fuzzy sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19431189 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network
Authors: Sanae Attioui, Said Najah
Abstract:
The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.
Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5201188 Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines
Authors: Mona Soliman Habib
Abstract:
This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.Keywords: Named entity recognition, support vector machines, language independence, bioinformatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16991187 Students’ Level of Knowledge Construction and Pattern of Social Interaction in an Online Forum
Authors: K. Durairaj, I. N. Umar
Abstract:
The asynchronous discussion forum is one of the most widely used activities in learning management system environment. Online forum allows participants to interact, construct knowledge, and can be used to complement face to face sessions in blended learning courses. However, to what extent do the students perceive the benefits or advantages of forum remain to be seen. Through content and social network analyses, instructors will be able to gauge the students’ engagement and knowledge construction level. Thus, this study aims to analyze the students’ level of knowledge construction and their participation level that occur through online discussion. It also attempts to investigate the relationship between the level of knowledge construction and their social interaction patterns. The sample involves 23 students undertaking a master course in one public university in Malaysia. The asynchronous discussion forum was conducted for three weeks as part of the course requirement. The finding indicates that the level of knowledge construction is quite low. Also, the density value of 0.11 indicating the overall communication among the participants in the forum is low. This study reveals that strong and significant correlations between SNA measures (in-degree centrality, out-degree centrality) and level of knowledge construction. Thus, allocating these active students in different group aids the interactive discussion takes place. Finally, based upon the findings, some recommendations to increase students’ level of knowledge construction and also for further research are proposed.
Keywords: Asynchronous Discussion Forums, Content Analysis, Knowledge Construction, Social Network Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22141186 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.
Keywords: Anomaly detection, autoencoder, data centers, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7561185 Hospital Administration for Humanized Healthcare in Thailand
Authors: Niwatchai Namwichisirikul
Abstract:
Due to the emergence of “Humanized Healthcare" introduced by Professor Dr. Prawase Wasi in 2003[1], the development of this paradigm tends to be widely implemented. The organizations included Healthcare Accreditation Institute (public organization), National Health Foundation, Mahidol University in cooperation with Thai Health Promotion Foundation, and National Health Security Office (Thailand) have selected the hospitals or infirmaries that are qualified for humanized healthcare since 2008- 2010 and 35 of them are chosen to be the outstandingly navigating organizations for the development of humanized healthcare, humanized healthcare award [2]. The research aims to study the current issue, characteristics and patterns of hospital administration contributing to humanized healthcare system in Thailand. The selected case studies are from four hospitals including Dansai Crown Prince Hospital, Leoi; Ubolrattana Hospital, Khon Kaen; Kapho Hospital, Pattani; and Prathai Hospital, Nakhonrachasima. The methodology is in-depth interviewing with 10 staffs working as hospital executive directors, and representatives from leader groups including directors, multidisciplinary hospital committees, personnel development committees, physicians and nurses in each hospital. (Total=40) In addition, focus group discussions between hospital staffs and general people (including patients and their relatives, the community leader, and other people) are held by means of setting 4 groups including 8 people within each group. (Total=128) The observation on the working in each hospital is also implemented. The findings of the study reveal that there are five important aspects found in each hospital including (1) the quality improvement under the mental and spiritual development policy from the chief executives and lead teams, leaders as Role model and they have visionary leadership; (2) the participation hospital administration system focusing on learning process and stakeholder- needs, spiritual human resource management and development; (3) the relationship among people especially staffs, team work skills, mutual understanding, effective communication and personal inner-development; (4) organization culture relevant to the awareness of patients- rights as well as the participation policy including spiritual growth achieving to the same goals, sharing vision, developing public mind, and caring; and (5) healing structures or environment providing warmth and convenience for hospital staffs, patients and their relatives and visitors.Keywords: Hospital administration, Humanized healthcare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25131184 Expanding Business Strategy to Native American Communities Using Experiential Learning
Authors: A. J. Otjen
Abstract:
Native American communities are struggling with unemployment and depressed economies. A major cause is a lack of business knowledge, education, and cultural desire. And yet, in the history of the American West, Native Americans were considered the best traders and negotiators for everything from furs to weapons to buffalo. To improve these economies, there has been an effort to reintroduce that heritage to todays and tomorrows generation of tribal members, such Crow, Cheyenne, and Blackfeet. Professors at the College of Business Montana State University-Billings (MSUB) teach tribal students in Montana to create business plans. These plans have won national small business plan competitions. The teaching and advising method used at MSUB is uniquely successful as theses business students are now five time national champions. This article reviews the environment and the method of learning to achieve a winning small business plan with Native American students. It discusses the five plans that became national champions. And it discusses the problems and solutions discovered in the process of achieving results. Students who participated in this endeavor have graduated and become CPAs, MBAs, and gainfully employed in their chosen professions. They have also worked to improve the economies of their native lands and homes. By educating members of these communities with business strategy and plan development, they are better able to impact their own economies.Keywords: Entrepreneurship, Native Americans economies, small businesses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16231183 Network Effects and QoS as Determining Factors in Selection of Mobile Operator: A Case Study from Higher Learning Institution in Dodoma Municipality in Tanzania
Authors: Justinian Anatory, Ekael Stephen Manase
Abstract:
The use of mobile phones is growing tremendously all over the world. In Tanzania there are a number of operators licensed by Tanzania Communications Regulatory Authority (TCRA) aiming at attracting customers into their networks. So far telecommunications market competition has been very stiff. Various measures are being taken by mobile operators to survive in the market. Such measure include introducing of different air time bundles on daily, weekly and monthly at lower tariffs. Other measures include the introduction of normal tariff, tourist package and one network. Despite of all these strategies, there is a dynamic competition in the market which needs to be explored. Some influences which attract customers to choose a certain mobile operator are of particular interest. This paper is investigating if the network effects and Quality of Services (QoS) influence mobile customers in selection of their mobile network operators. Seventy seven students from high learning institutions in Dodoma Municipality in Tanzania participated in responding to prepared questionnaires. The data was analyzed using Statistical Package for Social Science (SPSS) Software. The results indicate that, network coverage does influence customers in selection of mobile operators. In addition, this paper proposes further research in some areas especially where the study came up with different findings from what the theory has in place.
