Search results for: Learning Curve
1036 Bayesian Online Learning of Corresponding Points of Objects with Sequential Monte Carlo
Authors: Miika Toivanen, Jouko Lampinen
Abstract:
This paper presents an online method that learns the corresponding points of an object from un-annotated grayscale images containing instances of the object. In the first image being processed, an ensemble of node points is automatically selected which is matched in the subsequent images. A Bayesian posterior distribution for the locations of the nodes in the images is formed. The likelihood is formed from Gabor responses and the prior assumes the mean shape of the node ensemble to be similar in a translation and scale free space. An association model is applied for separating the object nodes and background nodes. The posterior distribution is sampled with Sequential Monte Carlo method. The matched object nodes are inferred to be the corresponding points of the object instances. The results show that our system matches the object nodes as accurately as other methods that train the model with annotated training images.Keywords: Bayesian modeling, Gabor filters, Online learning, Sequential Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15821035 An Optimization Analysis on an Automotive Component with Fatigue Constraint Using HyperWorks Software for Environmental Sustainability
Authors: W. M. Wan Muhamad, E. Sujatmika, M.R. Idris, S.A. Syed Ahmad
Abstract:
A finite element analysis (FEA) computer software HyperWorks is utilized in re-designing an automotive component to reduce its mass. Reduction of components mass contributes towards environmental sustainability by saving world-s valuable metal resources and by reducing carbon emission through improved overall vehicle fuel efficiency. A shape optimization analysis was performed on a rear spindle component. Pre-processing and solving procedures were performed using HyperMesh and RADIOSS respectively. Shape variables were defined using HyperMorph. Then optimization solver OptiStruct was utilized with fatigue life set as a design constraint. Since Stress-Number of Cycle (S-N) theory deals with uni-axial stress, the Signed von Misses stress on the component was used for looking up damage on S-N curve, and Gerber criterion for mean stress corrections. The optimization analysis resulted in mass reduction of 24% of the original mass. The study proved that the adopted approach has high potential use for environmental sustainability.
Keywords: Environmental Sustainability, Shape Optimization, Fatigue, Rear Spindle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42911034 Thermo-Mechanical Processing of Armor Steel Plates
Authors: Taher El-Bitar, Maha El-Meligy, Eman El-Shenawy, Almosilhy Almosilhy, Nader Dawood
Abstract:
The steel contains 0.3% C and 0.004% B, beside Mn, Cr, Mo, and Ni. The alloy was processed by using 20-ton capacity electric arc furnace (EAF), and then refined by ladle furnace (LF). Liquid steel was cast as rectangular ingots. Dilatation test showed the critical transformation temperatures Ac1, Ac3, Ms and Mf as 716, 835, 356, and 218 °C. The ingots were austenitized and soaked and then rough rolled to thin slabs with 80 mm thickness. The thin slabs were then reheated and soaked for finish rolling to 6.0 mm thickness plates. During the rough rolling, the roll force increases as a result of rolling at temperatures less than recrystallization temperature. However, during finish rolling, the steel reflects initially continuous static recrystallization after which it shows strain hardening due to fall of temperature. It was concluded that, the steel plates were successfully heat treated by quenching-tempering at 250 ºC for 20 min.
Keywords: Armor steel, austenitizing, critical transformation temperatures, dilatation curve, martensite, quenching, rough and finish rolling processes, soaking, tempering, thermo-mechanical processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12981033 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: B. Golchin, N. Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.
Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6651032 Delineating Students’ Speaking Anxieties and Assessment Gaps in Online Speech Performances
Authors: Mary Jane B. Suarez
Abstract:
Speech anxiety is innumerable in any traditional communication classes especially for ESL students. The speech anxiety intensifies when communication skills assessments have taken its toll in an online mode of learning due to the perils of the COVID-19 virus. Teachers and students have experienced vast ambiguity on how to realize a still effective way to teach and learn various speaking skills amidst the pandemic. This mixed method study determined the factors that affected the public speaking skills of students in online performances, delineated the assessment gaps in assessing speaking skills in an online setup, and recommended ways to address students’ speech anxieties. Using convergent parallel design, quantitative data were gathered by examining the desired learning competencies of the English course including a review of the teacher’s class record to analyze how students’ performances reflected a significantly high level of anxiety in online speech delivery. Focus group discussion was also conducted for qualitative data describing students’ public speaking anxiety and assessment gaps. Results showed a significantly high level of students’ speech anxiety affected by time constraints, use of technology, lack of audience response, being conscious of making mistakes, and the use of English as a second language. The study presented recommendations to redesign curricular assessments of English teachers and to have a robust diagnosis of students’ speaking anxiety to better cater to the needs of learners in attempt to bridge any gaps in cultivating public speaking skills of students as educational institutions segue from the pandemic to the post-pandemic milieu.
