Search results for: Pedagogy Learning Module
925 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem
Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen
Abstract:
A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.
Keywords: Communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193924 A Second Look at Gesture-Based Passwords: Usability and Vulnerability to Shoulder-Surfing Attacks
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
For security purposes, it is important to detect passwords entered by unauthorized users. With traditional alphanumeric passwords, if the content of a password is acquired and correctly entered by an intruder, it is impossible to differentiate the password entered by the intruder from those entered by the authorized user because the password entries contain precisely the same character set. However, no two entries for the gesture-based passwords, even those entered by the person who created the password, will be identical. There are always variations between entries, such as the shape and length of each stroke, the location of each stroke, and the speed of drawing. It is possible that passwords entered by the unauthorized user contain higher levels of variations when compared with those entered by the authorized user (the creator). The difference in the levels of variations may provide cues to detect unauthorized entries. To test this hypothesis, we designed an empirical study, collected and analyzed the data with the help of machine-learning algorithms. The results of the study are significant.
Keywords: Authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616923 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions
Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*
Abstract:
Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893922 Understanding Work Integrated Learning in ICT: A Systems Perspective
Authors: Anneke Harmse, Roelien Goede
Abstract:
Information and communication technology (ICT) is essential to the operation of business, and create many employment opportunities. High volumes of students graduate in ICT however students struggle to find job placement. A discrepancy exists between graduate skills and industry skill requirements. To address the need for ICT skills required, universities must create programs to meet the demands of a changing ICT industry. This requires a partnership between industry, universities and other stakeholders. This situation may be viewed as a critical systems thinking problem situation as there are various role players each with their own needs and requirements. Jackson states a typical critical systems methods has a pluralistic nature. This paper explores the applicability and suitability of Maslow and Dooyeweerd to guide understanding and make recommendations for change in ICT WIL, to foster an all-inclusive understanding of the situation by stakeholders. The above methods provide tools for understanding softer issues beyond the skills required. The study findings suggest that besides skills requirements, a deeper understanding and empowering students from being a student to a professional need to be understood and addressed.Keywords: Dooyeweerd, Maslow, Work Integrated Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512921 The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics
Authors: Pantaleon Lutta, Mohamed Sedky, Mohamed Hassan
Abstract:
The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers’ compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality).
Keywords: Cloud forensics, data protection laws, GDPR, IoT forensics, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099920 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.
Keywords: Electrocardiogram, manifold learning, Laplacian Eigenmaps, running pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120919 Students’ Level of Participation, Critical Thinking, Types of Action and Influencing Factors in Online Forum Environment
Authors: N. I. Bazid, I. N. Umar
Abstract:
Due to the advancement of Internet technology, online learning is widely used in higher education institutions. Online learning offers several means of communication, including online forum. Through online forum, students and instructors are able to discuss and share their knowledge and expertise without having a need to attend the face-to-face, ordinary classroom session. The purposes of this study are to analyze the students’ levels of participation and critical thinking, types of action and factors influencing their participation in online forum. A total of 41 postgraduate students undertaking a course in educational technology from a public university in Malaysia were involved in this study. In this course, the students participated in a weekly online forum as part of the course requirement. Based on the log data file extracted from the online forum, the students’ type of actions (view, add, update, delete posts) and their levels of participation (passive, moderate or active) were identified. In addition, the messages posted in the forum were analyzed to gauge their level of critical thinking. Meanwhile, the factors that might influence their online forum participation were measured using a 24-items questionnaire. Based on the log data, a total of 105 posts were sent by the participants. In addition, the findings show that (i) majority of the students are moderate participants, with an average of two to three posts per person, (ii) viewing posts are the most frequent type of action (85.1%), and followed by adding post (9.7%). Furthermore, based on the posts they made, the most frequent type of critical thinking observed was justification (50 input or 19.0%), followed by linking ideas and interpretation (47 input or 18%), and novelty (38 input or 14.4%). The findings indicate that online forum allows for social interaction and can be used to measure the students’ critical thinking skills. In order to achieve this, monitoring students’ activities in the online forum is recommended.
