Search results for: European Ecological Network.
1989 Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network
Authors: Emanuele A. Solagna, Ricardo S, Tozetto, Roberto dos S. Rabello
Abstract:
Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.Keywords: Internet of Things, LoRa, LoRaWAN, smart cities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7161988 Packet Forwarding with Multiprotocol Label Switching
Authors: R.N.Pise, S.A.Kulkarni, R.V.Pawar
Abstract:
MultiProtocol Label Switching (MPLS) is an emerging technology that aims to address many of the existing issues associated with packet forwarding in today-s Internetworking environment. It provides a method of forwarding packets at a high rate of speed by combining the speed and performance of Layer 2 with the scalability and IP intelligence of Layer 3. In a traditional IP (Internet Protocol) routing network, a router analyzes the destination IP address contained in the packet header. The router independently determines the next hop for the packet using the destination IP address and the interior gateway protocol. This process is repeated at each hop to deliver the packet to its final destination. In contrast, in the MPLS forwarding paradigm routers on the edge of the network (label edge routers) attach labels to packets based on the forwarding Equivalence class (FEC). Packets are then forwarded through the MPLS domain, based on their associated FECs , through swapping the labels by routers in the core of the network called label switch routers. The act of simply swapping the label instead of referencing the IP header of the packet in the routing table at each hop provides a more efficient manner of forwarding packets, which in turn allows the opportunity for traffic to be forwarded at tremendous speeds and to have granular control over the path taken by a packet. This paper deals with the process of MPLS forwarding mechanism, implementation of MPLS datapath , and test results showing the performance comparison of MPLS and IP routing. The discussion will focus primarily on MPLS IP packet networks – by far the most common application of MPLS today.Keywords: Forwarding equivalence class, incoming label map, label, next hop label forwarding entry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26971987 Contemporary Anti-Gypsyism in European Mass Media
Authors: E. Di Giovanni
Abstract:
This paper focuses on the contemporary phenomenon of Anti-Gypsyism which diffused widely throughout social representations of the so called “Gypsies”. In Europe and especially in Italy, the media tends to reproduce racist stereotypes and prejudices through a xenophobic depiction of this ethnic group, often offering an ethnocentric point of view. From an anthropological perspective, Roma people are a minority group facing diasporic phenomena across Europe, produced by the host societies.
Keywords: Roma people, Anty-Gypsyism, Ethnocentrism, Mass Media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20111986 Learning Flexible Neural Networks for Pattern Recognition
Authors: A. Mirzaaghazadeh, H. Motameni, M. Karshenas, H. Nematzadeh
Abstract:
Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.Keywords: Back propagation, Flexible, Gradient, Learning, Neural network, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14981985 Juxtaposition of the Past and the Present: A Pragmatic Stylistic Analysis of the Short Story “Too Much Happiness” by Alice Munro
Authors: Inas Hussein
Abstract:
Alice Munro is a Canadian short-story writer who has been regarded as one of the greatest writers of fiction. Owing to her great contribution to fiction, she was the first Canadian woman and the only short-story writer ever to be rewarded the Nobel Prize for Literature in 2013. Her literary works include collections of short stories and one book published as a novel. Her stories concentrate on the human condition and the human relationships as seen through the lens of daily life. The setting in most of her stories is her native Canada- small towns much similar to the one where she grew up. Her writing style is not only realistic but is also characterized by autobiographical, historical and regional features. The aim of this research is to analyze one of the key stylistic devices often adopted by Munro in her fictions: the juxtaposition of the past and the present, with reference to the title story in Munro's short story collection Too Much Happiness. The story under exploration is a brief biography of the Russian Mathematician and novelist Sophia Kovalevsky (1850 – 1891), the first woman to be appointed as a professor of Mathematics at a European University in Stockholm. Thus, the story has a historical protagonist and is set on the European continent. Munro dramatizes the severe historical and cultural constraints that hindered the career of the protagonist. A pragmatic stylistic framework is being adopted and the qualitative analysis is supported by textual reference. The stylistic analysis reveals that the juxtaposition of the past and the present is one of the distinctive features that characterize the author; in a typical Munrovian manner, the protagonist often moves between the units of time: the past, the present and, sometimes, the future. Munro's style is simple and direct but cleverly constructed and densely complicated by the presence of deeper layers and stories within the story. Findings of the research reveal that the story under investigation merits reading and analyzing. It is recommended that this story and other stories by Munro are analyzed to further explore the features of her art and style.