Keywords: Blended learning, communication skills assessment, online speech delivery, public speaking anxiety, speech anxiety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781031 Computer Assisted Learning in a Less Resource Region
Authors: Hamidullah Sokout, Samiullah Paracha, Abdul Rashid Ahmadi
Abstract:
Passing the entrance exam to a university is a major step in one's life. University entrance exam commonly known as Kankor is the nationwide entrance exam in Afghanistan. This examination is prerequisite for all public and private higher education institutions at undergraduate level. It is usually taken by students who are graduated from high schools. In this paper, we reflect the major educational school graduates issues and propose ICT-based test preparation environment, known as ‘Online Kankor Exam Prep System’ to give students the tools to help them pass the university entrance exam on the first try. The system is based on Intelligent Tutoring System (ITS), which introduced an essential package of educational technology for learners that features: (I) exam-focused questions and content; (ii) self-assessment environment; and (iii) test preparation strategies in order to help students to acquire the necessary skills in their carrier and keep them up-to-date with instruction.
Keywords: Web-based test prep systems, Learner-centered design, E-Learning, Intelligent tutoring system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19521030 Open Source Software in Higher Education: Oman SQU Case Study
Authors: Amal S. Al-Badi, Ali H. Al-Badi
Abstract:
Many organizations are opting to adopt Open Source Software (OSS) as it is the current trend to rely on each other rather than on companies (Software vendors). It is a clear shift from organizations to individuals, the concept being to rely on collective participation rather than companies/vendors.
The main objectives of this research are 1) to identify the current level of OSS usage in Sultan Qaboos University; 2) to identify the potential benefits of using OSS in educational institutes; 3) to identify the OSS applications that are most likely to be used within an educational institute; 4) to identify the existing and potential barriers to the successful adoption of OSS in education.
To achieve these objectives a two-stage research method was conducted. First a rigorous literature review of previously published material was performed (interpretive/descriptive approach), and then a set of interviews were conducted with the IT professionals at Sultan Qaboos University in Oman in order to explore the extent and nature of their usage of OSS.
Keywords: Open source software; social software, e-learning 2.0, Web 2.0, connectivism, personal learning environment (PLE), OpenID, OpenSocial and OpenCourseWare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36451029 Machine Learning Methods for Flood Hazard Mapping
Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto
Abstract:
This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.
Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7251028 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.
Keywords: Social Media, text mining, knowledge discovery, predictive analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38491027 Web 2.0 in Higher Education: The Instructors’ Acceptance in Higher Educational Institutes in Kingdom of Bahrain
Authors: Amal M. Alrayes, Hayat M. Ali
Abstract:
Since the beginning of distance education with the rapid evolution of technology, the social network plays a vital role in the educational process to enforce the interaction been the learners and teachers. There are many Web 2.0 technologies, services and tools designed for educational purposes. This research aims to investigate instructors’ acceptance towards web-based learning systems in higher educational institutes in Kingdom of Bahrain. Questionnaire is used to investigate the instructors’ usage of Web 2.0 and the factors affecting their acceptance. The results confirm that instructors had high accessibility to such technologies. However, patterns of use were complex. Whilst most expressed interest in using online technologies to support learning activities, learners seemed cautious about other values associated with web-based system, such as the shared construction of knowledge in a public format. The research concludes that there are main factors that affect instructors’ adoption which are security, performance expectation, perceived benefits, subjective norm, and perceived usefulness.
