Search results for: online prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1682

Search results for: online prediction

302 A New Image Psychovisual Coding Quality Measurement based Region of Interest

Authors: M. Nahid, A. Bajit, A. Tamtaoui, E. H. Bouyakhf

Abstract:

To model the human visual system (HVS) in the region of interest, we propose a new objective metric evaluation adapted to wavelet foveation-based image compression quality measurement, which exploits a foveation setup filter implementation technique in the DWT domain, based especially on the point and region of fixation of the human eye. This model is then used to predict the visible divergences between an original and compressed image with respect to this region field and yields an adapted and local measure error by removing all peripheral errors. The technique, which we call foveation wavelet visible difference prediction (FWVDP), is demonstrated on a number of noisy images all of which have the same local peak signal to noise ratio (PSNR), but visibly different errors. We show that the FWVDP reliably predicts the fixation areas of interest where error is masked, due to high image contrast, and the areas where the error is visible, due to low image contrast. The paper also suggests ways in which the FWVDP can be used to determine a visually optimal quantization strategy for foveation-based wavelet coefficients and to produce a quantitative local measure of image quality.

Keywords: Human Visual System, Image Quality, ImageCompression, foveation wavelet, region of interest ROI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
301 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 60O. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby, suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modeling mass transfer by multiple plunging jets.

Keywords: Mass transfer, multiple plunging jets, multi-linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
300 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity

Authors: Ali Keshavarzi, Fereydoon Sarmadian

Abstract:

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.

Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
299 A Theoretical Analysis for Modeling and Prediction of the Jet Engine Emissions

Authors: Jamal S. Yassin

Abstract:

This paper is to formulate a mathematical model to predict the amounts of the emissions produced from the combustion process of the gas turbine unit of the jet engine. These emissions have bad impacts on the environment if they are out of standards, which cause real threats to all type of life on the earth. The amounts of the emissions from the gas turbine engine are functions to many operational and design factors. In landing-takeoff (LTO) these amounts are not the same as in taxi or cruise of the plane using jet engines, because of the difference in the activity period during these operating modes. These emissions can be affected by several physical and chemical variables, such as fuel type, fuel to air ratio or equivalence ratio, flame temperature, combustion pressure, in addition to some inlet conditions such as ambient temperature and air humidity. To study the influence of these variables on the amounts of these emissions during the combustion process in the gas turbine unit, a computer program has been developed by using the visual basic 6 software. Here, the analysis of the combustion process is carried out by considering it as a chemical reaction with shifting equilibrium to find the products of the combustion of the octane fuel, at different equivalence ratios, compressor pressure ratios (CPR) and combustion temperatures. The results obtained have shown that there is noticeable influence of the equivalence ratio, CPR, and the combustion temperature on the amounts of the main emissions which are considered pollutants, such as CO, CO2 and NO.

Keywords: Mathematical model, gas turbine unit, equivalence ratio, emissions, shifting equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
298 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network

Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin

Abstract:

In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network.

The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters.

Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output.

This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc.

From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.

Keywords: Project profitability, multi-objective optimization, genetic algorithm, Pareto set, Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
297 A State-Of-The-Art Review on Web Services Adaptation

Authors: M. Velasco, D. While, P. Raju, J. Krasniewicz, A. Amini, L. Hernandez-Munoz

Abstract:

Web service adaptation involves the creation of adapters that solve Web services incompatibilities known as mismatches. Since the importance of Web services adaptation is increasing because of the frequent implementation and use of online Web services, this paper presents a literature review of web services to investigate the main methods of adaptation, their theoretical underpinnings and the metrics used to measure adapters performance. Eighteen publications were reviewed independently by two researchers. We found that adaptation techniques are needed to solve different types of problems that may arise due to incompatibilities in Web service interfaces, including protocols, messages, data and semantics that affect the interoperability of the services. Although adapters are non-invasive methods that can improve Web services interoperability and there are current approaches for service adaptation; there is, however, not yet one solution that fits all types of mismatches. Our results also show that only a few research projects incorporate theoretical frameworks and that metrics to measure adapters’ performance are very limited. We conclude that further research on software adaptation should improve current adaptation methods in different layers of the service interoperability and that an adaptation theoretical framework that incorporates a theoretical underpinning and measures of qualitative and quantitative performance needs to be created.