Keywords: Critical thinking, learning management system, level of online participation, online forum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275918 The Academic Achievement of Writing via Project-Based Learning
Authors: Duangkamol Thitivesa
Abstract:
This paper focuses on the use of project work as a pretext for applying the conventions of writing, or the correctness of mechanics, usage, and sentence formation, in a content-based class in a Rajabhat University. Its aim was to explore to what extent the student teachers’ academic achievement of the basic writing features against the 70% attainment target after the use of project is. The organization of work around an agreed theme in which the students reproduce language provided by texts and instructors is expected to enhance students’ correct writing conventions. The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of achievement test and student writing works. The scores in the summative achievement test were analyzed by mean score, standard deviation, and percentage. It was found that the student teachers do more achieve of practicing mechanics and usage, and less in sentence formation. The students benefited from the exposure to texts during conducting the project; however, their automaticity of how and when to form phrases and clauses into simple/complex sentences had room for improvement.
Keywords: Project-Based Learning, Project Work, Writing Conventions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3039917 Learners’ Perceptions of Tertiary Level Teachers’ Code Switching: A Vietnamese Perspective
Authors: Hoa Pham
Abstract:
The literature on language teaching and second language acquisition has been largely driven by monolingual ideology with a common assumption that a second language (L2) is best taught and learned in the L2 only. The current study challenges this assumption by reporting learners' positive perceptions of tertiary level teachers' code switching practices in Vietnam. The findings of this study contribute to our understanding of code switching practices in language classrooms from a learners' perspective. Data were collected from student participants who were working towards a Bachelor degree in English within the English for Business Communication stream through the use of focus group interviews. The literature has documented that this method of interviewing has a number of distinct advantages over individual student interviews. For instance, group interactions generated by focus groups create a more natural environment than that of an individual interview because they include a range of communicative processes in which each individual may influence or be influenced by others - as they are in their real life. The process of interaction provides the opportunity to obtain the meanings and answers to a problem that are "socially constructed rather than individually created" leading to the capture of real-life data. The distinct feature of group interaction offered by this technique makes it a powerful means of obtaining deeper and richer data than those from individual interviews. The data generated through this study were analysed using a constant comparative approach. Overall, the students expressed positive views of this practice indicating that it is a useful teaching strategy. Teacher code switching was seen as a learning resource and a source supporting language output. This practice was perceived to promote student comprehension and to aid the learning of content and target language knowledge. This practice was also believed to scaffold the students' language production in different contexts. However, the students indicated their preference for teacher code switching to be constrained, as extensive use was believed to negatively impact on their L2 learning and trigger cognitive reliance on the L1 for L2 learning. The students also perceived that when the L1 was used to a great extent, their ability to develop as autonomous learners was negatively impacted. This study found that teacher code switching was supported in certain contexts by learners, thus suggesting that there is a need for the widespread assumption about the monolingual teaching approach to be re-considered.Keywords: Code switching, L1 use, L2 teaching, Learners’ perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502916 Bayesian Belief Networks for Test Driven Development
Authors: Vijayalakshmy Periaswamy S., Kevin McDaid
Abstract:
Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.Keywords: Software testing, Test Driven Development, Bayesian Belief Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887915 The Optimization of an Intelligent Traffic Congestion Level Classification from Motorists- Judgments on Vehicle's Moving Patterns
Authors: Thammasak Thianniwet, Satidchoke Phosaard, Wasan Pattara-Atikom
Abstract:
We proposed a technique to identify road traffic congestion levels from velocity of mobile sensors with high accuracy and consistent with motorists- judgments. The data collection utilized a GPS device, a webcam, and an opinion survey. Human perceptions were used to rate the traffic congestion levels into three levels: light, heavy, and jam. Then the ratings and velocity were fed into a decision tree learning model (J48). We successfully extracted vehicle movement patterns to feed into the learning model using a sliding windows technique. The parameters capturing the vehicle moving patterns and the windows size were heuristically optimized. The model achieved accuracy as high as 99.68%. By implementing the model on the existing traffic report systems, the reports will cover comprehensive areas. The proposed method can be applied to any parts of the world.Keywords: intelligent transportation system (ITS), traffic congestion level, human judgment, decision tree (J48), geographic positioning system (GPS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821914 Effects of Computer–Based Instructional Designs among Pupils of Different Music Intelligence Levels
