Search results for: Image Texture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1676

Search results for: Image Texture

326 Inter-frame Collusion Attack in SS-N Video Watermarking System

Authors: Yaser Mohammad Taheri, Alireza Zolghadr–asli, Mehran Yazdi

Abstract:

Video watermarking is usually considered as watermarking of a set of still images. In frame-by-frame watermarking approach, each video frame is seen as a single watermarked image, so collusion attack is more critical in video watermarking. If the same or redundant watermark is used for embedding in every frame of video, the watermark can be estimated and then removed by watermark estimate remodolulation (WER) attack. Also if uncorrelated watermarks are used for every frame, these watermarks can be washed out with frame temporal filtering (FTF). Switching watermark system or so-called SS-N system has better performance against WER and FTF attacks. In this system, for each frame, the watermark is randomly picked up from a finite pool of watermark patterns. At first SS-N system will be surveyed and then a new collusion attack for SS-N system will be proposed using a new algorithm for separating video frame based on watermark pattern. So N sets will be built in which every set contains frames carrying the same watermark. After that, using WER attack in every set, N different watermark patterns will be estimated and removed later.

Keywords: Watermark estimation remodulation (WER), Frame Temporal Averaging (FTF), switching watermark system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
325 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation

Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori

Abstract:

The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.

Keywords: Clustering, edges, feature points, landmark selection, X-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
324 Performance Evaluation of ROI Extraction Models from Stationary Images

Authors: K.V. Sridhar, Varun Gunnala, K.S.R Krishna Prasad

Abstract:

In this paper three basic approaches and different methods under each of them for extracting region of interest (ROI) from stationary images are explored. The results obtained for each of the proposed methods are shown, and it is demonstrated where each method outperforms the other. Two main problems in ROI extraction: the channel selection problem and the saliency reversal problem are discussed and how best these two are addressed by various methods is also seen. The basic approaches are 1) Saliency based approach 2) Wavelet based approach 3) Clustering based approach. The saliency approach performs well on images containing objects of high saturation and brightness. The wavelet based approach performs well on natural scene images that contain regions of distinct textures. The mean shift clustering approach partitions the image into regions according to the density distribution of pixel intensities. The experimental results of various methodologies show that each technique performs at different acceptable levels for various types of images.

Keywords: clustering, ROI, saliency, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
323 An Automated Method to Segment and Classify Masses in Mammograms

Authors: Viet Dzung Nguyen, Duc Thuan Nguyen, Tien Dzung Nguyen, Van Thanh Pham

Abstract:

Mammography is the most effective procedure for an early diagnosis of the breast cancer. Nowadays, people are trying to find a way or method to support as much as possible to the radiologists in diagnosis process. The most popular way is now being developed is using Computer-Aided Detection (CAD) system to process the digital mammograms and prompt the suspicious region to radiologist. In this paper, an automated CAD system for detection and classification of massive lesions in mammographic images is presented. The system consists of three processing steps: Regions-Of- Interest detection, feature extraction and classification. Our CAD system was evaluated on Mini-MIAS database consisting 322 digitalized mammograms. The CAD system-s performance is evaluated using Receiver Operating Characteristics (ROC) and Freeresponse ROC (FROC) curves. The archived results are 3.47 false positives per image (FPpI) and sensitivity of 85%.

Keywords: classification, computer-aided detection, featureextraction, mass detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
322 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
321 Walsh-Hadamard Transform for Facial Feature Extraction in Face Recognition

Authors: M. Hassan, I. Osman, M. Yahia

Abstract:

This Paper proposes a new facial feature extraction approach, Wash-Hadamard Transform (WHT). This approach is based on correlation between local pixels of the face image. Its primary advantage is the simplicity of its computation. The paper compares the proposed approach, WHT, which was traditionally used in data compression with two other known approaches: the Principal Component Analysis (PCA) and the Discrete Cosine Transform (DCT) using the face database of Olivetti Research Laboratory (ORL). In spite of its simple computation, the proposed algorithm (WHT) gave very close results to those obtained by the PCA and DCT. This paper initiates the research into WHT and the family of frequency transforms and examines their suitability for feature extraction in face recognition applications.

