Search results for: Fuzzy estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1921

Search results for: Fuzzy estimation

541 Recurrent Radial Basis Function Network for Failure Time Series Prediction

Authors: Ryad Zemouri, Paul Ciprian Patic

Abstract:

An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction.

Keywords: Neural network, Prediction error, Recurrent RadialBasis Function Network, Reliability prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
540 Physical Parameter Based Compact Expression for Propagation Constant of SWCNT Interconnects

Authors: Kollarama Subramanyam, Nisha Kuruvilla, J. P. Raina

Abstract:

Novel compact expressions for propagation constant (γ) of SWCNT and bundled SWCNTs interconnect, in terms of physical parameters such as length, operating frequency and diameter of CNTs is proposed in this work. These simplified expressions enable physical insight and accurate estimation of signal attenuation level and its phase change at any length for a particular frequency. The proposed expressions are validated against SPICE simulated results of lumped as well as distributed equivalent electrical RLC nets of CNT interconnect. These expressions also help us to evaluate the cut off frequencies of SWCNTs for different interconnect lengths.

Keywords: Attenuation constant, Bundled SWCNT, CNT interconnects, Propagation Constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
539 On Fault Diagnosis of Asynchronous Sequential Machines with Parallel Composition

Authors: Jung-Min Yang

Abstract:

Fault diagnosis of composite asynchronous sequential machines with parallel composition is addressed in this paper. An adversarial input can infiltrate one of two submachines comprising the composite asynchronous machine, causing an unauthorized state transition. The objective is to characterize the condition under which the controller can diagnose any fault occurrence. Two control configurations, state feedback and output feedback, are considered in this paper. In the case of output feedback, the exact estimation of the state is impossible since the current state is inaccessible and the output feedback is given as the form of burst. A simple example is provided to demonstrate the proposed methodology.

Keywords: Asynchronous sequential machines, parallel composition, fault diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980
538 Estimation of Broadcast Probability in Wireless Adhoc Networks

Authors: Bharadwaj Kadiyala, Sunitha V

Abstract:

Most routing protocols (DSR, AODV etc.) that have been designed for wireless adhoc networks incorporate the broadcasting operation in their route discovery scheme. Probabilistic broadcasting techniques have been developed to optimize the broadcast operation which is otherwise very expensive in terms of the redundancy and the traffic it generates. In this paper we have explored percolation theory to gain a different perspective on probabilistic broadcasting schemes which have been actively researched in the recent years. This theory has helped us estimate the value of broadcast probability in a wireless adhoc network as a function of the size of the network. We also show that, operating at those optimal values of broadcast probability there is at least 25-30% reduction in packet regeneration during successful broadcasting.

Keywords: Crossover length, Percolation, Probabilistic broadcast, Wireless adhoc networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
537 Self-tuned LMS Algorithm for Sinusoidal Time Delay Tracking

Authors: Jonah Gamba

Abstract:

In this paper the problem of estimating the time delay between two spatially separated noisy sinusoidal signals by system identification modeling is addressed. The system is assumed to be perturbed by both input and output additive white Gaussian noise. The presence of input noise introduces bias in the time delay estimates. Normally the solution requires a priori knowledge of the input-output noise variance ratio. We utilize the cascade of a self-tuned filter with the time delay estimator, thus making the delay estimates robust to input noise. Simulation results are presented to confirm the superiority of the proposed approach at low input signal-to-noise ratios.

Keywords: LMS algorithm, Self-tuned filter, Systemidentification, Time delay estimation, .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
536 Categorization and Estimation of Relative Connectivity of Genes from Meta-OFTEN Network

Authors: U. Kairov, T. Karpenyuk, E. Ramanculov, A. Zinovyev

Abstract:

The most common result of analysis of highthroughput data in molecular biology represents a global list of genes, ranked accordingly to a certain score. The score can be a measure of differential expression. Recent work proposed a new method for selecting a number of genes in a ranked gene list from microarray gene expression data such that this set forms the Optimally Functionally Enriched Network (OFTEN), formed by known physical interactions between genes or their products. Here we present calculation results of relative connectivity of genes from META-OFTEN network and tentative biological interpretation of the most reproducible signal. The relative connectivity and inbetweenness values of genes from META-OFTEN network were estimated.

Keywords: Microarray, META-OFTEN, gene network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
535 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines

Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang

Abstract:

The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.

Keywords: Biomass, geographic information system, GIS, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
534 Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images

Authors: K.Mala, V.Sadasivam, S.Alagappan

Abstract:

Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.