Keywords: Web 2.0, Higher education, Acceptance, Students’ perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13091026 RF Power Consumption Emulation Optimized with Interval Valued Homotopies
Authors: Deogratius Musiige, François Anton, Vital Yatskevich, Laulagnet Vincent, Darka Mioc, Nguyen Pierre
Abstract:
This paper presents a methodology towards the emulation of the electrical power consumption of the RF device during the cellular phone/handset transmission mode using the LTE technology. The emulation methodology takes the physical environmental variables and the logical interface between the baseband and the RF system as inputs to compute the emulated power dissipation of the RF device. The emulated power, in between the measured points corresponding to the discrete values of the logical interface parameters is computed as a polynomial interpolation using polynomial basis functions. The evaluation of polynomial and spline curve fitting models showed a respective divergence (test error) of 8% and 0.02% from the physically measured power consumption. The precisions of the instruments used for the physical measurements have been modeled as intervals. We have been able to model the power consumption of the RF device operating at 5MHz using homotopy between 2 continuous power consumptions of the RF device operating at the bandwidths 3MHz and 10MHz.
Keywords: Radio frequency, high power amplifier, baseband, LTE, power, emulation, homotopy, interval analysis, Tx power, register-transfer level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18031025 Prediction of Research Topics Using Ensemble of Best Predictors from Similar Dataset
Authors: Indra Budi, Rizal Fathoni Aji, Agus Widodo
Abstract:
Prediction of future research topics by using time series analysis either statistical or machine learning has been conducted previously by several researchers. Several methods have been proposed to combine the forecasting results into single forecast. These methods use fixed combination of individual forecast to get the final forecast result. In this paper, quite different approach is employed to select the forecasting methods, in which every point to forecast is calculated by using the best methods used by similar validation dataset. The dataset used in the experiment is time series derived from research report in Garuda, which is an online sites belongs to the Ministry of Education in Indonesia, over the past 20 years. The experimental result demonstrates that the proposed method may perform better compared to the fix combination of predictors. In addition, based on the prediction result, we can forecast emerging research topics for the next few years.
Keywords: Combination, emerging topics, ensemble, forecasting, machine learning, prediction, research topics, similarity measure, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21251024 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: Electrocardiogram, dictionary learning, sparse coding, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20931023 Nanoindentation Behaviour and Microstructural Evolution of Annealed Single-Crystal Silicon
Authors: Woei-Shyan Lee, Shuo-Ling Chang
Abstract:
The nanoindentation behaviour and phase transformation of annealed single-crystal silicon wafers are examined. The silicon specimens are annealed at temperatures of 250, 350 and 450ºC, respectively, for 15 minutes and are then indented to maximum loads of 30, 50 and 70 mN. The phase changes induced in the indented specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). For all annealing temperatures, an elbow feature is observed in the unloading curve following indentation to a maximum load of 30 mN. Under higher loads of 50 mN and 70 mN, respectively, the elbow feature is replaced by a pop-out event. The elbow feature reveals a complete amorphous phase transformation within the indented zone, whereas the pop-out event indicates the formation of Si XII and Si III phases. The experimental results show that the formation of these crystalline silicon phases increases with an increasing annealing temperature and indentation load. The hardness and Young’s modulus both decrease as the annealing temperature and indentation load are increased.Keywords: Nanoindentation, silicon, phase transformation, amorphous, annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18821022 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
Sequences of words in text data have long-term dependencies and are known to suffer from vanishing gradient problem when developing deep learning models. Although recurrent networks such as long short-term memory networks help overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine advantages of long short-term memory networks and convolutional neural networks, can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting of a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.
Keywords: Convolutional recurrent networks, hyperparameter tuning, long short-term memory networks, Tukey honest significant differences
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151021 Scientific Methods in Educational Management: The Metasystems Perspective
Authors: Elena A. Railean
Abstract:
Although scientific methods have been the subject of a large number of papers, the term ‘scientific methods in educational management’ is still not well defined. In this paper, it is adopted the metasystems perspective to define the mentioned term and distinguish them from methods used in time of the scientific management and knowledge management paradigms. In our opinion, scientific methods in educational management rely on global phenomena, events, and processes and their influence on the educational organization. Currently, scientific methods in educational management are integrated with the phenomenon of globalization, cognitivisation, and openness, etc. of educational systems and with global events like the COVID-19 pandemic. Concrete scientific methods are nested in a hierarchy of more and more abstract models of educational management, which form the context of the global impact on education, in general, and learning outcomes, in particular. However, scientific methods can be assigned to a specific mission, strategy, or tactics of educational management of the concrete organization, either by the global management, local development of school organization, or/and development of the life-long successful learner. By accepting this assignment, the scientific method becomes a personal goal of each individual with the educational organization or the option to develop the educational organization at the global standards. In our opinion, in educational management, the scientific methods need to confine the scope to the deep analysis of concrete tasks of the educational system (i.e., teaching, learning, assessment, development), which result in concrete strategies of organizational development. More important are seeking the ways for dynamic equilibrium between the strategy and tactic of the planetary tasks in the field of global education, which result in a need for ecological methods of learning and communication. In sum, distinction between local and global scientific methods is dependent on the subjective conception of the task assignment, measurement, and appraisal. Finally, we conclude that scientific methods are not holistic scientific methods, but the strategy and tactics implemented in the global context by an effective educational/academic manager.
