Search results for: functional data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7994

Search results for: functional data

6554 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis

Authors: Isao Taguchi, Yasuo Sugai

Abstract:

This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
6553 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner

Authors: Guy Leshem, Ya'acov Ritov

Abstract:

Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.

Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3913
6552 Group Learning for the Design of Human Resource Development for Enterprise

Authors: Hao-Hsi Tseng, Hsin-Yun Lee, Yu-Cheng Kuo

Abstract:

In order to understand whether there is a better than the learning function of learning methods and improve the CAD Courses for enterprise’s design human resource development, this research is applied in learning practical learning computer graphics software. In this study, Revit building information model for learning content, design of two different modes of learning curriculum to learning, learning functions, respectively, and project learning. Via a post-test, questionnaires and student interviews, etc., to study the effectiveness of a comparative analysis of two different modes of learning. Students participate in a period of three weeks after a total of nine-hour course, and finally written and hands-on test. In addition, fill in the questionnaire response by the student learning, a total of fifteen questionnaire title, problem type into the base operating software, application software and software-based concept features three directions. In addition to the questionnaire, and participants were invited to two different learning methods to conduct interviews to learn more about learning students the idea of two different modes. The study found that the ad hoc short-term courses in learning, better learning outcomes. On the other hand, functional style for the whole course students are more satisfied, and the ad hoc style student is difficult to accept the ad hoc style of learning.

Keywords: Development, education, human resource, learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
6551 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013

Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran

Abstract:

Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.

Keywords: ALOS/AVNIR-2, Dengue, Space-time clustering analysis, Sri Lanka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
6550 Effects of Coupling Agent on the Properties of Henequen Microfiber (NF) Filled High Density Polyethylene (HDPE) Composites

Authors: Pravin Gaikwad, Prakash Mahanwar

Abstract:

The main objective of incorporating natural fibers such as Henequen microfibers (NF) into the High Density Polyethylene (HDPE) polymer matrix is to reduce the cost and to enhance the mechanical as well as other properties. The Henequen microfibers were chopped manually to 5-7mm in length and added into the polymer matrix at the optimized concentration of 8 wt %. In order to facilitate the link between Henequen microfibers (NF) and HDPE matrix, coupling agent such as Glycidoxy (Epoxy) Functional Methoxy Silane (GPTS) at various concentrations from 0.1%, 0.3%, 0.5%, 0.7%, 0.9% and 1% by weight to the total fibers were added. The tensile strength of the composite increased marginally while % elongation at break of the composites decreased with increase in silane loading by wt %. Tensile modulus and stiffness observed increased at 0.9 wt % GPTS loading. Flexural as well as impact strength of the composite decreased with increase in GPTS loading by weight %. Dielectric strength of the composite also found increased marginally up to 0.5wt % silane loading and thereafter remained constant. 

Keywords: Henequen microfibers (NF), polymer composites, HDPE, coupling agent, GPTS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
6549 Motor Imagery Signal Classification for a Four State Brain Machine Interface

Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan

Abstract:

Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification

Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
6548 Liquid-Liquid Equilibrium for the Binary Mixtures of α-Pinene + Water and α-Terpineol + Water

Authors: Herti Utami, Sutijan, Roto, Wahyudi Budi Sediawan

Abstract:

α-Pinene is the main component of the most turpentine oils. The hydration of α-pinene with acid catalysts leads to a complex mixture of monoterpenes. In order to obtain more valuable products, the α-pinene in the turpentine can be hydrated in dilute mineral acid solutions to produce α-terpineol. The design of separation processes requires information on phase equilibrium and related thermodynamic properties. This paper reports the results of study on liquid-liquid equilibrium (LLE) of system containing α- pinene + water and α-terpineol + water. Binary LLE for α-pinene + water system, and α-terpineol + water systems were determined by experiment at 301K and atmospheric pressure. The two component mixture was stirred for about 30min, then the mixture was left for about 2h for complete phase separation. The composition of both phases was analyzed by using a Gas Chromatograph. The experimental data were correlated by considering both NRTL and UNIQUAC activity coefficient models. The LLE data for the system of α-pinene + water and α-terpineol + water were correlated successfully by the NRTL model. The experimental data were not satisfactorily fitted by the UNIQUAC model. The NRTL model (α =0.3) correlates the LLE data for the system of α-pinene + water at 301K with RMSD of 0.0404%. And the NRTL model (α =0.61) at 301K with RMSD of 0.0058 %. The NRTL model (α =0.3) correlates the LLE data for the system of α- terpineol + water at 301K with RMSD of 0.1487% and the NRTL model (α =0.6) at 301K with RMSD of 0.0032%, between the experimental and calculated mole fractions.