Authors: Aldalalah, M. Osamah, Soon Fook Fong
Abstract:
The purpose of this study was to investigate the effects of computer–based instructional designs, namely modality and redundancy principles on the attitude and learning of music theory among primary pupils of different Music Intelligence levels. The lesson of music theory was developed in three different modes, audio and image (AI), text with image (TI) and audio with image and text (AIT). The independent variables were the three modes of courseware. The moderator variable was music intelligence. The dependent variables were the post test score. ANOVA was used to determine the significant differences of the pretest scores among the three groups. Analyses of covariance (ANCOVA) and Post hoc were carried out to examine the main effects as well as the interaction effects of the independent variables on the dependent variables. High music intelligence pupils performed significantly better than low music intelligence pupils in all the three treatment modes. The AI mode was found to help pupils with low music intelligence significantly more than the TI and AIT modes.
Keywords: Modality, Redundancy, Music theory, Cognitivetheory of multimedia learning, Cognitive load theory, Musicintelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669913 School Architecture of the Future Supported by Evidence-Based Design and Design Patterns
Authors: Pedro Padilha Gonçalves, Doris C. C. K. Kowaltowski, Benjamin Cleveland
Abstract:
Trends in education affect schooling, needing incorporation into design concepts to support desired learning processes with appropriate and stimulating environments. A design process for school architecture demands research, debates, reflections, and efficient decision-making methods. This paper presents research on evidence-based design, related to middle schools, based on a systematic literature review and the elaboration of a set of architectural design patterns, through a graphic translation of new concepts for classroom configurations, to support programming debates and the synthesis phase of design. The investigation resulted in nine patterns that configure the concepts of boundaries, flexibility, levels of openness, mindsets, neighborhoods, movement and interaction, territories, opportunities for learning, and sightlines for classrooms. The research is part of a continuous investigation of design methods, on contemporary school architecture to produce an architectural pattern matrix based on scientific information translated into an insightful graphic design language.Keywords: School architecture, design process, design patterns, evidence-based design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932912 Efficient Program Slicing Algorithms for Measuring Functional Cohesion and Parallelism
Authors: Jehad Al Dallal
Abstract:
Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. In this paper, algorithms are introduced to compute all backward and forward static slices of a computer program by traversing the program representation graph once. The program representation graph used in this paper is called Program Dependence Graph (PDG). We have conducted an experimental comparison study using 25 software modules to show the effectiveness of the introduced algorithm for computing all backward static slices over single-point slicing approaches in computing the parallelism and functional cohesion of program modules. The effectiveness of the algorithm is measured in terms of time execution and number of traversed PDG edges. The comparison study results indicate that using the introduced algorithm considerably saves the slicing time and effort required to measure module parallelism and functional cohesion.
Keywords: Backward slicing, cohesion measure, forward slicing, parallelism measure, program dependence graph, program slicing, static slicing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449911 Modular Harmonic Cancellation in a Multiplier High Voltage Direct Current Generator
Authors: Ahmad Zahran, Ahmed Herzallah, Ahmad Ahmad, Mahran Quraan
Abstract:
Generation of high DC voltages is necessary for testing the insulation material of high voltage AC transmission lines with long lengths. The harmonic and ripple contents of the output DC voltage supplied by high voltage DC circuits require the use of costly capacitors to smooth the output voltage after rectification. This paper proposes a new modular multiplier high voltage DC generator with embedded Cockcroft-Walton circuits that achieve a negligible harmonic and ripple contents of the output DC voltage without the need for costly filters to produce a nearly constant output voltage. In this new topology, Cockcroft-Walton modules are connected in series to produce a high DC output voltage. The modules are supplied by low input AC voltage sources that have the same magnitude and frequency and shifted from each other by a certain angle to eliminate the harmonics from the output voltage. The small ripple factor is provided by the smoothing column capacitors and the phase shifted input voltages of the cascaded modules. The constituent harmonics within each module are determined using Fourier analysis. The viability of the proposed DC generator for testing purposes and the effectiveness of the cascaded connection are confirmed by numerical simulations using MATLAB/Simulink.
