Search results for: Machine tools
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2323

Search results for: Machine tools

973 Database Development and Discrimination Algorithms for Membrane Protein Functions

Authors: M. Michael Gromiha, Y. Yabuki, K. Imai, P. Horton, K. Fukui

Abstract:

We have developed a database for membrane protein functions, which has more than 3000 experimental data on functionally important amino acid residues in membrane proteins along with sequence, structure and literature information. Further, we have proposed different methods for identifying membrane proteins based on their functions: (i) discrimination of membrane transport proteins from other globular and membrane proteins and classifying them into channels/pores, electrochemical and active transporters, and (ii) β-signal for the insertion of mitochondrial β-barrel outer membrane proteins and potential targets. Our method showed an accuracy of 82% in discriminating transport proteins and 68% to classify them into three different transporters. In addition, we have identified a motif for targeting β-signal and potential candidates for mitochondrial β-barrel membrane proteins. Our methods can be used as effective tools for genome-wide annotations.

Keywords: Membrane proteins, database, transporters, discrimination, β-signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
972 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
971 All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model

Authors: S. A. Sadegh Zadeh, C. Kambhampati

Abstract:

Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness.

Keywords: All-or-none, computational modelling, mathematical model, transmembrane voltage, action potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
970 A Study on Websites of Public and Private Hospitals in Konya

Authors: H. Nur Gorkemli, Mehmet Fidan

Abstract:

After the first acquaintance with internet in April 1993, number of internet users increased rapidly in Turkey. Almost half of the population between 16-74 age group use internet in the country. Hospitals are one of the areas where the internet is intensively being used like many other businesses. As a part of public relations application, websites are important tools for hospitals to reach a wide range of target audience within and outside the organization. With their websites, hospitals have opportunities to give information about their organization, strengthen their image, compete with their rivals, interact with shareholders, reflect their transparency and meet with new audiences. This study examines web sites of totally 34 hospitals which are located in Konya. Institutions are categorized as public and private hospitals and then three main research categories are determined: content, visual and technical. Main and sub categories are examined by using content analysis method. Results are interpreted in scope of public and private institutions and as a whole.

Keywords: Health Communication, Hospital, Internet, Webpages, Websites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
969 International Marketing in Business Practice of Small and Medium-Sized Enterprises

Authors: K. Matušínská, Z. Bednarčík, M. Klepek

Abstract:

This paper examines international marketing in business practice of Czech exporting small and medium-sized enterprises (SMEs) with regard to the strategic perspectives. Research was focused on Czech exporting SMEs from Moravian- Silesia region and their behavior on international markets. For purpose of collecting data, a questionnaire was given to 262 SMEs involved in international business. Statistics utilized in this research included frequency, mean, percentage, and chi-square test. Data were analyzed by Statistical Package for the Social Sciences software. The research analysis disclosed that there is certain space for improvement in strategic marketing especially in a marketing research, perception of cultural and social differences, product adaptation and usage of marketing communication tools.

Keywords: International Marketing, Marketing Mix, Marketing Research, Small and Medium-sized Enterprises (SMEs), Strategic Marketing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
968 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response

Authors: Siyao Zhu, Yifang Xu

Abstract:

After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. Brain-computer interface is a promising option to overcome the limitations of tedious manual control and operation of robots in the urgent search-and-rescue tasks. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.

Keywords: Consensus assessment, electroencephalogram, EEG, emergency response, human-robot collaboration, intention recognition, search and rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 343
967 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
966 Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms

Authors: T. S. Chou, K. K. Yen, J. Luo

Abstract:

The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users- activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors.

Keywords: Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
965 Signature Identification Scheme Based on Iterated Function Systems

Authors: Nadia M. G. AL-Saidi

Abstract:

Since 1984 many schemes have been proposed for digital signature protocol, among them those that based on discrete log and factorizations. However a new identification scheme based on iterated function (IFS) systems are proposed and proved to be more efficient. In this study the proposed identification scheme is transformed into a digital signature scheme by using a one way hash function. It is a generalization of the GQ signature schemes. The attractor of the IFS is used to obtain public key from a private one, and in the encryption and decryption of a hash function. Our aim is to provide techniques and tools which may be useful towards developing cryptographic protocols. Comparisons between the proposed scheme and fractal digital signature scheme based on RSA setting, as well as, with the conventional Guillou-Quisquater signature, and RSA signature schemes is performed to prove that, the proposed scheme is efficient and with high performance.