Keywords: α-Pinene, α-Terpineol, Liquid-liquid Equilibrium, NRTL model, UNIQUAC model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4977
6547 Development and Characterization of Bio-Tribological, Nano-Multilayer Coatings for Medical Tools Application

Authors: L. Major, J. M. Lackner, M. Dyner, B. Major

Abstract:

Development of new generation bio-tribological, multilayer coatings opens an avenue for fabrication of future hightech functional surfaces. In the presented work, nano-composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nanomultilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio-tribological properties of the coatings was studied. The bio-tests were used as a screening tool for the analyzed nanomultilayer coatings before they could be deposited on medical tools. Bio-medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-ondisc mechanical test. The micro hardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio-tribological point of view, the optimal properties had the C106_1 material.

Keywords: Bio-tribological coatings, cell-material interaction, hybrid PLD, tribology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
6546 On the Noise Distance in Robust Fuzzy C-Means

Authors: M. G. C. A. Cimino, G. Frosini, B. Lazzerini, F. Marcelloni

Abstract:

In the last decades, a number of robust fuzzy clustering algorithms have been proposed to partition data sets affected by noise and outliers. Robust fuzzy C-means (robust-FCM) is certainly one of the most known among these algorithms. In robust-FCM, noise is modeled as a separate cluster and is characterized by a prototype that has a constant distance δ from all data points. Distance δ determines the boundary of the noise cluster and therefore is a critical parameter of the algorithm. Though some approaches have been proposed to automatically determine the most suitable δ for the specific application, up to today an efficient and fully satisfactory solution does not exist. The aim of this paper is to propose a novel method to compute the optimal δ based on the analysis of the distribution of the percentage of objects assigned to the noise cluster in repeated executions of the robust-FCM with decreasing values of δ . The extremely encouraging results obtained on some data sets found in the literature are shown and discussed.

Keywords: noise prototype, robust fuzzy clustering, robustfuzzy C-means

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
6545 Corporate Governance and Share Prices: Firm Level Review in Turkey

Authors: Raif Parlakkaya, Ahmet Diken, Erkan Kara

Abstract:

This paper examines the relationship between corporate governance rating and stock prices of 26 Turkish firms listed in Turkish stock exchange (Borsa Istanbul) by using panel data analysis over five-year period. The paper also investigates the stock performance of firms with governance rating with regards to the market portfolio (i.e. BIST 100 Index) both prior and after governance scoring began. The empirical results show that there is no relation between corporate governance rating and stock prices when using panel data for annual variation in both rating score and stock prices. Further analysis indicates surprising results that while the selected firms outperform the market significantly prior to rating, the same performance does not continue afterwards.

Keywords: Corporate governance, stock price, performance, panel data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527
6544 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies

Authors: Dmitry V. Fomichev, Vladimir I. Solonin

Abstract:

This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown.

An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.

Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
6543 Tracking Activity of Real Individuals in Web Logs

Authors: Sándor Juhász, Renáta Iváncsy

Abstract:

This paper describes an enhanced cookie-based method for counting the visitors of web sites by using a web log processing system that aims to cope with the ambitious goal of creating countrywide statistics about the browsing practices of real human individuals. The focus is put on describing a new more efficient way of detecting human beings behind web users by placing different identifiers on the client computers. We briefly introduce our processing system designed to handle the massive amount of data records continuously gathered from the most important content providers of the Hungary. We conclude by showing statistics of different time spans comparing the efficiency of multiple visitor counting methods to the one presented here, and some interesting charts about content providers and web usage based on real data recorded in 2007 will also be presented.

Keywords: Cookie based identification, real data, user activitytracking, web auditing, web log processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
6542 Microgrid: Low Power Network Topology and Control

Authors: Amit Sachan

Abstract:

The network designing and data modeling developments which are the two significant research tasks in direction to tolerate power control of Microgrid concluded using IEC 61850 data models and facilities. The current casing areas of IEC 61580 include infrastructures in substation automation systems, among substations and to DERs. So, for LV microgrid power control, previously using the IEC 61850 amenities to control the smart electrical devices, we have to model those devices as IEC 61850 data models and design a network topology to maintenance all-in-one communiqué amid those devices. In adding, though IEC 61850 assists modeling a portion by open-handed several object models for common functions similar measurement, metering, monitoring…etc., there are motionless certain missing smithereens for building a multiplicity of functions for household appliances like tuning the temperature of an electric heater or refrigerator.