Keywords: Alice Munro, Too Much Happiness, juxtaposition of past and present, pragmatic stylistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10321984 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.
Keywords: Visual search, deep learning, convolutional neural network, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8321983 Designing Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method
Authors: Nor Azuana Ramli, Mohd Tahir Ismail, Hooy Chee Wooi
Abstract:
Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we take the Euclidean distance and the Manhattan as a consideration. For the comparison, we employ three other methods which are logistic regression analysis (logit), back-propagation neural network (NN) and sequential minimal optimization (SMO). The analysis using datasets from 8 countries and 13 macro-economic indicators for each country shows that the proposed k-NN method with k = 4 and Manhattan distance performs better than the other methods.
Keywords: Currency crisis, k-nearest neighbour method, logit, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23011982 A Diffusion Least-Mean Square Algorithm for Distributed Estimation over Sensor Networks
Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili
Abstract:
In this paper we consider the issue of distributed adaptive estimation over sensor networks. To deal with more realistic scenario, different variance for observation noise is assumed for sensors in the network. To solve the problem of different variance of observation noise, the proposed method is divided into two phases: I) Estimating each sensor-s observation noise variance and II) using the estimated variances to obtain the desired parameter. Our proposed algorithm is based on a diffusion least mean square (LMS) implementation with linear combiner model. In the proposed algorithm, the step-size parameter the coefficients of linear combiner are adjusted according to estimated observation noise variances. As the simulation results show, the proposed algorithm considerably improves the diffusion LMS algorithm given in literature.
Keywords: Adaptive filter, distributed estimation, sensor network, diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18681981 An Intelligent WSN-Based Parking Guidance System
Authors: Sheng-Shih Wang, Wei-Ting Wang
Abstract:
This paper designs an intelligent guidance system, based on wireless sensor networks, for efficient parking in parking lots. The proposed system consists of a parking space allocation subsystem, a parking space monitoring subsystem, a driving guidance subsystem, and a vehicle detection subsystem. In the system, we propose a novel and effective virtual coordinate system for sensing and displaying devices to determine the proper vacant parking space and provide the precise guidance to the driver. This study constructs a ZigBee-based wireless sensor network on Arduino platform and implements the prototype of the proposed system using Arduino-based complements. Experimental results confirm that the proposed prototype can not only work well, but also provide drivers the correct parking information.
Keywords: Arduino, Parking guidance, Wireless sensor network, ZigBee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21981980 Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting
Authors: R. Behmanesh, I. Rahimi
Abstract:
recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.Keywords: RNN, DOE, regression, control chart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621979 Prioritization of Mutation Test Generation with Centrality Measure
Authors: Supachai Supmak, Yachai Limpiyakorn
Abstract:
Mutation testing can be applied for the quality assessment of test cases. Prioritization of mutation test generation has been a critical element of the industry practice that would contribute to the evaluation of test cases. The industry generally delivers the product under the condition of time to the market and thus, inevitably sacrifices software testing tasks, even though many test cases are required for software verification. This paper presents an approach of applying a social network centrality measure, PageRank, to prioritize mutation test generation. The source code with the highest values of PageRank, will be focused first when developing their test cases as these modules are vulnerable for defects or anomalies which may cause the consequent defects in many other associated modules. Moreover, the approach would help identify the reducible test cases in the test suite, still maintaining the same criteria as the original number of test cases.