Keywords: Network effects, Quality of services, Consumer Buying, mobile operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23481182 A High Performance MPI for Parallel and Distributed Computing
Authors: Prabu D., Vanamala V., Sanjeeb Kumar Deka, Sridharan R., Prahlada Rao B. B., Mohanram N.
Abstract:
Message Passing Interface is widely used for Parallel and Distributed Computing. MPICH and LAM are popular open source MPIs available to the parallel computing community also there are commercial MPIs, which performs better than MPICH etc. In this paper, we discuss a commercial Message Passing Interface, CMPI (C-DAC Message Passing Interface). C-MPI is an optimized MPI for CLUMPS. It is found to be faster and more robust compared to MPICH. We have compared performance of C-MPI and MPICH on Gigabit Ethernet network.Keywords: C-MPI, C-VIA, HPC, MPICH, P-COMS, PMB
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15601181 Tracing Syrian Refugees Urban Mobilities: The Case of Egypt and Canada
Authors: N. Elgendy, N. Hussein
Abstract:
The current Syrian crisis has caused unprecedented practices of global mobility. The process of forced eviction and the resettlement of refugees could be seen through the insights of the “new mobilities paradigm”. The mobility of refugees in terms of meaning and practice is a subject that calls for further studies. There is a need for the development of an approach to human mobility to understand a practice that is turning into a phenomenon in the 21st century. This paper aims at studying, from a qualitative point of view, the process of movement within the six constituents of mobility defined as the first phase of the journey of a refugee. The second phase would include the process of settling in and re-defining the host country as new “home” to refugees. The change in the refugee state of mind and crossing the physical and mental borders from a “foreigner” to a citizen is encouraged by both the governmental policies and the local communities’ efforts to embrace these newcomers. The paper would focus on these policies of social and economic integration. The concept of integration connotes the idea that refugees would enjoy the opportunities, rights and services available to the citizens of the refugee’s new community. So, this paper examines this concept through showcasing the two hosting countries of Canada and Egypt, as they provide two contrasting situations in terms of cultural, geographical, economic and political backgrounds. The analysis would highlight the specific policies defined towards the refugees including the mass communication, media calls, and access to employment. This research is part of a qualitative research project on the process of Urban Mobility practiced by the Syrian Refugees, drawing on conversational interviews with new-settlers who have moved to the different hosting countries, from their home in Syria. It explores these immigrants’ practical and emotional relationships with the process of movement and settlement. It uses the conversational interviews as a tool to document analysis and draw relationships in an attempt to establish an understanding of the factors that contribute to the new-settlers feeling of home and integration within the new community.Keywords: Mobility, refugees, home, integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13081180 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32391179 Impact of Urbanization Growth on Disease Spread and Outbreak Response: Exploring Strategies for Enhancing Resilience
Authors: Raquel Vianna Duarte Cardoso, Eduarda Lobato Faria, José Jorge Boueri
Abstract:
Rapid urbanization has transformed the global landscape, presenting significant challenges to public health. This article delves into the impact of urbanization on the spread of infectious diseases in cities and identifies crucial strategies to enhance urban community resilience. Massive urbanization over recent decades has created conducive environments for the rapid spread of diseases due to population density, mobility, and unequal living conditions. Urbanization has been observed to increase exposure to pathogens and foster conditions conducive to disease outbreaks, including seasonal flu, vector-borne diseases, and respiratory infections. In order to tackle these issues, a range of cross-disciplinary approaches are suggested. These encompass the enhancement of urban healthcare infrastructure, emphasizing the need for robust investments in hospitals, clinics, and healthcare systems to keep pace with the burgeoning healthcare requirements in urban environments. Moreover, the establishment of disease monitoring and surveillance mechanisms is indispensable, as it allows for the timely detection of outbreaks, enabling swift responses. Additionally, community engagement and education play a pivotal role in advocating for personal hygiene, vaccination, and preventive measures, thus playing a pivotal role in diminishing disease transmission. Lastly, the promotion of sustainable urban planning, which includes the creation of cities with green spaces, access to clean water, and proper sanitation, can significantly mitigate the risks associated with waterborne and vector-borne diseases. The article is based on the analysis of scientific literature, and it offers a comprehensive insight into the complexities of the relationship between urbanization and health. It places a strong emphasis on the urgent need for integrated approaches to improve urban resilience in the face of health challenges.