Keywords: IEC 61850, RCMC, HCMC, DER Unit Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
6541 Identification of Wideband Sources Using Higher Order Statistics in Noisy Environment

Authors: S. Bourennane, A. Bendjama

Abstract:

This paper deals with the localization of the wideband sources. We develop a new approach for estimating the wide band sources parameters. This method is based on the high order statistics of the recorded data in order to eliminate the Gaussian components from the signals received on the various hydrophones.In fact the noise of sea bottom is regarded as being Gaussian. Thanks to the coherent signal subspace algorithm based on the cumulant matrix of the received data instead of the cross-spectral matrix the wideband correlated sources are perfectly located in the very noisy environment. We demonstrate the performance of the proposed algorithm on the real data recorded during an underwater acoustics experiments.

Keywords: Higher-order statistics, high resolution array processing techniques, localization of acoustics sources, wide band sources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
6540 An AK-Chart for the Non-Normal Data

Authors: Chia-Hau Liu, Tai-Yue Wang

Abstract:

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Keywords: Multivariate control chart, statistical process control, one-class classification method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
6539 Analysis of the Communication Methods of an iCIM 3000 System within the Frame of Research Purpose

Authors: Radovan Holubek, Daynier Rolando Delgado Sobrino, Roman Ruzarovsky

Abstract:

Current trends in manufacturing are characterized by production broadening, innovation cycle shortening, and the products having a new shape, material and functions. The production strategy focused on time needed change from the traditional functional production structure to flexible manufacturing cells and lines. Production by automated manufacturing system (AMS) is one of the most important manufacturing philosophies in the last years. The main goals of the project we are involved in lies on building a laboratory in which will be located a flexible manufacturing system consisting of at least two production machines with NC control (milling machines, lathe). These machines will be linked to a transport system and they will be served by industrial robots. Within this flexible manufacturing system a station for the quality control consisting of a camera system and rack warehouse will be also located. The design, analysis and improvement of this manufacturing system, specially with a special focus on the communication among devices constitute the main aims of this paper. The key determining factors for the manufacturing system design are: the product, the production volume, the used machines, the disposable manpower, the disposable infrastructure and the legislative frame for the specific cases.

Keywords: Paperless manufacturing, flexible manufacturing, robotized manufacturing, material flow, iCIM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
6538 Combined Safety and Cybersecurity Risk Assessment for Intelligent Distributed Grids

Authors: Anders Thorsèn, Behrooz Sangchoolie, Peter Folkesson, Ted Strandberg

Abstract:

As more parts of the power grid become connected to the internet, the risk of cyberattacks increases. To identify the cybersecurity threats and subsequently reduce vulnerabilities, the common practice is to carry out a cybersecurity risk assessment. For safety classified systems and products, there is also a need for safety risk assessments in addition to the cybersecurity risk assessment to identify and reduce safety risks. These two risk assessments are usually done separately, but since cybersecurity and functional safety are often related, a more comprehensive method covering both aspects is needed. Some work addressing this has been done for specific domains like the automotive domain, but more general methods suitable for, e.g., Intelligent Distributed Grids, are still missing. One such method from the automotive domain is the Security-Aware Hazard Analysis and Risk Assessment (SAHARA) method that combines safety and cybersecurity risk assessments. This paper presents an approach where the SAHARA method has been modified to be more suitable for larger distributed systems. The adapted SAHARA method has a more general risk assessment approach than the original SAHARA. The proposed method has been successfully applied on two use cases of an intelligent distributed grid.

Keywords: Intelligent distribution grids, threat analysis, risk assessment, safety, cybersecurity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
6537 Estimation Model of Dry Docking Duration Using Data Mining

Authors: Isti Surjandari, Riara Novita

Abstract:

Maintenance is one of the most important activities in the shipyard industry. However, sometimes it is not supported by adequate services from the shipyard, where inaccuracy in estimating the duration of the ship maintenance is still common. This makes estimation of ship maintenance duration is crucial. This study uses Data Mining approach, i.e., CART (Classification and Regression Tree) to estimate the duration of ship maintenance that is limited to dock works or which is known as dry docking. By using the volume of dock works as an input to estimate the maintenance duration, 4 classes of dry docking duration were obtained with different linear model and job criteria for each class. These linear models can then be used to estimate the duration of dry docking based on job criteria.