Keywords: Digital signature, Fractal, Iterated function systems(IFS), Guillou-Quisquater (GQ) protocol, Zero-knowledge (ZK)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
964 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: Genetic data, Pinzgau cattle, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
963 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry

Authors: C. A. Barros, Ana P. Barroso

Abstract:

Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.

Keywords: Automotive industry, Industry 4.0, internet of things, IATF 16949:2016, measurement system analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
962 Automatic Segmentation of Thigh Magnetic Resonance Images

Authors: Lorena Urricelqui, Armando Malanda, Arantxa Villanueva

Abstract:

Purpose: To develop a method for automatic segmentation of adipose and muscular tissue in thighs from magnetic resonance images. Materials and methods: Thirty obese women were scanned on a Siemens Impact Expert 1T resonance machine. 1500 images were finally used in the tests. The developed segmentation method is a recursive and multilevel process that makes use of several concepts such as shaped histograms, adaptative thresholding and connectivity. The segmentation process was implemented in Matlab and operates without the need of any user interaction. The whole set of images were segmented with the developed method. An expert radiologist segmented the same set of images following a manual procedure with the aid of the SliceOmatic software (Tomovision). These constituted our 'goal standard'. Results: The number of coincidental pixels of the automatic and manual segmentation procedures was measured. The average results were above 90 % of success in most of the images. Conclusions: The proposed approach allows effective automatic segmentation of MRIs from thighs, comparable to expert manual performance.

Keywords: Segmentation, thigh, magnetic resonance image, fat, muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
961 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements

Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath

Abstract:

Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.

Keywords: Pronunciation variations, dynamic programming, machine learning, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799
960 Information Extraction from Unstructured and Ungrammatical Data Sources for Semantic Annotation

Authors: Quratulain N. Rajput, Sajjad Haider, Nasir Touheed

Abstract:

The internet has become an attractive avenue for global e-business, e-learning, knowledge sharing, etc. Due to continuous increase in the volume of web content, it is not practically possible for a user to extract information by browsing and integrating data from a huge amount of web sources retrieved by the existing search engines. The semantic web technology enables advancement in information extraction by providing a suite of tools to integrate data from different sources. To take full advantage of semantic web, it is necessary to annotate existing web pages into semantic web pages. This research develops a tool, named OWIE (Ontology-based Web Information Extraction), for semantic web annotation using domain specific ontologies. The tool automatically extracts information from html pages with the help of pre-defined ontologies and gives them semantic representation. Two case studies have been conducted to analyze the accuracy of OWIE.

Keywords: Ontology, Semantic Annotation, Wrapper, Information Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
959 An in Silico Approach for Prioritizing Drug Targets in Metabolic Pathway of Mycobacterium Tuberculosis

Authors: Baharak Khoshkholgh-Sima, Soroush Sardari, Jalal Izadi Mobarakeh, Ramezan Ali Khavari-Nejad

Abstract:

There is an urgent need to develop novel Mycobacterium tuberculosis (Mtb) drugs that are active against drug resistant bacteria but, more importantly, kill persistent bacteria. Our study structured based on integrated analysis of metabolic pathways, small molecule screening and similarity Search in PubChem Database. Metabolic analysis approaches based on Unified weighted used for potent target selection. Our results suggest that pantothenate synthetase (panC) and and 3-methyl-2-oxobutanoate hydroxymethyl transferase (panB) as a appropriate drug targets. In our study, we used pantothenate synthetase because of existence inhibitors. We have reported the discovery of new antitubercular compounds through ligand based approaches using computational tools.

Keywords: In Silico, Ligand-based Virtual Screening, Metabolic Pathways, Mycobacterium tuberculosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
958 Knowledge Management (KM) Practices - A Study of KM Adoption among Doctors in Kuwait

Authors: B. Alajmi, L. Marouf, A. S. Chaudhry

Abstract:

Knowledge management is considered as an important factor in improving health care services. KM facilitates the transfer of existing knowledge and the development of new knowledge in hospitals. This paper reviews practices adopted by doctors in Kuwait for capturing, sharing, and generating knowledge. It also discusses the perceived impact of KM practices on performance of hospitals. Based on a survey of 277 doctors, the study found that KM practices among doctors in the sampled hospitals were not very effective. Little attention was paid to the main activities that support the transfer of expertise among doctors in hospitals. However, as predicted by previous studies, good km practices were perceived by doctors to have a positive impact on performance of hospitals. It was concluded that through effective KM practices hospitals could improve the services they provide. Documentation of best practices and capturing of lessons learnt for re-use of knowledge could help transform the hospitals into learning organizations.