Keywords: Infectious diseases dissemination, public health, urbanization impacts, urban resilience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1131178 A Goal-Oriented Social Business Process Management Framework
Authors: Mohammad Ehson Rangiha, Bill Karakostas
Abstract:
Social Business Process Management (SBPM) promises to overcome limitations of traditional BPM by allowing flexible process design and enactment through the involvement of users from a social community. This paper proposes a meta-model and architecture for socially driven business process management systems. It discusses the main facets of the architecture such as goalbased role assignment that combines social recommendations with user profile, and process recommendation, through a real example of a charity organization.
Keywords: Business Process Management, Goal-Based Modelling, Process Recommendation Social Collaboration, Social BPM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25731177 AI-Driven Cloud Security: Proactive Defense Against Evolving Cyber Threats
Authors: Ashly Joseph
Abstract:
Cloud computing has become an essential component of enterprises and organizations globally in the current era of digital technology. The cloud has a multitude of advantages, including scalability, flexibility, and cost-effectiveness, rendering it an appealing choice for data storage and processing. The increasing storage of sensitive information in cloud environments has raised significant concerns over the security of such systems. The frequency of cyber threats and attacks specifically aimed at cloud infrastructure has been increasing, presenting substantial dangers to the data, reputation, and financial stability of enterprises. Conventional security methods can become inadequate when confronted with ever intricate and dynamic threats. Artificial Intelligence (AI) technologies possess the capacity to significantly transform cloud security through their ability to promptly identify and thwart assaults, adjust to emerging risks, and offer intelligent perspectives for proactive security actions. The objective of this research study is to investigate the utilization of AI technologies in augmenting the security measures within cloud computing systems. This paper aims to offer significant insights and recommendations for businesses seeking to protect their cloud-based assets by analyzing the present state of cloud security, the capabilities of AI, and the possible advantages and obstacles associated with using AI into cloud security policies.
Keywords: Machine Learning, Natural Learning Processing, Denial-of-Service attacks, Sentiment Analysis, Cloud computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481176 Collocation Errors in English as Second Language (ESL) Essay Writing
Authors: Fatima Muhammad Shitu
Abstract:
In language learning, second language learners as well as Native speakers commit errors in their attempt to achieve competence in the target language. The realm of collocation has to do with meaning relation between lexical items. In all human language, there is a kind of ‘natural order’ in which words are arranged or relate to one another in sentences so much so that when a word occurs in a given context, the related or naturally co-occurring word will automatically come to the mind. It becomes an error, therefore, if students inappropriately pair or arrange such ‘naturally’ co–occurring lexical items in a text. It has been observed that most of the second language learners in this research group commit collocation errors. A study of this kind is very significant as it gives insight into the kinds of errors committed by learners. This will help the language teacher to be able to identify the sources and causes of such errors as well as correct them thereby guiding, helping and leading the learners towards achieving some level of competence in the language. The aim of the study is to understand the nature of these errors as stumbling blocks to effective essay writing. The objective of the study is to identify the errors, analyze their structural compositions so as to determine whether there are similarities between students in this regard and to find out whether there are patterns to these kinds of errors which will enable the researcher to understand their sources and causes. As a descriptive research, the researcher samples some nine hundred essays collected from three hundred undergraduate learners of English as a second language in the Federal College of Education, Kano, North- West Nigeria, i.e. three essays per each student. The essays which were given on three different lecture times were of similar thematic preoccupations (i.e. same topics) and length (i.e. same number of words). The essays were written during the lecture hour at three different lecture occasions. The errors were identified in a systematic manner whereby errors so identified were recorded only once even if they occur severally in students’ essays. The data was collated using percentages in which the identified numbers of occurrences were converted accordingly in percentages. The findings from the study indicate that there are similarities as well as regular and repeated errors which provided a pattern. Based on the pattern identified, the conclusion is that students’ collocation errors are attributable to poor teaching and learning which resulted in wrong generalization of rules.
Keywords: Collocations, errors, collocation errors, second language learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7921