Keywords: Fuzzy c means clustering, texture analysis, probabilistic neural network, LVQ neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2994
533 Effect of Neighborhood Size on Negative Weights in Punctual Kriging Based Image Restoration

Authors: Asmatullah Chaudhry, Anwar M. Mirza

Abstract:

We present a general comparison of punctual kriging based image restoration for different neighbourhood sizes. The formulation of the technique under consideration is based on punctual kriging and fuzzy concepts for image restoration in spatial domain. Three different neighbourhood windows are considered to estimate the semivariance at different lags for studying its effect in reduction of negative weights resulted in punctual kriging, consequently restoration of degraded images. Our results show that effect of neighbourhood size higher than 5x5 on reduction in negative weights is insignificant. In addition, image quality measures, such as structure similarity indices, peak signal to noise ratios and the new variogram based quality measures; show that 3x3 window size gives better performance as compared with larger window sizes.

Keywords: Image restoration, punctual kriging, semi-variance, structure similarity index, negative weights in punctual kriging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
532 Trial Development the Evaluation Method of Quantification the Feeling of Preventing Visibility by Front A Pillar

Authors: T. Arakawa, H. Sato

Abstract:

There are many drivers who feel right A pillar of Japanese right-hand-drive car preventing visibility on turning right or left at intersection. On the other hand, there is a report that almost pedestrian accident is caused by the delay of finding pedestrian by drivers and this is found by drivers’ eye movement. Thus, we developed the evaluation method of quantification using drivers’ eye movement data by least squares estimation and we applied this method to commercial vehicle and evaluation the visibility. It is suggested that visibility of vehicle can be quantified and estimated by linear model obtained from experimental eye fixation data and information of vehicle dimensions.

Keywords: Eye fixation, modeling, obstacle feeling, right A pillar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
531 Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes

Authors: Akram Khaleghei Ghosheh Balagh, Viliam Makis

Abstract:

In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example.

Keywords: Partially observable system, hidden Markov model, competing risks, residual life prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
530 Agent Decision using Granular Computing in Traffic System

Authors: Yasser F. Hassan, Marwa Abdeen, Mustafa Fahmy

Abstract:

In recent years multi-agent systems have emerged as one of the interesting architectures facilitating distributed collaboration and distributed problem solving. Each node (agent) of the network might pursue its own agenda, exploit its environment, develop its own problem solving strategy and establish required communication strategies. Within each node of the network, one could encounter a diversity of problem-solving approaches. Quite commonly the agents can realize their processing at the level of information granules that is the most suitable from their local points of view. Information granules can come at various levels of granularity. Each agent could exploit a certain formalism of information granulation engaging a machinery of fuzzy sets, interval analysis, rough sets, just to name a few dominant technologies of granular computing. Having this in mind, arises a fundamental issue of forming effective interaction linkages between the agents so that they fully broadcast their findings and benefit from interacting with others.

Keywords: Granular computing, rough sets, agents, traffic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
529 Blind Non-Minimum Phase Channel Identification Using 3rd and 4th Order Cumulants

Authors: S. Safi, A. Zeroual

Abstract:

In this paper we propose a family of algorithms based on 3rd and 4th order cumulants for blind single-input single-output (SISO) Non-Minimum Phase (NMP) Finite Impulse Response (FIR) channel estimation driven by non-Gaussian signal. The input signal represents the signal used in 10GBASE-T (or IEEE 802.3an-2006) as a Tomlinson-Harashima Precoded (THP) version of random Pulse-Amplitude Modulation with 16 discrete levels (PAM-16). The proposed algorithms are tested using three non-minimum phase channel for different Signal-to-Noise Ratios (SNR) and for different data input length. Numerical simulation results are presented to illustrate the performance of the proposed algorithms.

Keywords: Higher Order Cumulants, Channel identification, Ethernet communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
528 Assessment of Multiscale Information for Short Physiological Time Series

Authors: Young-Seok Choi

Abstract:

This paper presents a multiscale information measure of Electroencephalogram (EEG) for analysis with a short data length. A multiscale extension of permutation entropy (MPE) is capable of fully reflecting the dynamical characteristics of EEG across different temporal scales. However, MPE yields an imprecise estimation due to coarse-grained procedure at large scales. We present an improved MPE measure to estimate entropy more accurately with a short time series. By computing entropies of all coarse-grained time series and averaging those at each scale, it leads to the modified MPE (MMPE) which provides an enhanced accuracy as compared to MPE. Simulation and experimental studies confirmed that MMPE has proved its capability over MPE in terms of accuracy.