Keywords: Educational management, scientific management, educational leadership, scientific method in educational management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13951020 Developing Student Teachers to Be Professional Teachers
Authors: Suttipong Boonphadung
Abstract:
Practicum placements are an critical factor for student teachers on Education Programs. How can student teachers become professionals? This study was to investigate problems, weakness and obstacles of practicum placements and develop guidelines for partnership in the practicum placements. In response to this issue, a partnership concept was implemented for developing student teachers into professionals. Data were collected through questionnaires on attitude toward problems, weaknesses, and obstacles of practicum placements of student teachers in Rajabhat universities and included focus group interviews. The research revealed that learning management, classroom management, curriculum, assessment and evaluation, classroom action research, and teacher demeanor are the important factors affecting the professional development of Education Program student teachers. Learning management plan and classroom management concerning instructional design, teaching technique, instructional media, and student behavior management are another important aspects influencing the professional development for student teachers.
Keywords: Developing student teacher, Partnership concepts, Professional teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20441019 The Creative Unfolding of “Reduced Descriptive Structures” in Musical Cognition: Technical and Theoretical Insights Based on the OpenMusic and PWGL Long-Term Feedback
Authors: Jacopo Baboni Schilingi
Abstract:
We here describe the theoretical and philosophical understanding of a long term use and development of algorithmic computer-based tools applied to music composition. The findings of our research lead us to interrogate some specific processes and systems of communication engaged in the discovery of specific cultural artworks: artistic creation in the sono-musical domain. Our hypothesis is that the patterns of auditory learning cannot be only understood in terms of social transmission but would gain to be questioned in the way they rely on various ranges of acoustic stimuli modes of consciousness and how the different types of memories engaged in the percept-action expressive systems of our cultural communities also relies on these shadowy conscious entities we named “Reduced Descriptive Structures”.
Keywords: Algorithmic sonic computation, corrected and self-correcting learning patterns in acoustic perception, morphological derivations in sensorial patterns, social unconscious modes of communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6091018 Interactive Methods of Design Education as the Principles of Social Implications of Modern Communities
Authors: Pelin Yildiz
Abstract:
The term interactive education indicates the meaning related with multidisciplinary aspects of distance education following contemporary means around a common basis with different functional requirements. The aim of this paper is to reflect the new techniques in education with the new methods and inventions. These methods are better supplied by interactivity. The integration of interactive facilities in the discipline of education with distance learning is not a new concept but in addition the usage of these methods on design issue is newly being adapted to design education. In this paper the general approach of this method and after the analysis of different samples, the advantages and disadvantages of these approaches are being identified. The method of this paper is to evaluate the related samples and then analyzing the main hypothesis. The main focus is to mention the formation processes of this education. Technological developments in education should be filtered around the necessities of the design education and the structure of the system could then be formed or renewed. The conclusion indicates that interactive methods of education in design issue is a meaning capturing not only technical and computational intelligence aspects but also aesthetical and artistic approaches coming together around the same purpose.Keywords: Interactive education, distance learning, designeducation, computational intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16421017 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks
Authors: C. N. Vanitha, M. Usha
Abstract:
In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.
Keywords: Neural networks, pattern learning, security, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13031016 Using Design Sprint for Software Engineering Undergraduate Student Projects: A Method Paper
Authors: Sobhani U. Pilapitiya, Tharanga Peiris
Abstract:
Software engineering curriculums generally consist of industry-based practices such as project-based learning (PBL) which mainly focuses on efficient and innovative product development. These approaches can be tailored and used in project-based modules in software engineering curriculums. However, there are very limited attempts in the area especially related to Sri Lankan context. This paper describes a tailored pedagogical approach and its results of using design sprint which can be used for project-based modules in software engineering (SE) curriculums. A controlled group of second year software engineering students was selected for the study. The study results indicate that all of the students agreed that the design sprint approach is effective in group-based projects and 83% of students stated that it minimized the re-work compared to traditional project approaches. The tailored process was effective, easy to implement and produced desired results at the end of the session while providing students an enjoyable experience.