Keywords: Web services adapters, software adaptation, web services mismatches, web services interoperability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
296 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: Cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary User (PU), secondary user (SU), Fast Fourier transform (FFT), signal to noise ratio (SNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
295 The Design and Development of Multimedia Pronunciation Learning Management System

Authors: Fei Ping Por, Soon Fook Fong

Abstract:

The proposed Multimedia Pronunciation Learning Management System (MPLMS) in this study is a technology with profound potential for inducing improvement in pronunciation learning. The MPLMS optimizes the digitised phonetic symbols with the integration of text, sound and mouth movement video. The components are designed and developed in an online management system which turns the web to a dynamic user-centric collection of consistent and timely information for quality sustainable learning. The aim of this study is to design and develop the MPLMS which serves as an innovative tool to improve English pronunciation. This paper discusses the iterative methodology and the three-phase Alessi and Trollip model in the development of MPLMS. To align with the flexibility of the development of educational software, the iterative approach comprises plan, design, develop, evaluate and implement is followed. To ensure the instructional appropriateness of MPLMS, the instructional system design (ISD) model of Alessi and Trollip serves as a platform to guide the important instructional factors and process. It is expected that the results of future empirical research will support the efficacy of MPLMS and its place as the premier pronunciation learning system.

Keywords: Design, development, multimedia, pronunciation, learning management system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451
294 Recognition of Obstacles and Providing Different Guidelines and Promotion of Electronic Government in Iran

Authors: E. Asgharizadeh, M. Ajalli, S.R. Safavi.M.M, A. Medghalchi

Abstract:

Electronic Government is one of the special concepts which has been performed successfully within recent decades. Electronic government is a digital, wall-free government with a virtual organization for presenting of online governmental services and further cooperation in different political/social activities. In order to have a successful implementation of electronic government strategy and benefiting from its complete potential and benefits and generally for establishment and applying of electronic government, it is necessary to have different infrastructures as the basics of electronic government with lack of which it is impossible to benefit from mentioned services. For this purpose, in this paper we have managed to recognize relevant obstacles for establishment of electronic government in Iran. All required data for recognition of obstacles were collected from statistical society of involved specialists of Ministry of Communications & Information Technology of Iran and Information Technology Organization of Tehran Municipality through questionnaire. Then by considering of five-point Likert scope and μ =3 as the index of relevant factors of proposed model, we could specify current obstacles against electronic government in Iran along with some guidelines and proposal in this regard. According to the results, mentioned obstacles for applying of electronic government in Iran are as follows: Technical & technological problems, Legal, judicial & safety problems, Economic problems and Humanistic Problems.

Keywords: Government, Electronic Government, InformationTechnology, Obstacles, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
293 An Exploratory Study of the Student’s Learning Experience by Applying Different Tools for e-Learning and e-Teaching

Authors: Angel Daniel Muñoz Guzmán

Abstract:

E-learning is becoming more and more common every day. For online, hybrid or traditional face-to-face programs, there are some e-teaching platforms like Google classroom, Blackboard, Moodle and Canvas, and there are platforms for full e-learning like Coursera, edX or Udemy. These tools are changing the way students acquire knowledge at schools; however, in today’s changing world that is not enough. As students’ needs and skills change and become more complex, new tools will need to be added to keep them engaged and potentialize their learning. This is especially important in the current global situation that is changing everything: the Covid-19 pandemic. Due to Covid-19, education had to make an unexpected switch from face-to-face courses to digital courses. In this study, the students’ learning experience is analyzed by applying different e-tools and following the Tec21 Model and a flexible and digital model, both developed by the Tecnologico de Monterrey University. The evaluation of the students’ learning experience has been made by the quantitative PrEmo method of emotions. Findings suggest that the quantity of e-tools used during a course does not affect the students’ learning experience as much as how a teacher links every available tool and makes them work as one in order to keep the student engaged and motivated.