Keywords: Cockcroft-Walton circuit, Harmonics, Ripple factor, HVDC generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832910 Validation of Automotive Centrals Using Hardware in the Loop-Body Control Unit and Lights
Authors: Marley Rosa Luciano, Rodney Rezende Saldanha
Abstract:
The race for electrification and the need for innovation to attract customers has led the automotive industry to do something different with vehicles. New emissions control challenges and efficient technological availability are the pillars of creation. The growing demand to upgrade industrial manufacturing systems creates actions that directly impact vehicle production. With this comes the search for new prototyping methods and virtual tools for component testing and validation, and vehicle systems have established themselves. The demand for Electronic Control Units (ECU) is increasing due to the availability of intelligence and safety in today's vehicles, directly affecting their development, performance, and functional testing. In order to keep up with global changes, the automotive industry uses different virtual environments to produce, verify and validate their vehicles and test prototypes used during development. Therefore, in this paper, integration and validation were performed using the Hardware in the Loop (HIL) test platform, focusing on the ECU Body Control Module (BCM). Then, a brief commentary reviews other test medium platforms, such as the Plywood Buck (PWB), and examines the reliability, flexibility, installation time, and cost of the three test platforms, software in the loop (SIL), Model in the loop (MIL), and HIL, to review their benefits, challenges, and issues in use and information to optimize the use of each platform and test medium.
Keywords: Automotive, Electronic Central Unit, xIL, Hardware in the loop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325909 Creativity in Development of Multimedia Presentation
Authors: Mahathir Sarjan, Ramos Radzly, Noor Baiti Jamaluddin, Mohd Hafiz Zakaria, Hisham Suhadi
Abstract:
Creativity is marked by the ability or power, to produce through imaginative skill and create something anew. The University is one of the great places to improve the talent in imaginative skill. The purpose of this study was to identify a creativity of the student in presentation product development. Two hundred seventeen Technical and Vocational Education (TVE) students in Universiti Tun Hussein Onn had chosen as a respondent. This study is to survey the level of creativity which is focused on knowledge, skills, presentation style, and character of creative personnel. The level of creativity was measured based on the scale at low, medium and high followed by mean score level. The data collected by questionnaire, then analyzed using SPSS version 20.0.The result of the study indicated that the students showed a higher of creativity (mean score in Knowledge = 4.12 and Skills= 4.02). In conjunction with the findings, implications and recommendations were suggested forward like to ensconce the research and improve with a more creativity concept in presentation product of development for learning and teaching process.