Keywords: Software testing, mutation test, network centrality measure, test case prioritization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5511978 Long-Term Economic-Ecological Assessment of Optimal Local Heat-Generating Technologies for the German Unrefurbished Residential Building Stock on the Quarter Level
Authors: M. A. Spielmann, L. Schebek
Abstract:
In order to reach the long-term national climate goals of the German government for the building sector, substantial energetic measures have to be executed. Historically, those measures were primarily energetic efficiency measures at the buildings’ shells. Advanced technologies for the on-site generation of heat (or other types of energy) often are not feasible at this small spatial scale of a single building. Therefore, the present approach uses the spatially larger dimension of a quarter. The main focus of the present paper is the long-term economic-ecological assessment of available decentralized heat-generating (CHP power plants and electrical heat pumps) technologies at the quarter level for the German unrefurbished residential buildings. Three distinct terms have to be described methodologically: i) Quarter approach, ii) Economic assessment, iii) Ecological assessment. The quarter approach is used to enable synergies and scaling effects over a single-building. For the present study, generic quarters that are differentiated according to significant parameters concerning their heat demand are used. The core differentiation of those quarters is made by the construction time period of the buildings. The economic assessment as the second crucial parameter is executed with the following structure: Full costs are quantized for each technology combination and quarter. The investment costs are analyzed on an annual basis and are modeled with the acquisition of debt. Annuity loans are assumed. Consequently, for each generic quarter, an optimal technology combination for decentralized heat generation is provided in each year of the temporal boundaries (2016-2050). The ecological assessment elaborates for each technology combination and each quarter a Life Cycle assessment. The measured impact category hereby is GWP 100. The technology combinations for heat production can be therefore compared against each other concerning their long-term climatic impacts. Core results of the approach can be differentiated to an economic and ecological dimension. With an annual resolution, the investment and running costs of different energetic technology combinations are quantified. For each quarter an optimal technology combination for local heat supply and/or energetic refurbishment of the buildings within the quarter is provided. Coherently to the economic assessment, the climatic impacts of the technology combinations are quantized and compared against each other.
Keywords: Building sector, heat, LCA, quarter level, systemic approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9531977 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability
Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader
Abstract:
The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.Keywords: Condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29721976 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy
Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko
Abstract:
In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.
Keywords: Inverse problems, multi-component solutions, neural networks, Raman spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19301975 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.
Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9221974 Optimal Preventive Maintenance of the Reserve Source in the Industrial Electric Network
Authors: M. Bouguerra, H. Meglouli, I. Habi
Abstract:
The great majority of the electric installations belong to the first and second category. In order to ensure a high level of reliability of their electric system feeder, two power supply sources are envisaged, one principal, the other of reserve, generally a cold reserve (electric diesel group). The principal source being under operation, its control can be ideal and sure, however for the reserve source being in stop, a preventive maintenance-s which proceeds on time intervals (periodicity) and for well defined lengths of time are envisaged, so that this source will always available in case of the principal source failure. The choice of the periodicity of preventive maintenance of the source of reserve influences directly the reliability of the electric feeder system. On the basis of the semi-markovians processes, the influence of the periodicity of the preventive maintenance of the source of reserve is studied and is given the optimal periodicity.Keywords: Semi Markovians processes, reliability, optimization, electric network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12461973 A Topology for High Voltage Gain Half-Bridge Z-Source Inverter with Low Voltage Stress on Capacitors
Authors: M. Nageswara Rao
Abstract:
In this paper, a topology for high voltage gain half-bridge z-source inverter with low voltage stress on capacitors is proposed. The proposed inverter has only one impedance network. It can generate symmetric and asymmetric voltages with different magnitudes during both half-cycles. By selecting the duty cycle it can also produce conventional half-bridge inverter characteristics. It is used in special applications like, electrochemical and electro plating applications. Calculations of voltage ripple of capacitors, capacitors voltage stress inductors current ripple are presented. The proposed topology is simulated using PSCAD software and the simulated values are compared with the theoretical values.
Keywords: Half-bridge inverter, impedance network-source inverter, high voltage gain inverter, power system computer aided design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7821972 Complex-Valued Neural Networks for Blind Equalization of Time-Varying Channels
Authors: Rajoo Pandey
Abstract:
Most of the commonly used blind equalization algorithms are based on the minimization of a nonconvex and nonlinear cost function and a neural network gives smaller residual error as compared to a linear structure. The efficacy of complex valued feedforward neural networks for blind equalization of linear and nonlinear communication channels has been confirmed by many studies. In this paper we present two neural network models for blind equalization of time-varying channels, for M-ary QAM and PSK signals. The complex valued activation functions, suitable for these signal constellations in time-varying environment, are introduced and the learning algorithms based on the CMA cost function are derived. The improved performance of the proposed models is confirmed through computer simulations.