Keywords: Student, experience, e-learning, e-teaching, e-tools, technology, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
292 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
291 Importance of Mobile Technology in Successful Adoption and Sustainability of a Chronic Disease Support System

Authors: Reza Ariaeinejad, Norm Archer

Abstract:

Self-management is becoming a new emphasis for healthcare systems around the world. But there are many different problems with adoption of new health-related intervention systems. The situation is even more complicated for chronically ill patients with disabilities, illiteracy, and impairment in judgment in addition to their conditions, or having multiple co-morbidities. Providing online decision support to manage patient health and to provide better support for chronically ill patients is a new way of dealing with chronic disease management. In this study, the importance of mobile technology through an m-Health system that supports self-management interventions including the care provider, family and social support, education and training, decision support, recreation, and ongoing patient motivation to promote adherence and sustainability of the intervention are discussed. A proposed theoretical model for adoption and sustainability of system use is developed, based on UTAUT2 and IS Continuance of Use models, both of which have been pre-validated through longitudinal studies. The objective of this paper is to show the importance of using mobile technology in adoption and sustainability of use of an m-Health system which will result in commercially sustainable self-management support for chronically ill patients.

Keywords: M-health, e-health, self-management, disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842
290 A Survey on Early Screen Exposure during Infancy and Autism

Authors: I. Mahmood

Abstract:

This survey was conducted to explore the hypothesis that excessive screen exposure combined with a subsequent decrease in parent-child interaction during infancy might be associated with autism. The main questions being asked are: Were children with autism exposed to long hours of screen time during the first 2 years of life? And what was the reason(s) for exposure at such an early age? Other variables were also addressed in this survey. An Arabic questionnaire was administered online (June 2019) via a Facebook page, relatively well-known in Arab countries. 1725 parents of children diagnosed with autism participated in this survey. Results show that 80.9% of children surveyed who were diagnosed with autism had been exposed to screens for long periods of time during the first 2 years of life. It can be inferred from the results of this survey that over-exposure to screens disrupt the parent-child interaction which is shown to be associated with ASD. The results of this survey highlight the harmful effects of screen exposure during infancy and the importance of parent-child interaction during the critical period of brain development. This paper attempts to further explore the connection between parent-child interaction and ASD, as well as serve as a call for further research and investigation of the relation between screens and parent-child interactions during infancy and Autism.

Keywords: Attachment disorder, autism, screen exposure, virtual autism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
289 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions

Authors: Mustafa Bayram Gücen, Coşkun Yakar

Abstract:

In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.

Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146
288 The Status of BIM Adoption on Six Continents

Authors: Wooyoung Jung, Ghang Lee

Abstract:

This paper reports the worldwide status of building information modeling (BIM) adoption from the perspectives of the engagement level, the Hype Cycle model, the technology diffusion model, and BIM services. An online survey was distributed, and 156 experts from six continents responded. Overall, North America was the most advanced continent, followed by Oceania and Europe. Countries in Asia perceived their phase mainly as slope of enlightenment (mature) in the Hype Cycle model. In the technology diffusion model, the main BIM-users worldwide were “early majority” (third phase), but those in the Middle East/Africa and South America were “early adopters” (second phase). In addition, the more advanced the country, the more number of BIM services employed in general. In summary, North America, Europe, Oceania, and Asia were advancing rapidly toward the mature stage of BIM, whereas the Middle East/Africa and South America were still in the early phase. The simple indexes used in this study may be used to track the worldwide status of BIM adoption in long-term surveys.

Keywords: BIM adoption, BIM services, Hype Cycle model, Technology diffusion model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10568
287 Head of the Class: A Study of What United States Journalism School Administrators Consider the Most Valuable Educational Tenets for Their Graduates Seeking Careers at U.S. Legacy Newspapers

Authors: Adam Pitluk

Abstract:

In a time period populated by legacy newspaper readers who throw around the term “fake news” as though it has long been a part of the lexicon, journalism schools must convince would-be students that their degree is still viable and that they are not teaching a curriculum of deception. As such, journalism schools’ academic administrators tasked with creating and maintaining conversant curricula must stay ahead of legacy newspaper industry trends – both in the print and online products – and ensure that what is being taught in the classroom is both fresh and appropriate to the demands of the evolving legacy newspaper industry. This study examines the information obtained from the result of interviews of journalism academic administrators in order to identify institutional pedagogy for recent journalism school graduates interested in pursuing careers at legacy newspapers. This research also explores the existing relationship between journalism school academic administrators and legacy newspaper editors. The results indicate the value administrators put on various academy teachings, and they also highlight a perceived disconnect between journalism academic administrators and legacy newspaper hiring editors.