Keywords: Creativity, technical, vocational education, presentation products and development for learning and teaching process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515908 On the Efficient Implementation of a Serial and Parallel Decomposition Algorithm for Fast Support Vector Machine Training Including a Multi-Parameter Kernel
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector machine learning for large-scale data mining tasks. Based on a decomposition algorithm for support vector machine training that can be run in serial as well as shared memory parallel mode we introduce a transformation of the training data that allows for the usage of an expensive generalized kernel without additional costs. We present experiments for the Gaussian kernel, but usage of other kernel functions is possible, too. In order to further speed up the decomposition algorithm we analyze the critical problem of working set selection for large training data sets. In addition, we analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our tests and conclusions led to several modifications of the algorithm and the improvement of overall support vector machine learning performance. Our method allows for using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machine Training, Multi-ParameterKernels, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443907 Anomaly Detection using Neuro Fuzzy system
Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani
Abstract:
As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectivelyKeywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184906 PRO-Teaching – Sharing Ideas to Develop Capabilities
Authors: Steve J. Drew, Christopher J. Klopper
Abstract:
In this paper, the action research driven design of a context relevant, developmental peer review of teaching model, its implementation strategy and its impact at an Australian university is presented. PRO-Teaching realizes an innovative process that triangulates contemporaneous teaching quality data from a range of stakeholders including students, discipline academics, learning and teaching expert academics, and teacher reflection to create reliable evidence of teaching quality. Data collected over multiple classroom observations allows objective reporting on development differentials in constructive alignment, peer, and student evaluations. Further innovation is realized in the application of this highly structured developmental process to provide summative evidence of sufficient validity to support claims for professional advancement and learning and teaching awards. Design decision points and contextual triggers are described within the operating domain. Academics and developers seeking to introduce structured peer review of teaching into their organization will find this paper a useful reference.Keywords: Development loop, Multiple data sources, Objective reporting, Peer review of teaching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763905 A Trainable Neural Network Ensemble for ECG Beat Classification
Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour
Abstract:
This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216904 Exemplary Practice: A Case Study of One of New Zealand’s Most Successful Enterprise Education Teachers
Authors: K. Lee
Abstract:
Many teachers are experienced; however, experience does not necessarily equate to excellence. Excellence in teaching is the single most powerful influence on student achievement. This qualitative, interpretivist case study investigates the practices of one of the nation’s most acknowledged teachers in enterprise education. In a number of semi-structured interviews, and observational visits, this remote regional teacher talked freely about what skills and strategies she used to achieve this success. Findings from this study were compared to key ideas developed by Professor John Hattie with regards to differences between expert, excellent and experienced teachers. Key findings showed the ‘expert teacher’ central to this study; ensured learning was engaging, challenging yet achievable for all (for both teacher and student of all abilities), authentic and driven by local needs, involved community supports; and ensured the process and learning was constantly monitored and teaching adjusted accordingly. It is anticipated that the data collected via observations, semi-structured interviews, and document analysis will help others to support students to gain greater success (in whatever form that may take).
Keywords: Expert teacher, enterprise education, excellence, skills and strategies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317903 Investigating Technical and Pedagogical Considerations in Producing Screen Recorded Videos
Authors: M. Nikafrooz, J. Darsareh
Abstract:
Due to the COVID-19 pandemic, its impacts on education all over the world, and the problems arising from the use of traditional methods in education during the pandemic, it was necessary to apply alternative solutions to achieve educational goals. In this regard, electronic content production through screen recording became popular among many teachers. However, the production of screen-recorded videos requires special technical and pedagogical considerations. The purpose of this study was to extract and present the technical and pedagogical considerations for producing screen-recorded videos to provide a useful and comprehensive guideline for e-content producers. This study was applied research, the design was descriptive, and data collection has been done using qualitative method. In order to collect the data, 524 previously produced screen-recorded videos were evaluated by using an open-ended questionnaire. After collecting the data, they were categorized, and finally, 83 items as technical and pedagogical considerations in the form of 5 domains were determined. By applying such considerations, it is expected to decrease producing and editing time, increase the technical and pedagogical quality, and finally facilitate and enhance the processes of teaching and learning.
Keywords: E-learning, e-content, screen recorded-videos, screen recording software, technical and pedagogical considerations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 647902 Fuzzy Logic Based Cascaded H-Bridge Eleven Level Inverter for Photovoltaic System Using Sinusoidal Pulse Width Modulation Technique
Authors: M. S. Sivagamasundari, P. Melba Mary
Abstract:
Multilevel inverter is a promising inverter topology for high voltage and high power applications. This inverter synthesizes several different levels of DC voltages to produce a stepped AC output that approaches the pure sine waveform. The three different topologies, diode-clamped inverter, capacitor-clamped inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each PV array can act as a separate dc source for each h-bridge module. This research especially focus on photovoltaic power source as input to the system and shows the potential of a Single Phase Cascaded H-bridge Eleven level inverter governed by the fuzzy logic controller to improve the power quality by reducing the total harmonic distortion at the output voltage. Hence the efficiency of the system will be improved. Simulation using MATLAB/SIMULINK has been done to verify the performance of cascaded h-bridge eleven level inverter using sinusoidal pulse width modulation technique. The simulated output shows very favorable result.