Keywords: Multiscale entropy, permutation entropy, EEG, seizure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
527 Prediction of Basic Wind Speed for Ayeyarwady

Authors: Chaw Su Mon

Abstract:

Abstract— The paper presents a preliminary study on modeling and estimation of basic wind speed ( extreme wind gusts ) for the consideration of vulnerability and design of building in Ayeyarwady Region. The establishment of appropriate design wind speeds is a critical step towards the calculation of design wind loads for structures. In this paper the extreme value analysis of this prediction work is based on the anemometer data (1970-2009) maintained by the department of meteorology and hydrology of Pathein. Statistical and probabilistic approaches are used to derive formulas for estimating 3-second gusts from recorded data (10-minute sustained mean wind speeds).

Keywords: Basic Wind Speed, Building, Gusts, Statistical and probabilistic approaches

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
526 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
525 Assessment of Collapse Potential of Degrading SDOF Systems

Authors: Muzaffer Borekci, Murat S. Kirçil

Abstract:

Predicting the collapse potential of a structure during earthquakes is an important issue in earthquake engineering. Many researchers proposed different methods to assess the collapse potential of structures under the effect of strong ground motions. However most of them did not consider degradation and softening effect in hysteretic behavior. In this study, collapse potential of SDOF systems caused by dynamic instability with stiffness and strength degradation has been investigated. An equation was proposed for the estimation of collapse period of SDOF system which is a limit value of period for dynamic instability. If period of the considered SDOF system is shorter than the collapse period then the relevant system exhibits dynamic instability and collapse occurs.

Keywords: Collapse, degradation, dynamic instability, seismic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
524 An Estimation of the Performance of HRLS Algorithm

Authors: Shazia Javed, Noor Atinah Ahmad

Abstract:

The householder RLS (HRLS) algorithm is an O(N2) algorithm which recursively updates an arbitrary square-root of the input data correlation matrix and naturally provides the LS weight vector. A data dependent householder matrix is applied for such an update. In this paper a recursive estimate of the eigenvalue spread and misalignment of the algorithm is presented at a very low computational cost. Misalignment is found to be highly sensitive to the eigenvalue spread of input signals, output noise of the system and exponential window. Simulation results show noticeable degradation in the misalignment by increase in eigenvalue spread as well as system-s output noise, while exponential window was kept constant.

Keywords: HRLS algorithm, eigenvalue spread, misalignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
523 Currency Exchange Rate Forecasts Using Quantile Regression

Authors: Yuzhi Cai

Abstract:

In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.

Keywords: Exchange rate, quantile regression, combining forecasts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
522 New Corneal Reflection Removal Method Used In Iris Recognition System

Authors: Walid Aydi, Nouri Masmoudi, Lotfi Kamoun

Abstract:

Images of human iris contain specular highlights due to the reflective properties of the cornea. This corneal reflection causes many errors not only in iris and pupil center estimation but also to locate iris and pupil boundaries especially for methods that use active contour. Each iris recognition system has four steps: Segmentation, Normalization, Encoding and Matching. In order to address the corneal reflection, a novel reflection removal method is proposed in this paper. Comparative experiments of two existing methods for reflection removal method are evaluated on CASIA iris image databases V3. The experimental results reveal that the proposed algorithm provides higher performance in reflection removal.

Keywords: iris, pupil, specular highlights, reflection removal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218
521 Low-Cost and Highly Accurate Motion Models for Three-Dimensional Local Landmark-based Autonomous Navigation

Authors: Gheorghe Galben, Daniel N. Aloi

Abstract:

Recently, the Spherical Motion Models (SMM-s) have been introduced [1]. These new models have been developed for 3D local landmark-base Autonomous Navigation (AN). This paper is revealing new arguments and experimental results to support the SMM-s characteristics. The accuracy and the robustness in performing a specific task are the main concerns of the new investigations. To analyze their performances of the SMM-s, the most powerful tools of estimation theory, the extended Kalman filter (EKF) and unscented Kalman filter (UKF), which give the best estimations in noisy environments, have been employed. The Monte Carlo validation implementations used to test the stability and robustness of the models have been employed as well.