Keywords: Academic administration, education, journalism, media management, newspapers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477
286 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
285 A Codebook-based Redundancy Suppression Mechanism with Lifetime Prediction in Cluster-based WSN

Authors: Huan Chen, Bo-Chao Cheng, Chih-Chuan Cheng, Yi-Geng Chen, Yu Ling Chou

Abstract:

Wireless Sensor Network (WSN) comprises of sensor nodes which are designed to sense the environment, transmit sensed data back to the base station via multi-hop routing to reconstruct physical phenomena. Since physical phenomena exists significant overlaps between temporal redundancy and spatial redundancy, it is necessary to use Redundancy Suppression Algorithms (RSA) for sensor node to lower energy consumption by reducing the transmission of redundancy. A conventional algorithm of RSAs is threshold-based RSA, which sets threshold to suppress redundant data. Although many temporal and spatial RSAs are proposed, temporal-spatial RSA are seldom to be proposed because it is difficult to determine when to utilize temporal or spatial RSAs. In this paper, we proposed a novel temporal-spatial redundancy suppression algorithm, Codebookbase Redundancy Suppression Mechanism (CRSM). CRSM adopts vector quantization to generate a codebook, which is easily used to implement temporal-spatial RSA. CRSM not only achieves power saving and reliability for WSN, but also provides the predictability of network lifetime. Simulation result shows that the network lifetime of CRSM outperforms at least 23% of that of other RSAs.

Keywords: Redundancy Suppression Algorithm (RSA), Threshold-based RSA, Temporal RSA, Spatial RSA and Codebookbase Redundancy Suppression Mechanism (CRSM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
284 Ensemble Approach for Predicting Student's Academic Performance

Authors: L. A. Muhammad, M. S. Argungu

Abstract:

Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
283 Predictive Analytics of Student Performance Determinants in Education

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: Student performance, supervised machine learning, prediction, classification, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 562
282 Attitude towards the Consumption of Social Media: Analyzing Young Consumers’ Travel Behavior

Authors: Farzana Sharmin, Mohammad Tipu Sultan, Benqian Li

Abstract:

Advancement of new media technology and consumption of social media have altered the way of communication in the tourism industry, mostly for consumers’ travel planning, online purchase, and experience sharing activity. There is an accelerating trend among young consumers’ to utilize this new media technology. This paper aims to analyze the attitude of young consumers’ about social media use for travel purposes. The convenience random sample method used to collect data from an urban area of Shanghai (China), consists of 225 young consumers’. This survey identified behavioral determinants of social media consumption by the extended theory of planned behavior (TPB). The instrument developed support on previous research to test hypotheses. The results of structural analyses indicate that attitude towards the use of social media is affected by external factors such as availability and accessibility of technology. In addition, subjective norm and perceived behavioral control have partially influenced the attitude of respondents’. The results of this study could help to improve social media travel marketing and promotional strategies for respective groups.

Keywords: Social media, theory of planned behavior, travel behavior, young consumer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
281 Data Transformation Services (DTS): Creating Data Mart by Consolidating Multi-Source Enterprise Operational Data

Authors: J. D. D. Daniel, K. N. Goh, S. M. Yusop

Abstract:

Trends in business intelligence, e-commerce and remote access make it necessary and practical to store data in different ways on multiple systems with different operating systems. As business evolve and grow, they require efficient computerized solution to perform data update and to access data from diverse enterprise business applications. The objective of this paper is to demonstrate the capability of DTS [1] as a database solution for automatic data transfer and update in solving business problem. This DTS package is developed for the sales of variety of plants and eventually expanded into commercial supply and landscaping business. Dimension data modeling is used in DTS package to extract, transform and load data from heterogeneous database systems such as MySQL, Microsoft Access and Oracle that consolidates into a Data Mart residing in SQL Server. Hence, the data transfer from various databases is scheduled to run automatically every quarter of the year to review the efficient sales analysis. Therefore, DTS is absolutely an attractive solution for automatic data transfer and update which meeting today-s business needs.