Keywords: Health Sector, Hospitals, Knowledge Management, Kuwait, Tools and Practices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3524
957 Quantifying the Sustainable Building Criteria Based on Case Studies from Malaysia

Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail, Deo Prasad

Abstract:

In order to encourage the construction of green homes (GH) in Malaysia, a simple and attainable framework for designing and building GHs is needed. This can be achieved by aligning GH principles against Cole-s 'Sustainable Building Criteria' (SBC). This set of considerations was used to categorize the GH features of three case studies from Malaysia. Although the categorization of building features is useful at exploring the presence of sustainability inclinations of each house, the overall impact of building features in each of the five SBCs are unknown. Therefore, this paper explored the possibility of quantifying the impact of building features categorized in SBC1 – “Buildings will have to adapt to the new environment and restore damaged ecology while mitigating resource use" based on existing GH assessment tools and methods and other literature. This process as reported in this paper could lead to a new dimension in green home rating and assessment methods.

Keywords: Green homes, Malaysia, Sustainable BuildingCriteria, Sustainable homes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
956 Aesthetics and Robotics: Which Form to give to the Human-Like Robot?

Authors: B. Tondu, N. Bardou

Abstract:

The recent development of humanoid robots has led robot designers to imagine a great variety of anthropomorphic forms for human-like machine. Which form is the best ? We try to answer this question from a double meaning of the anthropomorphism : a positive anthropomorphism corresponing to the realization of an effective anthropomorphic form object and a negative one corresponding to our natural tendency in certain circumstances to give human attributes to non-human beings. We postulate that any humanoid robot is concerned by both these two anthropomorphism kinds. We propose to use gestalt theory and Heider-s balance theory in order to analyze how negative anthropomorphism can influence our perception of human-like robots. From our theoretical approach we conclude that an “even shape" as defined by gestalt theory is not a sufficient condition for a good integration of future humanoid robots into a human community. Aesthetic perception of the robot cannot be splitted from a social perception : a humanoid robot, any how the efforts made for improving its appearance, could be rejected if it is devoted to a task with too high affective implications.

Keywords: Robot appearance, humanoid robot, uncanny valley, human-robot-interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
955 IPSO Based UPFC Robust Output Feedback Controllers for Damping of Low Frequency Oscillations

Authors: A. Safari, H. Shayeghi, H. A. Shayanfar

Abstract:

On the basis of the linearized Phillips-Herffron model of a single-machine power system, a novel method for designing unified power flow controller (UPFC) based output feedback controller is presented. The design problem of output feedback controller for UPFC is formulated as an optimization problem according to with the time domain-based objective function which is solved by iteration particle swarm optimization (IPSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results prove the effectiveness and robustness of the proposed method in terms of a high performance power system. The simulation study shows that the designed controller by Iteration PSO performs better than Classical PSO in finding the solution.

Keywords: UPFC, IPSO, output feedback Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
954 Eco-Friendly Preservative Treated Bamboo Culm: Compressive Strength Analysis

Authors: Perminder JitKaur, Santosh Satya, K. K. Pant, S. N. Naik

Abstract:

Bamboo is extensively used in construction industry. Low durability of bamboo due to fungus infestation and termites attack under storage puts certain constrains for it usage as modern structural material. Looking at many chemical formulations for bamboo treatment leading to severe harmful environment effects, research on eco-friendly preservatives for bamboo treatment has been initiated world-over. In the present studies, eco-friendly preservative for bamboo treatment has been developed. To validate its application for structural purposes, investigation of effect of treatment on compressive strength has been investigated. Neemoil (25%) integrated with copper naphthenate (0.3%) on dilution with kerosene oil impregnated into bamboo culm at 2 bar pressure, has shown weight loss of only 3.15% in soil block analysis method. The results from compressive strength analysis using HEICO Automatic Compression Testing Machine reveal that preservative treatment has not altered the structural properties of bamboo culms. Compressive strength of control (11.72 N/mm2) and above treated samples (11.71 N/mm2) was found to be comparable.