Keywords: design sprint, project-based learning, software engineering, curriculum
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7331015 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic
Authors: N. Drir, L. Barazane, M. Loudini
Abstract:
It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.
Keywords: Maximum power point tracking, neural networks, photovoltaic, P&O.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19551014 Resident-Aware Green Home
Authors: Ahlam Elkilani, Bayan Elsheikh Ali, Rasha Abu Romman, Amjed Al-mousa, Belal Sababha
Abstract:
The amount of energy the world uses doubles every 20 years. Green homes play an important role in reducing the residential energy demand. This paper presents a platform that is intended to learn the behavior of home residents and build a profile about their habits and actions. The proposed resident aware home controller intervenes in the operation of home appliances in order to save energy without compromising the convenience of the residents. The presented platform can be used to simulate the actions and movements happening inside a home. The paper includes several optimization techniques that are meant to save energy in the home. In addition, several test scenarios are presented that show how the controller works. Moreover, this paper shows the computed actual savings when each of the presented techniques is implemented in a typical home. The test scenarios have validated that the techniques developed are capable of effectively saving energy at homes.
Keywords: Green Home, Resident Aware, Resident Profile, Activity Learning, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21591013 Study of Mordenite ZSM-5 and NaY Zeolites,Containing Cr, Cs, Zn, Ni, Co, Li, Mn, to Control Hydrocarbon Cold-Start Emission
Authors: V. Golubeva, A. Korableva, O. Anischenko, A. Nemova, N. Yegorushina, L. Kustov, G. Kapustin, U.S.Rohatgi
Abstract:
The implementation of Super-Ultra Low Emission Vehicle standards requires more efficient exhaust gas purification. To increase the efficiency of exhaust gas purification, an the adsorbent capable of holding hydrocarbons up to 250-300 ОС should be developed. The possibility to design such adsorbents by modification of zeolites of mordenite type, ZSM-5 and NaY, using different metals cations has been studied. It has been shown that introducing Cr, Cs, Zn, Ni, Co, Li, Mn in zeolites results in modification of the toluene TPD and toluene sorption capacity. 5%LiZSM-5 zeolite exhibits the most attractive TPD curve, with toluene desorption temperature ranging from 250 to 350ОС. The sorption capacity of 5%Li-ZSM-5 is 0.4 mmol/g. NaY zeolite has the highest sorption capacity, up to 2 mmol/g, and holds toluene up to 350ОС, but at 120ОС toluene desorption starts, which is not desirable, since the adsorbent of cold start hydrocarbons should retain them until 250-300ОС. Therefore 5%LiZSM-5 zeolite was found to be the most promising to control the cold-start hydrocarbon emissions among the samples studied.Keywords: Hydrocarbon emission control, adsorbents, zeolites, temperature-programmed desorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20851012 Rapid Discharge of Solid-State Hydrogen Storage Using Porous Silicon and Metal Foam
Authors: Loralee P. Potter, Peter J. Schubert
Abstract:
Solid-state hydrogen storage using catalytically-modified porous silicon can be rapidly charged at moderate pressures (8 bar) without exothermic runaway. Discharge requires temperatures of approximately 110oC, so for larger storage vessels a means is required for thermal energy to penetrate bulk storage media. This can be realized with low-density metal foams, such as Celmet™. This study explores several material and dimensional choices of the metal foam to produce rapid heating of bulk silicon particulates. Experiments run under vacuum and in a pressurized hydrogen environment bracket conditions of empty and full hydrogen storage vessels, respectively. Curve-fitting of the heating profiles at various distances from an external heat source is used to derive both a time delay and a characteristic time constant. System performance metrics of a hydrogen storage subsystem are derived from the experimental results. A techno-economic analysis of the silicon and metal foam provides comparison with other methods of storing hydrogen for mobile and portable applications.