Keywords: Data Transformation Services (DTS), ObjectLinking and Embedding Database (OLEDB), Data Mart, OnlineAnalytical Processing (OLAP), Online Transactional Processing(OLTP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
280 Large Eddy Simulation of Compartment Fire with Gas Combustible

Authors: Mliki Bouchmel, Abbassi Mohamed Ammar, Kamel Geudri, Chrigui Mouldi, Omri Ahmed

Abstract:

The objective of this work is to use the Fire Dynamics Simulator (FDS) to investigate the behavior of a kerosene small-scale fire. FDS is a Computational Fluid Dynamics (CFD) tool developed specifically for fire applications. Throughout its development, FDS is used for the resolution of practical problems in fire protection engineering. At the same time FDS is used to study fundamental fire dynamics and combustion. Predictions are based on Large Eddy Simulation (LES) with a Smagorinsky turbulence model. LES directly computes the large-scale eddies and the sub-grid scale dissipative processes are modeled. This technique is the default turbulence model which was used in this study. The validation of the numerical prediction is done using a direct comparison of combustion output variables to experimental measurements. Effect of the mesh size on the temperature evolutions is investigated and optimum grid size is suggested. Effect of width openings is investigated. Temperature distribution and species flow are presented for different operating conditions. The effect of the composition of the used fuel on atmospheric pollution is also a focus point within this work. Good predictions are obtained where the size of the computational cells within the fire compartment is less than 1/10th of the characteristic fire diameter.

Keywords: Large eddy simulation, Radiation, Turbulence, combustion, pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
279 Impact of Enhanced Business Models on Technology Companies in the Pandemic: A Case Study about the Revolutionary Change in Management Styles

Authors: Murat Colak, Berkay Cakir Saridogan

Abstract:

Since the dawn of modern corporations, almost every single employee has been working in the same loop, which contains three basic steps: going to work, providing the needs for the work, and getting back home. Only a small amount of people was able to break that standard and live outside the box. As the 2019 pandemic hit the Earth and most companies shut down their physical offices, that loop had to change for everyone. This means that the old management styles had to be significantly re-arranged to the "work from home" type of business methods. The methods include online conferences and meetings, time and task tracking using algorithms, globalization of the work, and, most importantly, remote working. After the global epidemic started, even the tech giants were concerned. Now, it can be seen that those technology companies have an incredible step-up in their shares compared to the other companies because they know how to manage such situations even better than every other industry. This study aims to take the old traditional management styles in big companies and compare them with the post-Covid methods (2019-2022). As a result of this comparison made using the annual reports and shared statistics, this study aims to explain why the winners of this crisis are the technology companies.

Keywords: COVID-19, technology companies, business models, remote work.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413
278 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an  enormous number of applications, cyber-threats have significantly  increased accordingly. Thus, accurate detection of malicious traffic in  a timely manner is a critical concern in today’s Internet for security.  One approach for intrusion detection is to use Machine Learning (ML)  techniques. Several methods based on ML algorithms have been  introduced over the past years, but they are largely limited in terms of  detection accuracy and/or time and space complexity to run. In this  work, we present a novel method for intrusion detection that  incorporates a set of supervised learning algorithms. The proposed  technique provides high accuracy and outperforms existing techniques  that simply utilizes a single learning method. In addition, our  technique relies on partial flow information (rather than full  information) for detection, and thus, it is light-weight and desirable for  online operations with the property of early identification. With the  mid-Atlantic CCDC intrusion dataset publicly available, we show that  our proposed technique yields a high degree of detection rate over 99%  with a very low false alarm rate (0.4%). 

 

Keywords: Intrusion Detection, Supervised Learning, Traffic Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
277 Gas Detection via Machine Learning

Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso

Abstract:

We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.

Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
276 A Mathematical Representation for Mechanical Model Assessment: Numerical Model Qualification Method

Authors: Keny Ordaz-Hernandez, Xavier Fischer, Fouad Bennis

Abstract:

This article illustrates a model selection management approach for virtual prototypes in interactive simulations. In those numerical simulations, the virtual prototype and its environment are modelled as a multiagent system, where every entity (prototype,human, etc.) is modelled as an agent. In particular, virtual prototyp ingagents that provide mathematical models of mechanical behaviour inform of computational methods are considered. This work argues that selection of an appropriate model in a changing environment,supported by models? characteristics, can be managed by the deter-mination a priori of specific exploitation and performance measures of virtual prototype models. As different models exist to represent a single phenomenon, it is not always possible to select the best one under all possible circumstances of the environment. Instead the most appropriate shall be selecting according to the use case. The proposed approach consists in identifying relevant metrics or indicators for each group of models (e.g. entity models, global model), formulate their qualification, analyse the performance, and apply the qualification criteria. Then, a model can be selected based on the performance prediction obtained from its qualification. The authors hope that this approach will not only help to inform engineers and researchers about another approach for selecting virtual prototype models, but also assist virtual prototype engineers in the systematic or automatic model selection.