Keywords: Classification and regression tree (CART), data mining, dry docking, maintenance duration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
6536 A Safety Analysis Method for Multi-Agent Systems

Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller

Abstract:

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Keywords: Multi-agent system, safety analysis, safety model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087
6535 Extended Low Power Bus Binding Combined with Data Sequence Reordering

Authors: Jihyung Kim, Taejin Kim, Sungho Park, Jun-Dong Cho

Abstract:

In this paper, we address the problem of reducing the switching activity (SA) in on-chip buses through the use of a bus binding technique in high-level synthesis. While many binding techniques to reduce the SA exist, we present yet another technique for further reducing the switching activity. Our proposed method combines bus binding and data sequence reordering to explore a wider solution space. The problem is formulated as a multiple traveling salesman problem and solved using simulated annealing technique. The experimental results revealed that a binding solution obtained with the proposed method reduces 5.6-27.2% (18.0% on average) and 2.6-12.7% (6.8% on average) of the switching activity when compared with conventional binding-only and hybrid binding-encoding methods, respectively.

Keywords: low power, bus binding, switching activity, multiple traveling salesman problem, data sequence reordering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
6534 Bayesian Network Model for Students- Laboratory Work Performance Assessment: An Empirical Investigation of the Optimal Construction Approach

Authors: Ifeyinwa E. Achumba, Djamel Azzi, Rinat Khusainov

Abstract:

There are three approaches to complete Bayesian Network (BN) model construction: total expert-centred, total datacentred, and semi data-centred. These three approaches constitute the basis of the empirical investigation undertaken and reported in this paper. The objective is to determine, amongst these three approaches, which is the optimal approach for the construction of a BN-based model for the performance assessment of students- laboratory work in a virtual electronic laboratory environment. BN models were constructed using all three approaches, with respect to the focus domain, and compared using a set of optimality criteria. In addition, the impact of the size and source of the training, on the performance of total data-centred and semi data-centred models was investigated. The results of the investigation provide additional insight for BN model constructors and contribute to literature providing supportive evidence for the conceptual feasibility and efficiency of structure and parameter learning from data. In addition, the results highlight other interesting themes.

Keywords: Bayesian networks, model construction, parameterlearning, structure learning, performance index, model comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
6533 Educational Data Mining: The Case of Department of Mathematics and Computing in the Period 2009-2018

Authors: M. Sitoe, O. Zacarias

Abstract:

University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.

Keywords: Evasion and retention, cross validation, bagging, stacking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121
6532 Compression and Filtering of Random Signals under Constraint of Variable Memory

Authors: Anatoli Torokhti, Stan Miklavcic

Abstract:

We study a new technique for optimal data compression subject to conditions of causality and different types of memory. The technique is based on the assumption that some information about compressed data can be obtained from a solution of the associated problem without constraints of causality and memory. This allows us to consider two separate problem related to compression and decompression subject to those constraints. Their solutions are given and the analysis of the associated errors is provided.

Keywords: stochastic signals, optimization problems in signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
6531 A CTL Specification of Serializability for Transactions Accessing Uniform Data

Authors: Rafat Alshorman, Walter Hussak

Abstract:

Existing work in temporal logic on representing the execution of infinitely many transactions, uses linear-time temporal logic (LTL) and only models two-step transactions. In this paper, we use the comparatively efficient branching-time computational tree logic CTL and extend the transaction model to a class of multistep transactions, by introducing distinguished propositional variables to represent the read and write steps of n multi-step transactions accessing m data items infinitely many times. We prove that the well known correspondence between acyclicity of conflict graphs and serializability for finite schedules, extends to infinite schedules. Furthermore, in the case of transactions accessing the same set of data items in (possibly) different orders, serializability corresponds to the absence of cycles of length two. This result is used to give an efficient encoding of the serializability condition into CTL.

Keywords: computational tree logic, serializability, multi-step transactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
6530 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: Cold-start, expectation propagation, multi-armed bandits, Thompson sampling, variational inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
6529 Evaluating the Baseline Characteristics of Static Balance in Young Adults

Authors: K. Abuzayan, H. Alabed, K. Zarug

Abstract:

The objectives of this study (baseline study, n = 20) were to implement Matlab procedures for quantifying selected static  balance variables, establish baseline data of selected variables which characterize static balance activities in a population of healthy young adult males, and to examine any trial effects on these variables. The results indicated that the implementation of Matlab procedures for quantifying selected static balance variables was practical and enabled baseline data to be established for selected variables. There was no significant trial effect. Recommendations were made for suitable tests to be used in later studies. Specifically it was found that one foot-tiptoes tests either in static balance is too challenging for most participants in normal circumstances. A one foot-flat eyes open test was considered to be representative and challenging for static balance.