Keywords: Multilevel inverter, Cascaded H-Bridge multilevel inverter, Total Harmonic Distortion, Photovoltaic cell, Sinusoidal pulse width modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3346901 Motivation Factors in Distance Education
Authors: Sheila R. Bonito
Abstract:
This study describes the relationship between motivation factors and academic performance among distance education students enrolled in a postgraduate nursing course. Students (n=96) participated in a survey that assesses student's motivational orientations from a cognitive perspective using a selfadministered questionnaire based on Pintrich-s Motivation Strategies for Learning Questionnaire (MLSQ). Results showed students- motivational factors are highest on task value (6.44, 0.71); followed by intrinsic goal orientation (6.20, 0.76), control beliefs (6.02, 0.89); extrinsic goal orientation (5.85, 1.13); self-efficacy for learning and performance (5.62, 0.84), and finally, test anxiety (4.21, 1.37). Weak positive correlations were found between academic performance and intrinsic goal orientation (r=0.13), extrinsic goal orientation (r=0.04), task value (r=0.09), control beliefs (r=0.02), and self-efficacy (r=0.05), while there was weak negative correlation with test anxiety (r=-0.04). Conclusions from the study indicate the need to focus on improving tasks and targeting intrinsic goal orientations of students to courses since these were positively correlated with academic performance and downplay the use of tests since these were negatively correlated with academic performance.
Keywords: Motivation factors, academic performance, distance education
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265900 School-Based Intervention for Academic Achievement: Targeting Cognitive, Motivational and Affective Factors
Authors: Joan Antony
Abstract:
Outcome in any learning process should target three goals – propelling the underachiever’s engagement in the learning process, enhancing the drive to achieve, and modifying attitudes and beliefs in his/her capabilities. An intervention study with a three-pronged approach incorporating self-regulatory training targeting three categories of strategies – cognitive, metacognitive and motivational – was designed adopting the before and after control-experimental group design. The evaluation of the training process was based on pre- and post-intervention measures obtained through three indices of measurement – academic scores based on grades on school examinations and comprehension tests, affective variables scores and level of strategy use obtained through responses on scales and questionnaires, and content analysis of subjective responses to open-ended probes. The evaluation relied on three sources – student, teacher and parent. The t-test results for the experimental and control groups on the pre- and post-intervention measurements indicate a significant increase on comprehension tasks for the experimental group. Though statistically significant difference was not found on the school examination scores for the experimental group, there was considerable decline in performance for the control group. Analysis of covariance (ANCOVA) was applied on the scores obtained on affective variables, namely, self-esteem, personal achievement goals, personal ego goals, personal task goals, and locus of control. The experimental group showed increase in personal achievement goals and personal ego goals as compared to the control group. Responses given by the experimental group to the open-ended probes on causal attributions indicated a considerable shift from external to internal causes when moving from the pre- to post-intervention stage. ANCOVA results revealed significantly higher use of learning strategies inclusive of mental learning strategies, behavioral learning strategies, self-regulatory strategies, and an improvement in study orientation encompassing study habits and study attitudes among the experimental group students. Parents and teachers reported significant progressive transformation towards constructive engagement with study material and self-imposed regulation. The implications of this study are three-fold: firstly, strategies training (cognitive, metacognitive and motivational) should be embedded into daily classroom routine; secondly, scaffolding by teachers through activities based on curriculum will eventually enable students to rely more on their own judgements of effective strategy use; thirdly, enhanced confidence will radiate to the affective aspects with enduring effects on other domains of life as well. The cyclic nature of the interaction between utilizing one’s resources, managing effort and regulating emotions forms the foundation for academic achievement.