Keywords: Virtual prototype models, domain, qualification criterion, model qualification, model assessment, environmental modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
275 Characteristics of E-waste Recycling Systems in Japan and China

Authors: Bi Bo, Kayoko Yamamoto

Abstract:

This study aims to identify processes, current situations, and issues of recycling systems for four home appliances, namely, air conditioners, television receivers, refrigerators, and washing machines, among e-wastes in China and Japan for understanding and comparison of their characteristics. In accordance with results of a literature search, review of information disclosed online, and questionnaire survey conducted, conclusions of the study boil down to: (1)The results show that in Japan most of the home appliances mentioned above have been collected through home appliance recycling tickets, resulting in an issue of “requiring some effort" in treatment and recycling stages, and most plants have contracted out their e-waste recycling. (2)It is found out that advantages of the recycling system in Japan include easiness to monitor concrete data and thorough environmental friendliness ensured while its disadvantages include illegal dumping and export. It becomes apparent that advantages of the recycling system in China include a high reuse rate, low treatment cost, and fewer illegal dumping while its disadvantages include less safe reused products, environmental pollution caused by e-waste treatment, illegal import, and difficulty in obtaining data.

Keywords: E-waste, Recycling Systems, Home Appliances, Japan and China.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4839
274 Recent Developments in Speed Control System of Pipeline PIGs for Deepwater Pipeline Applications

Authors: Mohamad Azmi Haniffa, Fakhruldin Mohd Hashim

Abstract:

Pipeline infrastructures normally represent high cost of investment and the pipeline must be free from risks that could cause environmental hazard and potential threats to personnel safety. Pipeline integrity such monitoring and management become very crucial to provide unimpeded transportation and avoiding unnecessary production deferment. Thus proper cleaning and inspection is the key to safe and reliable pipeline operation and plays an important role in pipeline integrity management program and has become a standard industry procedure. In view of this, understanding the motion (dynamic behavior), prediction and control of the PIG speed is important in executing pigging operation as it offers significant benefits, such as estimating PIG arrival time at receiving station, planning for suitable pigging operation, and improves efficiency of pigging tasks. The objective of this paper is to review recent developments in speed control system of pipeline PIGs. The review carried out would serve as an industrial application in a form of quick reference of recent developments in pipeline PIG speed control system, and further initiate others to add-in/update the list in the future leading to knowledge based data, and would attract active interest of others to share their view points.

Keywords: Pipeline Inspection Gauge (PIG), In Line Inspection Tools (ILI), PIG motion, PIG speed control system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3336
273 The Acceptance of E-Assessment Considering Security Perspective: Work in Progress

Authors: Kavitha Thamadharan, Nurazean Maarop

Abstract:

The implementation of e-assessment as tool to support the process of teaching and learning in university has become a popular technological means in universities. E-Assessment provides many advantages to the users especially the flexibility in teaching and learning. The e-assessment system has the capability to improve its quality of delivering education. However, there still exists a drawback in terms of security which limits the user acceptance of the online learning system. Even though there are studies providing solutions for identified security threats in e-learning usage, there is no particular model which addresses the factors that influences the acceptance of e-assessment system by lecturers from security perspective. The aim of this study is to explore security aspects of eassessment in regard to the acceptance of the technology. As a result a conceptual model of secure acceptance of e-assessment is proposed. Both human and security factors are considered in formulation of this conceptual model. In order to increase understanding of critical issues related to the subject of this study, interpretive approach involving convergent mixed method research method is proposed to be used to execute the research. This study will be useful in providing more insightful understanding regarding the factors that influence the user acceptance of e-assessment system from security perspective.

Keywords: Secure Technology Acceptance, E-Assessment Security, E-Assessment, Education Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443