Keywords: Static Balance, Base of support, Baseline Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
6528 An Analysis of Uncoupled Designs in Chicken Egg

Authors: Pratap Sriram Sundar, Chandan Chowdhury, Sagar Kamarthi

Abstract:

Nature has perfected her designs over 3.5 billion years of evolution. Research fields such as biomimicry, biomimetics, bionics, bio-inspired computing, and nature-inspired designs have explored nature-made artifacts and systems to understand nature’s mechanisms and intelligence. Learning from nature, the researchers have generated sustainable designs and innovation in a variety of fields such as energy, architecture, agriculture, transportation, communication, and medicine. Axiomatic design offers a method to judge if a design is good. This paper analyzes design aspects of one of the nature’s amazing object: chicken egg. The functional requirements (FRs) of components of the object are tabulated and mapped on to nature-chosen design parameters (DPs). The ‘independence axiom’ of the axiomatic design methodology is applied to analyze couplings and to evaluate if eggs’ design is good (i.e., uncoupled design) or bad (i.e., coupled design). The analysis revealed that eggs design is a good design, i.e., uncoupled design. This approach can be applied to any nature’s artifacts to judge whether their design is a good or a bad. This methodology is valuable for biomimicry studies. This approach can also be a very useful teaching design consideration of biology and bio-inspired innovation.

Keywords: Uncoupled design, axiomatic design, nature design, design evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687
6527 Clustering Multivariate Empiric Characteristic Functions for Multi-Class SVM Classification

Authors: María-Dolores Cubiles-de-la-Vega, Rafael Pino-Mejías, Esther-Lydia Silva-Ramírez

Abstract:

A dissimilarity measure between the empiric characteristic functions of the subsamples associated to the different classes in a multivariate data set is proposed. This measure can be efficiently computed, and it depends on all the cases of each class. It may be used to find groups of similar classes, which could be joined for further analysis, or it could be employed to perform an agglomerative hierarchical cluster analysis of the set of classes. The final tree can serve to build a family of binary classification models, offering an alternative approach to the multi-class SVM problem. We have tested this dendrogram based SVM approach with the oneagainst- one SVM approach over four publicly available data sets, three of them being microarray data. Both performances have been found equivalent, but the first solution requires a smaller number of binary SVM models.

Keywords: Cluster Analysis, Empiric Characteristic Function, Multi-class SVM, R.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
6526 An Approach for Data Analysis, Evaluation and Correction: A Case Study from Man-Made River Project in Libya

Authors: Nasser M. Amaitik, Nabil A. Alfagi

Abstract:

The world-s largest Pre-stressed Concrete Cylinder Pipe (PCCP) water supply project had a series of pipe failures which occurred between 1999 and 2001. This has led the Man-Made River Authority (MMRA), the authority in charge of the implementation and operation of the project, to setup a rehabilitation plan for the conveyance system while maintaining the uninterrupted flow of water to consumers. At the same time, MMRA recognized the need for a long term management tool that would facilitate repair and maintenance decisions and enable taking the appropriate preventive measures through continuous monitoring and estimation of the remaining life of each pipe. This management tool is known as the Pipe Risk Management System (PRMS) and now in operation at MMRA. Both the rehabilitation plan and the PRMS require the availability of complete and accurate pipe construction and manufacturing data This paper describes a systematic approach of data collection, analysis, evaluation and correction for the construction and manufacturing data files of phase I pipes which are the platform for the PRMS database and any other related decision support system.

Keywords: Asbuilt, History, IMD, MMRA, PDBMS & PRMS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
6525 A Decision Support System Based on Leprosy Scales

Authors: Dennys Robson Girardi, Hugo Bulegon, Claudia Maria Moro Barra

Abstract:

Leprosy is an infectious disease caused by Mycobacterium Leprae, this disease, generally, compromises the neural fibers, leading to the development of disability. Disabilities are changes that limit daily activities or social life of a normal individual. When comes to leprosy, the study of disability considered the functional limitation (physical disabilities), the limitation of activity and social participation, which are measured respectively by the scales: EHF, SALSA and PARTICIPATION SCALE. The objective of this work is to propose an on-line monitoring of leprosy patients, which is based on information scales EHF, SALSA and PARTICIPATION SCALE. It is expected that the proposed system is applied in monitoring the patient during treatment and after healing therapy of the disease. The correlations that the system is between the scales create a variety of information, presented the state of the patient and full of changes or reductions in disability. The system provides reports with information from each of the scales and the relationships that exist between them. This way, health professionals, with access to patient information, can intervene with techniques for the Prevention of Disability. Through the automated scale, the system shows the level of the patient and allows the patient, or the responsible, to take a preventive measure. With an online system, it is possible take the assessments and monitor patients from anywhere.

Keywords: Leprosy, Medical Informatics, Decision SupportSystem, Disability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049