Keywords: Face Recognition, Facial Feature Extraction, Principal Component Analysis, and Discrete Cosine Transform, Wash-Hadamard Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
320 Land Surface Temperature and Biophysical Factors in Urban Planning

Authors: Illyani Ibrahim, Azizan Abu Samah, Rosmadi Fauzi

Abstract:

Land surface temperature (LST) is an important parameter to study in urban climate. The understanding of the influence of biophysical factors could improve the establishment of modeling urban thermal landscape. It is well established that climate hold a great influence on the urban landscape. However, it has been recognize that climate has a low priority in urban planning process, due to the complex nature of its influence. This study will focus on the relatively cloud free Landsat Thematic Mapper image of the study area, acquired on the 2nd March 2006. Correlation analyses were conducted to identify the relationship of LST to the biophysical factors; vegetation indices, impervious surface, and albedo to investigate the variation of LST. We suggest that the results can be considered by the stackholders during decision-making process to create a cooler and comfortable environment in the urban landscape for city dwellers.

Keywords: Biophysical factors, land surface temperature, urban planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
319 Polymeric Sustained Biodegradable Patch Formulation for Wound Healing

Authors: Abhay Asthana, Gyati Shilakari Asthana

Abstract:

It is the patient compliance and stability in combination with controlled drug delivery and biocompatibility that forms the core feature in present research and development of sustained biodegradable patch formulation intended for wound healing. The aim was to impart sustained degradation, sterile formulation, significant folding endurance, elasticity, biodegradability, bio-acceptability and strength. The optimized formulation comprised of polymers including Hydroxypropyl methyl cellulose, Ethylcellulose, and Gelatin, and Citric Acid PEG Citric acid (CPEGC) triblock dendrimers and active Curcumin. Polymeric mixture dissolved in geometric order in suitable medium through continuous stirring under ambient conditions. With continued stirring Curcumin was added with aid of DCM and Methanol in optimized ratio to get homogenous dispersion. The dispersion was sonicated with optimum frequency and for given time and later casted to form a patch form. All steps were carried out under strict aseptic conditions. The formulations obtained in the acceptable working range were decided based on thickness, uniformity of drug content, smooth texture and flexibility and brittleness. The patch kept on stability using butter paper in sterile pack displayed folding endurance in range of 20 to 23 times without any evidence of crack in an optimized formulation at room temperature (RT) (24 ± 2°C). The patch displayed acceptable parameters after stability study conducted in refrigerated conditions (8±0.2°C) and at RT (24 ± 2°C) up to 90 days. Further, no significant changes were observed in critical parameters such as elasticity, biodegradability, drug release and drug content during stability study conducted at RT 24±2°C for 45 and 90 days. The drug content was in range 95 to 102%, moisture content didn’t exceeded 19.2% and patch passed the content uniformity test. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as drug release with correlation factor R2>0.9. The biodegradable patch based formulation developed shows promising results in terms of stability and release profiles.

Keywords: Sustained biodegradation, wound healing, polymeric patch, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
318 The Role of the Indigenous Languages in Policy Planning and Implementation: A Sociolinguistic Appraisal of the National Rebranding Programme of Nigeria

Authors: Anayochukwu Leonard Okoli

Abstract:

The nexus between language and culture is so intertwined and very significant that language is largely seen as a vehicle for cultural transmission. Culture itself refers to the aggregate belief system of a people, embellishing its corporate national image or brand. If we conceive national rebranding as a campaign to rekindle the patriotic flame in the consciousness of a people towards its sociocultural imperatives and values, then, Nigerian indigenous linguistic flame has not been ignited. Consequently, the paper contends that the current national rebranding policy remains a myth in the confines of the elitists' intellectual squabble. It however recommends that the use of our indigenous languages should be supported by adequate legislation and also propagated by Nollywood in order to revamp and sustain the people’s interest in their local languages. Finally, the use of the indigenous Nigerian languages demonstrates patriotism, an important ingredient for actualizing a genuine national rebranding.