Keywords: conduction, convection, kinetics, fuel cell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6951011 Exploration of Influential Factors on First Year Architecture Students’ Productivity
Authors: Shima Nikanjam, Badiossadat Hassanpour, Adi Irfan Che Ani
Abstract:
The design process in architecture education is based upon the Learning-by-Doing method, which leads students to understand how to design by practicing rather than studying. First-year design studios, as starting educational stage, provide integrated knowledge and skills of design for newly jointed architecture students. Within the basic design studio environment, students are guided to transfer their abstract thoughts into visual concrete decisions under the supervision of design educators for the first time. Therefore, introductory design studios have predominant impacts on students’ operational thinking and designing. Architectural design thinking is quite different from students’ educational backgrounds and learning habits. This educational challenge at basic design studios creates a severe need to study the reality of design education at foundation year and define appropriate educational methods with convenient project types with the intention of enhancing architecture education quality. Material for this study has been gathered through long-term direct observation at a first year second semester design studio at the faculty of architecture at EMU (known as FARC 102), fall and spring academic semester 2014-15. Distribution of a questionnaire among case study students and interviews with third and fourth design studio students who passed through the same methods of education in the past 2 years and conducting interviews with instructors are other methodologies used in this research. The results of this study reveal a risk of a mismatch between the implemented teaching method, project type and scale in this particular level and students’ learning styles. Although the existence of such risk due to varieties in students’ profiles could be expected to some extent, recommendations can support educators to reach maximum compatibility.
Keywords: Architecture education, basic design studio, educational method, forms creation skill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16231010 AINA: Disney Animation Information as Educational Resources
Authors: Piedad Garrido, Fernando Repulles, Andy Bloor, Julio A. Sanguesa, Jesus Gallardo, Vicente Torres, Jesus Tramullas
Abstract:
With the emergence and development of Information and Communications Technologies (ICTs), Higher Education is experiencing rapid changes, not only in its teaching strategies but also in student’s learning skills. However, we have noticed that students often have difficulty when seeking innovative, useful, and interesting learning resources for their work. This is due to the lack of supervision in the selection of good query tools. This paper presents AINA, an Information Retrieval (IR) computer system aimed at providing motivating and stimulating content to both students and teachers working on different areas and at different educational levels. In particular, our proposal consists of an open virtual resource environment oriented to the vast universe of Disney comics and cartoons. Our test suite includes Disney’s long and shorts films, and we have performed some activities based on the Just In Time Teaching (JiTT) methodology. More specifically, it has been tested by groups of university and secondary school students.Keywords: Information retrieval, animation, educational resources, JiTT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12081009 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.
Keywords: Artificial Neural Networks, ANNs, classifier algorithms, credit risk assessment, logistic regression, machine learning, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12811008 Use of Social Networks and Mobile Technologies in Education
Authors: Václav Maněna, Roman Dostál, Štěpán Hubálovský
Abstract:
Social networks play an important role in the lives of children and young people. Along with the high penetration of mobile technologies such as smartphones and tablets among the younger generation, there is an increasing use of social networks already in elementary school. The paper presents the results of research, which was realized at schools in the Hradec Králové region. In this research, the authors focused on issues related to communications on social networks for children, teenagers and young people in the Czech Republic. This research was conducted at selected elementary, secondary and high schools using anonymous questionnaires. The results are evaluated and compared with the results of the research, which has been realized in 2008. The authors focused on the possibilities of using social networks in education. The paper presents the possibility of using the most popular social networks in education, with emphasis on increasing motivation for learning. The paper presents comparative analysis of social networks, with regard to the possibility of using in education as well.
Keywords: Social networks, motivation, e-learning, mobile technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12731007 Mode III Interlaminar Fracture in Woven Glass/Epoxy Composite Laminates
Authors: Farhad Asgari Mehrabadi, Mohammad Reza Khoshravan
Abstract:
In the present study, fracture behavior of woven fabric-reinforced glass/epoxy composite laminates under mode III crack growth was experimentally investigated and numerically modeled. Two methods were used for the calculation of the strain energy release rate: the experimental compliance calibration (CC) method and the Virtual Crack Closure Technique (VCCT). To achieve this aim ECT (Edge Crack Torsion) was used to evaluate fracture toughness in mode III loading (out of plane-shear) at different crack lengths. Load–displacement and associated energy release rates were obtained for various case of interest. To calculate fracture toughness JIII, two criteria were considered including non-linearity and maximum points in load-displacement curve and it is observed that JIII increases with the crack length increase. Both the experimental compliance method and the virtual crack closure technique proved applicable for the interpretation of the fracture mechanics data of woven glass/epoxy laminates in mode III.Keywords: Mode III, Fracture, Composite, Crack growth Finite Element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533