Keywords: Academic achievement, cognitive strategies, metacognitive strategies, motivational strategies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 476899 An In-Depth Inquiry into the Impact of Poor Teacher-Student Relationships on Chronic Absenteeism in Secondary Schools of West Java Province, Indonesia
Authors: Yenni Anggrayni
Abstract:
The lack of awareness of the significant prevalence of school absenteeism in Indonesia, which ultimately results in high rates of school dropouts, is an unresolved issue. Therefore, this study aims to investigate the root causes of chronic absenteeism qualitatively and quantitatively using the bioecological systems paradigm in secondary schools for any reason. This study used an open-ended questionnaire to collect data from 1,148 students in six West Java Province districts/cities. Univariate and stepwise multiple logistic regression analyses produced a prediction model for the components. Analysis results show that poor teacher-student relationships, bullying by peers or teachers, negative perception of education, and lack of parental involvement in learning activities are the leading causes of chronic absenteeism. Another finding is to promote home-school partnerships to improve school climate and parental involvement in learning to address chronic absenteeism.
Keywords: Bullying, chronic absenteeism, dropout of school, home-school partnerships, parental involvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131898 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data
Authors: Hyun-Woo Cho
Abstract:
Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.
Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746897 A Recognition Method of Ancient Yi Script Based on Deep Learning
Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma
Abstract:
Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.
Keywords: Recognition, CNN, convolutional neural network, Yi character, divergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751896 An Investigation into the Use of an Atomistic, Hermeneutic, Holistic Approach in Education Relating to the Architectural Design Process
Authors: N. Pritchard
Abstract:
Within architectural education, students arrive fore-armed with; their life-experience; knowledge gained from subject-based learning; their brains and more specifically their imaginations. The learning-by-doing that they embark on in studio-based/project-based learning calls for supervision that allows the student to proactively undertake research and experimentation with design solution possibilities. The degree to which this supervision includes direction is subject to debate and differing opinion. It can be argued that if the student is to learn-by-doing, then design decision making within the design process needs to be instigated and owned by the student so that they have the ability to personally reflect on and evaluate those decisions. Within this premise lies the problem that the student's endeavours can become unstructured and unfocused as they work their way into a new and complex activity. A resultant weakness can be that the design activity is compartmented and not holistic or comprehensive, and therefore, the student's reflections are consequently impoverished in terms of providing a positive, informative feedback loop. The construct proffered in this paper is that a supportive 'armature' or 'Heuristic-Framework' can be developed that facilitates a holistic approach and reflective learning. The normal explorations of architectural design comprise: Analysing the site and context, reviewing building precedents, assimilating the briefing information. However, the student can still be compromised by 'not knowing what they need to know'. The long-serving triad 'Firmness, Commodity and Delight' provides a broad-brush framework of considerations to explore and integrate into good design. If this were further atomised in subdivision formed from the disparate aspects of architectural design that need to be considered within the design process, then the student could sieve through the facts more methodically and reflectively in terms of considering their interrelationship conflict and alliances. The words facts and sieve hold the acronym of the aspects that form the Heuristic-Framework: Function, Aesthetics, Context, Tectonics, Spatial, Servicing, Infrastructure, Environmental, Value and Ecological issues. The Heuristic could be used as a Hermeneutic Model with each aspect of design being focused on and considered in abstraction and then considered in its relation to other aspect and the design proposal as a whole. Importantly, the heuristic could be used as a method for gathering information and enhancing the design brief. The more poetic, mysterious, intuitive, unconscious processes should still be able to occur for the student. The Heuristic-Framework should not be seen as comprehensive prescriptive formulaic or inhibiting to the wide exploration of possibilities and solutions within the architectural design process.
Keywords: Atomistic, hermeneutic, holistic, approach architectural design studio education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365