Keywords: Compressive strength, D. strictus bamboo, Ecofriendly treatment, neem oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3444
953 A Fuzzy Swarm Optimized Approach for Piece Selection in Bit Torrent Like Peer to Peer Network

Authors: M. Padmavathi, R. M. Suresh

Abstract:

Every machine plays roles of client and server simultaneously in a peer-to-peer (P2P) network. Though a P2P network has many advantages over traditional client-server models regarding efficiency and fault-tolerance, it also faces additional security threats. Users/IT administrators should be aware of risks from malicious code propagation, downloaded content legality, and P2P software’s vulnerabilities. Security and preventative measures are a must to protect networks from potential sensitive information leakage and security breaches. Bit Torrent is a popular and scalable P2P file distribution mechanism which successfully distributes large files quickly and efficiently without problems for origin server. Bit Torrent achieved excellent upload utilization according to measurement studies, but it also raised many questions as regards utilization in settings, than those measuring, fairness, and Bit Torrent’s mechanisms choice. This work proposed a block selection technique using Fuzzy ACO with optimal rules selected using ACO.

Keywords: Ant Colony Optimization (ACO), Bit Torrent, Download time, Peer-to-Peer (P2P) network, Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
952 Compensation of Power Quality Disturbances Using DVR

Authors: R. Rezaeipour

Abstract:

One of the key aspects of power quality improvement in power system is the mitigation of voltage sags/swells and flicker. Custom power devices have been known as the best tools for voltage disturbances mitigation as well as reactive power compensation. Dynamic Voltage Restorer (DVR) which is the most efficient and effective modern custom power device can provide the most commercial solution to solve several problems of power quality in distribution networks. This paper deals with analysis and simulation technique of DVR based on instantaneous power theory which is a quick control to detect signals. The main purpose of this work is to remove three important disturbances including voltage sags/swells and flicker. Simulation of the proposed method was carried out on two sample systems by using Matlab software environment and the results of simulation show that the proposed method is able to provide desirable power quality in the presence of wide range of disturbances.

Keywords: DVR, Power quality, Voltage sags, Voltage swells, Flicker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
951 Delineato: Designing Distraction-Free GUIs

Authors: Fernando Miguel Campos, Fernando Jesus Aguiar, Pedro Campos

Abstract:

A large amount of software products offer a wide range and number of features. This is called featuritis or creeping featurism and tends to rise with each release of the product. Feautiris often adds unnecessary complexity to software, leading to longer learning curves and overall confusing the users and degrading their experience. We take a look to a new design approach tendency that has been coming up, the so-called “What You Get is What You Need” concept that argues that products should be very focused, simple and with minimalistic interfaces in order to help users conduct their tasks in distraction-free ambiences. This isn’t as simple to implement as it might sound and the developers need to cut down features. Our contribution illustrates and evaluates this design method through a novel distraction-free diagramming tool named Delineato Pro for Mac OS X in which the user is confronted with an empty canvas when launching the software and where tools only show up when really needed.

Keywords: Diagramming, HCI, usability, user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
950 Terrorism: A Threat in Constant Evolution Still Misunderstood

Authors: Manuel J. Gazapo Lapayese

Abstract:

It is a well-established fact that terrorism is one of the foremost threats to present-day international security. The creation of tools or mechanisms for confronting it in an effective and efficient manner will only be possible by way of an objective assessment of the phenomenon. In order to achieve this, this paper has the following three main objectives: Firstly, setting out to find the reasons that have prevented the establishment of a universally accepted definition of terrorism, and consequently trying to outline the main features defining the face of the terrorist threat in order to discover the fundamental goals of what is now a serious blight on world society. Secondly, trying to explain the differences between a terrorist movement and a terrorist organisation, and the reasons for which a terrorist movement can be led to transform itself into an organisation. After analysing these motivations and the characteristics of a terrorist organisation, an example of the latter will be succinctly analysed to help the reader understand the ideas expressed. Lastly, discovering and exposing the factors that can lead to the appearance of terrorist tendencies, and discussing the most efficient and effective responses that can be given to this global security threat.

Keywords: Responses, resilience, security, terrorism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2579
949 A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays

Authors: M. Anidha, K. Premalatha

Abstract:

Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.