Keywords: Blind Equalization, Neural Networks, Constant Modulus Algorithm, Time-varying channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18941971 Resource Constraint Mobile Agent Framework For Ambient Intelligence
Authors: Yung-Chuan Lee, Shahram Rahimi, Bidyut Gupta
Abstract:
In this paper, we introduce an mobile agent framework with proactive load balancing for ambient intelligence (AmI) environments. One of the main obstacles of AmI is the scalability in which the openness of AmI environment introduces dynamic resource requirements on agencies. To mediate this scalability problem, our framework proposes a load balancing module to proactively analyze the resource consumption of network bandwidth and preferred agencies to suggest the optimal communication method to its user. The framework generally formulates an AmI environment that consists of three main components: (1) mobile devices, (2) hosts or agencies, and (3) directory service center (DSC). A preliminary implementation was conducted with NetLogo and the experimental results show that the proposed approach provides enhanced system performance by minimizing the network utilization to provide users with responsive services.Keywords: Ambient intelligence, load balancing, multiagent systems, ubiquitous computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16781970 Optimization of a Three-Term Backpropagation Algorithm Used for Neural Network Learning
Authors: Yahya H. Zweiri
Abstract:
The back-propagation algorithm calculates the weight changes of an artificial neural network, and a two-term algorithm with a dynamically optimal learning rate and a momentum factor is commonly used. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third term increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and optimization approaches for evaluating the learning parameters are required to facilitate the application of the three terms BP algorithm. This paper considers the optimization of the new back-propagation algorithm by using derivative information. A family of approaches exploiting the derivatives with respect to the learning rate, momentum factor and proportional factor is presented. These autonomously compute the derivatives in the weight space, by using information gathered from the forward and backward procedures. The three-term BP algorithm and the optimization approaches are evaluated using the benchmark XOR problem.Keywords: Neural Networks, Backpropagation, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15451969 A New Protocol for Concealed Data Aggregation in Wireless Sensor Networks
Authors: M. Abbasi Dezfouli, S. Mazraeh, M. H. Yektaie
Abstract:
Wireless sensor networks (WSN) consists of many sensor nodes that are placed on unattended environments such as military sites in order to collect important information. Implementing a secure protocol that can prevent forwarding forged data and modifying content of aggregated data and has low delay and overhead of communication, computing and storage is very important. This paper presents a new protocol for concealed data aggregation (CDA). In this protocol, the network is divided to virtual cells, nodes within each cell produce a shared key to send and receive of concealed data with each other. Considering to data aggregation in each cell is locally and implementing a secure authentication mechanism, data aggregation delay is very low and producing false data in the network by malicious nodes is not possible. To evaluate the performance of our proposed protocol, we have presented computational models that show the performance and low overhead in our protocol.Keywords: Wireless Sensor Networks, Security, Concealed Data Aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17381968 Governance of Inter-Organizational Research Cooperation
Authors: Guenther Schuh, Sebastian Woelk
Abstract:
Companies face increasing challenges in research due to higher costs and risks. The intensifying technology complexity and interdisciplinarity require unique know-how. Therefore, companies need to decide whether research shall be conducted internally or externally with partners. On the other hand, research institutes meet increasing efforts to achieve good financing and to maintain high research reputation. Therefore, relevant research topics need to be identified and specialization of competency is necessary. However, additional competences for solving interdisciplinary research projects are also often required. Secured financing can be achieved by bonding industry partners as well as public fundings. The realization of faster and better research drives companies and research institutes to cooperate in organized research networks, which are managed by an administrative organization. For an effective and efficient cooperation, necessary processes, roles, tools and a set of rules need to be determined. Goal of this paper is to show the state-of-art research and to propose a governance framework for organized research networks.Keywords: Interorganizational cooperation, design of network governance, research network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14971967 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm
Authors: Mohammadhosein Hasanbeig, Lacra Pavel
Abstract:
In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.Keywords: Distributed control, game theory, multi-agent learning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9741966 Throughput Enhancement in AUDTWMN Using Throwboxes – An Overview
Authors: Laveen Sundararaj, Palanisamy Vellaiyan
Abstract:
Delay and Disruption Tolerant Networking is part of the Inter Planetary Internet with primary application being Deep Space Networks. Its Terrestrial form has interesting research applications such as Alagappa University Delay Tolerant Water Monitoring Network which doubles as test beds for improvising its routing scheme. DTNs depend on node mobility to deliver packets using a store-carry-and forward paradigm. Throwboxes are small and inexpensive stationary devices equipped with wireless interfaces and storage. We propose the use of Throwboxes to enhance the contact opportunities of the nodes and hence improve the Throughput. The enhancement is evaluated using Alunivdtnsim, a desktop simulator in C language and the results are graphically presented.Keywords: Alunivdtnsim – Alagappa University Delay TolerantNetwork Simulator, AUDTWMN- Alagappa University DelayTolerant Water Monitoring Network, DTN - Delay and DisruptionTolerant Networking, LTP – Lick Lider Transmission Protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17541965 The New Method of Concealed Data Aggregation in Wireless Sensor: A Case Study
Authors: M. Abbasi Dezfouli, S. Mazraeh, M. H. Yektaie
Abstract:
Wireless sensor networks (WSN) consists of many sensor nodes that are placed on unattended environments such as military sites in order to collect important information. Implementing a secure protocol that can prevent forwarding forged data and modifying content of aggregated data and has low delay and overhead of communication, computing and storage is very important. This paper presents a new protocol for concealed data aggregation (CDA). In this protocol, the network is divided to virtual cells, nodes within each cell produce a shared key to send and receive of concealed data with each other. Considering to data aggregation in each cell is locally and implementing a secure authentication mechanism, data aggregation delay is very low and producing false data in the network by malicious nodes is not possible. To evaluate the performance of our proposed protocol, we have presented computational models that show the performance and low overhead in our protocol.