Keywords: Appraisal, Indigenous Languages, Policy, Rebranding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
317 Predicting Individual Investors- Intention to Invest: An Experimental Analysis of Attitude as a Mediator

Authors: Azwadi Ali

Abstract:

The survival of publicly listed companies largely depends on their stocks being liquidly traded. This goal can be achieved when new investors are attracted to invest on companies- stocks. Among different groups of investors, individual investors are generally less able to objectively evaluate companies- risks and returns, and tend to be emotionally biased in their investing decisions. Therefore their decisions may be formed as a result of perceived risks and returns, and influenced by companies- images. This study finds that perceived risk, perceived returns and trust directly affect individual investors- trading decisions while attitude towards brand partially mediates the relationships. This finding suggests that, in courting individual investors, companies still need to perform financially while building a good image can result in their stocks being accepted quicker than the stocks of good performing companies with hidden images.

Keywords: Behavioral Finance, Investment, Attitude towardsBrand, Partial Least Squares

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3603
316 Persian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network

Authors: Hamid Reza Boveiri

Abstract:

In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments on binary images of regular, translated, rotated and scaled Persian numeral characters has been done and variety of results has been presented. The best result was 99.16% correct recognition demonstrating geometrical central moments and fuzzy min-max neural network are adequate for Persian printed numeral character recognition.

Keywords: Fuzzy min-max neural network, geometrical centralmoments, optical character recognition, Persian digits recognition, Persian printed numeral characters recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
315 Impact of Metallic Furniture on UWB Channel Statistical Characteristics by BER

Authors: Yu-Shuai Chen , Chien-Ching Chiu , Chung-Hsin Huang, Chien-Hung Chen

Abstract:

The bit error rate (BER) performance for ultra-wide band (UWB) indoor communication with impact of metallic furniture is investigated. The impulse responses of different indoor environments for any transmitter and receiver location are computed by shooting and bouncing ray/image and inverse Fourier transform techniques. By using the impulse responses of these multipath channels, the BER performance for binary pulse amplitude modulation (BPAM) impulse radio UWB communication system are calculated. Numerical results have shown that the multi-path effect by the metallic cabinets is an important factor for BER performance. Also the outage probability for the UWB multipath environment with metallic cabinets is more serious (about 18%) than with wooden cabinets. Finally, it is worth noting that in these cases the present work provides not only comparative information but also quantitative information on the performance reduction.

Keywords: UWB, multipath, outage probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
314 A New Automatic System of Cell Colony Counting

Authors: U. Bottigli, M.Carpinelli, P.L. Fiori, B. Golosio, A. Marras, G. L. Masala, P. Oliva

Abstract:

The counting process of cell colonies is always a long and laborious process that is dependent on the judgment and ability of the operator. The judgment of the operator in counting can vary in relation to fatigue. Moreover, since this activity is time consuming it can limit the usable number of dishes for each experiment. For these purposes, it is necessary that an automatic system of cell colony counting is used. This article introduces a new automatic system of counting based on the elaboration of the digital images of cellular colonies grown on petri dishes. This system is mainly based on the algorithms of region-growing for the recognition of the regions of interest (ROI) in the image and a Sanger neural net for the characterization of such regions. The better final classification is supplied from a Feed-Forward Neural Net (FF-NN) and confronted with the K-Nearest Neighbour (K-NN) and a Linear Discriminative Function (LDF). The preliminary results are shown.