Keywords: Gene selection, mutual information, Fisher score, classification, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151
948 CFD Study of the Fluid Viscosity Variation and Effect on the Flow in a Stirred Tank

Authors: Achouri Ryma, Hatem Dhaouadi, Hatem Mhiri, Philippe Bournot

Abstract:

Stirred tanks are widely used in all industrial sectors. The need for further studies of the mixing operation and its different aspects comes from the diversity of agitation tools and implemented geometries in addition to the specific characteristics of each application. Viscous fluids are often encountered in industry and they represent the majority of treated cases, as in the polymer sector, food processing, pharmaceuticals and cosmetics. That's why in this paper, we will present a three-dimensional numerical study using the software Fluent, to study the effect of varying the fluid viscosity in a stirred tank with a Rushton turbine. This viscosity variation was performed by adding carboxymethylcellulose (CMC) to the fluid (water) in the vessel. In this work, we studied first the flow generated in the tank with a Rushton turbine. Second, we studied the effect of the fluid viscosity variation on the thermodynamic quantities defining the flow. For this, three viscosities (0.9% CMC, 1.1% CMC and 1.7% CMC) were considered.

Keywords: CFD, CMC, Mixing, Viscosity, Rushton turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3528
947 MIM: A Species Independent Approach for Classifying Coding and Non-Coding DNA Sequences in Bacterial and Archaeal Genomes

Authors: Achraf El Allali, John R. Rose

Abstract:

A number of competing methodologies have been developed to identify genes and classify DNA sequences into coding and non-coding sequences. This classification process is fundamental in gene finding and gene annotation tools and is one of the most challenging tasks in bioinformatics and computational biology. An information theory measure based on mutual information has shown good accuracy in classifying DNA sequences into coding and noncoding. In this paper we describe a species independent iterative approach that distinguishes coding from non-coding sequences using the mutual information measure (MIM). A set of sixty prokaryotes is used to extract universal training data. To facilitate comparisons with the published results of other researchers, a test set of 51 bacterial and archaeal genomes was used to evaluate MIM. These results demonstrate that MIM produces superior results while remaining species independent.

Keywords: Coding Non-coding Classification, Entropy, GeneRecognition, Mutual Information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
946 Personalized Email Marketing Strategy: A Reinforcement Learning Approach

Authors: Lei Zhang, Tingting Xu, Jun He, Zhenyu Yan, Roger Brooks

Abstract:

Email marketing is one of the most important segments of online marketing. Email content is vital to customers. Different customers may have different familiarity with a product, so a successful marketing strategy must personalize email content based on individual customers’ product affinity. In this study, we build our personalized email marketing strategy with three types of emails: nurture, promotion, and conversion. Each type of emails has a different influence on customers. We investigate this difference by analyzing customers’ open rates, click rates and opt-out rates. Feature importance from response models is also analyzed. The goal of the marketing strategy is to improve the click rate on conversion-type emails. To build the personalized strategy, we formulate the problem as a reinforcement learning problem and adopt a Q-learning algorithm with variations. The simulation results show that our model-based strategy outperforms the current marketer’s strategy.

Keywords: Email marketing, email content, reinforcement learning, machine learning, Q-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727
945 Effects of IPPC Permits on Ambient Air Quality

Authors: C. Cafaro, P. Ceci, L. De Giorgi

Abstract:

The aim of this paper is to give an assessment of environmental effects of IPPC permit conditions of installations that are in specific territory with high concentration of industrial activities. The IPPC permit is the permit that each operator should hold to operate the installation as stated by the directive 2010/75/UE on industrial emissions (integrated pollution prevention and control), known as IED (Industrial Emissions Directive). The IPPC permit includes all the measures necessary to achieve a high level of protection of the environment as a whole, also defining the monitoring requirements as measurement methodology, frequency and evaluation procedure. The emissions monitoring of a specific plant may also give indications of the contribution of these emissions on the air quality of a definite area. So, it is clear that the IPPC permits are important tools both to improve the environmental framework and to achieve the air quality standards, assisting to assess the possible industrial sources contributions to air pollution.

Keywords: IPPC, IED, emissions, permits, air quality, large combustion plants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296
944 Management Decision System for the Documentary Archives in the Library of a Public Moroccan Institution: Case of Sultan Moulay Slimane University, Beni Mellal

Authors: Jaouad Oukrich, Belaid Bouikhalene, Noureddine Askour

Abstract:

This paper deals with the problem of management of information resources in libraries of the public institution Sultan Moulay Slimane University (SMSU) in order to analyze the satisfaction of the readers, and allow university leaders to make better strategic and instant decisions. For this, the integration of an integrated management decision library system is a priority program of higher education, as part of the Digital Morocco, which has a proactive policy to develop the use of new technologies information and communication in higher institutions. This operational information system can provide better services to the students and for the leaders. Our approach is to integrate the tools of business intelligence (BI) in the library management by using power BI.

Keywords: PMB, integrated library management system, ILMS, document, SMSU, power BI, satisfaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901