Keywords: Wireless Sensor Networks, Security, Concealed Data Aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17701964 Face Recognition with Image Rotation Detection, Correction and Reinforced Decision using ANN
Authors: Hemashree Bordoloi, Kandarpa Kumar Sarma
Abstract:
Rotation or tilt present in an image capture by digital means can be detected and corrected using Artificial Neural Network (ANN) for application with a Face Recognition System (FRS). Principal Component Analysis (PCA) features of faces at different angles are used to train an ANN which detects the rotation for an input image and corrected using a set of operations implemented using another system based on ANN. The work also deals with the recognition of human faces with features from the foreheads, eyes, nose and mouths as decision support entities of the system configured using a Generalized Feed Forward Artificial Neural Network (GFFANN). These features are combined to provide a reinforced decision for verification of a person-s identity despite illumination variations. The complete system performing facial image rotation detection, correction and recognition using re-enforced decision support provides a success rate in the higher 90s.Keywords: Rotation, Face, Recognition, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20651963 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: Outlier detection, generative adversary networks, semi-supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10771962 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN
Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu
Abstract:
Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.Keywords: DDoS detection, EMD, relative entropy, SDN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7671961 Analysis of Linear Equalizers for Cooperative Multi-User MIMO Based Reporting System
Authors: S. Hariharan, P. Muthuchidambaranathan
Abstract:
In this paper, we consider a multi user multiple input multiple output (MU-MIMO) based cooperative reporting system for cognitive radio network. In the reporting network, the secondary users forward the primary user data to the common fusion center (FC). The FC is equipped with linear equalizers and an energy detector to make the decision about the spectrum. The primary user data are considered to be a digital video broadcasting - terrestrial (DVB-T) signal. The sensing channel and the reporting channel are assumed to be an additive white Gaussian noise and an independent identically distributed Raleigh fading respectively. We analyzed the detection probability of MU-MIMO system with linear equalizers and arrived at the closed form expression for average detection probability. Also the system performance is investigated under various MIMO scenarios through Monte Carlo simulations.
Keywords: Cooperative MU-MIMO, DVB-T, Linear Equalizers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20251960 Target Tracking in Sensor Networks: A Distributed Constraint Satisfaction Approach
Authors: R.Mostafaei, A.Habiboghli, M.R.Meybodi
Abstract:
In distributed resource allocation a set of agents must assign their resources to a set of tasks. This problem arises in many real-world domains such as distributed sensor networks, disaster rescue, hospital scheduling and others. Despite the variety of approaches proposed for distributed resource allocation, a systematic formalization of the problem, explaining the different sources of difficulties, and a formal explanation of the strengths and limitations of key approaches is missing. We take a step towards this goal by using a formalization of distributed resource allocation that represents both dynamic and distributed aspects of the problem. In this paper we present a new idea for target tracking in sensor networks and compare it with previous approaches. The central contribution of the paper is a generalized mapping from distributed resource allocation to DDCSP. This mapping is proven to correctly perform resource allocation problems of specific difficulty. This theoretical result is verified in practice by a simulation on a realworld distributed sensor network.
Keywords: Distributed CSP, Target Tracking, Sensor Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195