Keywords: Autonomous navigation, extended kalman filter, unscented kalman filter, localization algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
520 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
519 On the outlier Detection in Nonlinear Regression

Authors: Hossein Riazoshams, Midi Habshah, Jr., Mohamad Bakri Adam

Abstract:

The detection of outliers is very essential because of their responsibility for producing huge interpretative problem in linear as well as in nonlinear regression analysis. Much work has been accomplished on the identification of outlier in linear regression, but not in nonlinear regression. In this article we propose several outlier detection techniques for nonlinear regression. The main idea is to use the linear approximation of a nonlinear model and consider the gradient as the design matrix. Subsequently, the detection techniques are formulated. Six detection measures are developed that combined with three estimation techniques such as the Least-Squares, M and MM-estimators. The study shows that among the six measures, only the studentized residual and Cook Distance which combined with the MM estimator, consistently capable of identifying the correct outliers.

Keywords: Nonlinear Regression, outliers, Gradient, LeastSquare, M-estimate, MM-estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3193
518 Modelling of a Stress-Strain State of Screws of Transpedicular Spine Fixation System

Authors: Oleksandr Poliakov, Genadiy Olinichenko, Yevgen Pashkov, Vadym Kramar, Mykhaylo Kalinin

Abstract:

For maintenance of a spine stability during the postoperative period a transpedicular fixing of its elements is often used. Usually the transpedicular systems are formed of rods which as a result form a design of the frame type, fastening by screws to vertebras. Such design should be rigid and perceive loadings operating from the spine without essential deformations. From the perfection point of view of known designs their stress whole, and each of elements, in particular is of interest. In this study the modeling of the transpedicular screw is performed and estimation of its deformations taking into account interaction with a vertebra body having variable structure is made.

Keywords: Spine, screw, stress-strain state, transpedicular fixation system, vertebra

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
517 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based On Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling

Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König

Abstract:

As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focusses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.

Keywords: Auto-ID, Construction Logistic, Fuzzy, Monitoring, RFID, Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
516 Local Error Control in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe an effective local error control algorithm for RK5GL3, which uses local extrapolation with an eighth-order Runge-Kutta method in tandem with RK5GL3, and a Hermite interpolating polynomial for solution estimation at the Gauss-Legendre quadrature nodes.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, Hermite interpolating polynomial, initial value problem, local error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
515 Component-based Segmentation of Words from Handwritten Arabic Text

Authors: Jawad H AlKhateeb, Jianmin Jiang, Jinchang Ren, Stan S Ipson

Abstract:

Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words segmentation. Meanwhile, an improved projection based method is also employed for baseline detection. The proposed method has been successfully tested on IFN/ENIT database consisting of 26459 Arabic words handwritten by 411 different writers, and the results were promising and very encouraging in more accurate detection of the baseline and segmentation of words for further recognition.

Keywords: Arabic OCR, off-line recognition, Baseline estimation, Word segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
514 Estimation of Reconnaissance Drought Index (RDI) for Bhavnagar District, Gujarat, India

Authors: Ravi Shah, V. L. Manekar, R. A. Christian, N. J. Mistry

Abstract:

There are two types of drought as conceptual drought and operational drought. The three parameters as the beginning, the end and the degree of severity of the drought can be identifying in operational drought by average precipitation in the whole region. One of the methods classified to measure drought is Reconnaissance Drought Index (RDI). Evapotranspiration is calculated using Penman-Monteith method by analyzing thirty nine years prolong climatic data. The evapotranspiration is then utilized in RDI to classify normalized and standardized RDI. These RDI classifications led to what kind of drought faced in Bhavnagar region on 12 month time scale basis. The comparison between actual drought conditions and RDI method used to find out drought are also illustrated. It can be concluded that the index results of drought in a particular year are same in both methods but having different index values where as severity remain same.

Keywords: Drought, Drought index, Reconnaissance Drought Index (RDI), Precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3500
513 Estimation of Relative Self-Localization Based On Natural Landmark and an Improved SURF

Authors: Xing Xiong, Byung-Jae Choi

Abstract:

It is important for an autonomous mobile robot to know where it is in any time in an indoor environment. In this paper, we design a relative self-localization algorithm. The algorithm compare the interest point in two images and compute the relative displacement and orientation to determent the posture. Firstly, we use the SURF algorithm to extract the interest points of the ceiling. Second, in order to reduce amount of calculation, a replacement SURF is used to extract orientation and description of the interest points. At last, according to the transformation of the interest points in two images, the relative self-localization of the mobile robot will be estimated greatly.

Keywords: Relative Self-Localization Posture, SURF, Natural Landmark, Interest Point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
512 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs

Authors: Mahmood Reza Shakarami, Reza Sedaghati

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.

Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024