Keywords: Automatic cell counting, neural network, region growing, Sanger net.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
313 Topological Quantum Diffeomorphisms in Field Theory and the Spectrum of the Space-Time

Authors: Francisco Bulnes

Abstract:

Through the Fukaya conjecture and the wrapped Floer cohomology, the correspondences between paths in a loop space and states of a wrapping space of states in a Hamiltonian space (the ramification of field in this case is the connection to the operator that goes from TM to T*M) are demonstrated where these last states are corresponding to bosonic extensions of a spectrum of the space-time or direct image of the functor Spec, on space-time. This establishes a distinguished diffeomorphism defined by the mapping from the corresponding loops space to wrapping category of the Floer cohomology complex which furthermore relates in certain proportion D-branes (certain D-modules) with strings. This also gives to place to certain conjecture that establishes equivalences between moduli spaces that can be consigned in a moduli identity taking as space-time the Hitchin moduli space on G, whose dual can be expressed by a factor of a bosonic moduli spaces.

Keywords: Floer cohomology, Fukaya conjecture, Lagrangian submanifolds, spectrum of ring, topological quantum diffeomorphisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
312 A Review in Advanced Digital Signal Processing Systems

Authors: Roza Dastres, Mohsen Soori

Abstract:

Digital Signal Processing (DSP) is the use of digital processing systems by computers in order to perform a variety of signal processing operations. It is the mathematical manipulation of a digital signal's numerical values in order to increase quality as well as effects of signals. DSP can include linear or nonlinear operators in order to process and analyze the input signals. The nonlinear DSP processing is closely related to nonlinear system detection and can be implemented in time, frequency and space-time domains. Applications of the DSP can be presented as control systems, digital image processing, biomedical engineering, speech recognition systems, industrial engineering, health care systems, radar signal processing and telecommunication systems. In this study, advanced methods and different applications of DSP are reviewed in order to move forward the interesting research filed.

Keywords: Digital signal processing, advanced telecommunication, nonlinear signal processing, speech recognition systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
311 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: Convolutional Neural Network, Deep Learning, Deep Learning Based FER, Facial Emotion Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
310 Deterministic Random Number Generators for Online Applications

Authors: Natarajan Vijayarangan, Prasanna S. Bidare

Abstract:

Cryptography, Image watermarking and E-banking are filled with apparent oxymora and paradoxes. Random sequences are used as keys to encrypt information to be used as watermark during embedding the watermark and also to extract the watermark during detection. Also, the keys are very much utilized for 24x7x365 banking operations. Therefore a deterministic random sequence is very much useful for online applications. In order to obtain the same random sequence, we need to supply the same seed to the generator. Many researchers have used Deterministic Random Number Generators (DRNGs) for cryptographic applications and Pseudo Noise Random sequences (PNs) for watermarking. Even though, there are some weaknesses in PN due to attacks, the research community used it mostly in digital watermarking. On the other hand, DRNGs have not been widely used in online watermarking due to its computational complexity and non-robustness. Therefore, we have invented a new design of generating DRNG using Pi-series to make it useful for online Cryptographic, Digital watermarking and Banking applications.

Keywords: E-tokens, LFSR, non-linear, Pi series, pseudo random number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
309 Recognition of Grocery Products in Images Captured by Cellular Phones

Authors: Farshideh Einsele, Hassan Foroosh

Abstract:

In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using well-known geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.

Keywords: Camera-based OCR, Feature extraction, Document and image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470
308 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI

Authors: Hae-Yeoun Lee

Abstract:

Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring, which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.

Keywords: Cardiac MRI, Graph searching, Left ventricle segmentation, K-means clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
307 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908
306 Processor Scheduling on Parallel Computers

Authors: Mohammad S. Laghari, Gulzar A. Khuwaja

Abstract:

Many problems in computer vision and image processing present potential for parallel implementations through one of the three major paradigms of geometric parallelism, algorithmic parallelism and processor farming. Static process scheduling techniques are used successfully to exploit geometric and algorithmic parallelism, while dynamic process scheduling is better suited to dealing with the independent processes inherent in the process farming paradigm. This paper considers the application of parallel or multi-computers to a class of problems exhibiting spatial data characteristic of the geometric paradigm. However, by using processor farming paradigm, a dynamic scheduling technique is developed to suit the MIMD structure of the multi-computers. A hybrid scheme of scheduling is also developed and compared with the other schemes. The specific problem chosen for the investigation is the Hough transform for line detection.

Keywords: Hough transforms, parallel computer, parallel paradigms, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
305 Traceable Watermarking System using SoC for Digital Cinema Delivery

Authors: Sadi Vural, Hiromi Tomii, Hironori Yamauchi

Abstract:

As the development of digital technology is increasing, Digital cinema is getting more spread. However, content copy and attack against the digital cinema becomes a serious problem. To solve the above security problem, we propose “Additional Watermarking" for digital cinema delivery system. With this proposed “Additional watermarking" method, we protect content copyrights at encoder and user side information at decoder. It realizes the traceability of the watermark embedded at encoder. The watermark is embedded into the random-selected frames using Hash function. Using it, the embedding position is distributed by Hash Function so that third parties do not break off the watermarking algorithm. Finally, our experimental results show that proposed method is much better than the convenient watermarking techniques in terms of robustness, image quality and its simple but unbreakable algorithm.

Keywords: Decoder, Digital content, JPEG2000 Frame, System-On-Chip and additional watermark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
304 Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillance

Authors: Sepehr Aslani, Homayoun Mahdavi-Nasab

Abstract:

Automated motion detection and tracking is a challenging task in traffic surveillance. In this paper, a system is developed to gather useful information from stationary cameras for detecting moving objects in digital videos. The moving detection and tracking system is developed based on optical flow estimation together with application and combination of various relevant computer vision and image processing techniques to enhance the process. To remove noises, median filter is used and the unwanted objects are removed by applying thresholding algorithms in morphological operations. Also the object type restrictions are set using blob analysis. The results show that the proposed system successfully detects and tracks moving objects in urban videos.

Keywords: Optical flow estimation, moving object detection, tracking, morphological operation, blob analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10156
303 DWT Based Robust Watermarking Embed Using CRC-32 Techniques

Authors: Sadi Vural, Hiromi Tomii, Hironori Yamauchi

Abstract:

As far as the latest technological improvements are concerned, digital systems more become popular than the past. Despite this growing demand to the digital systems, content copy and attack against the digital cinema contents becomes a serious problem. To solve the above security problem, we propose “traceable watermarking using Hash functions for digital cinema system. Digital Cinema is a great application for traceable watermarking since it uses watermarking technology during content play as well as content transmission. The watermark is embedded into the randomly selected movie frames using CRC-32 techniques. CRC-32 is a Hash function. Using it, the embedding position is distributed by Hash Function so that any party cannot break off the watermarking or will not be able to change. Finally, our experimental results show that proposed DWT watermarking method using CRC-32 is much better than the convenient watermarking techniques in terms of robustness, image quality and its simple but unbreakable algorithm.

Keywords: Decoder, Digital content, JPEG2000 Frame, System-On-Chip, traceable watermark, Hash Function, CRC-32.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
302 Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain

Authors: Sergio Pissanetzky

Abstract:

The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.

Keywords: AI, artificial intelligence, complex system, object oriented, OO, refactoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
301 Performance Evaluation of Wavelet Based Coders on Brain MRI Volumetric Medical Datasets for Storage and Wireless Transmission

Authors: D. Dhouib, A. Naït-Ali, C. Olivier, M. S. Naceur

Abstract:

In this paper, we evaluate the performance of some wavelet based coding algorithms such as 3D QT-L, 3D SPIHT and JPEG2K. In the first step we achieve an objective comparison between three coders, namely 3D SPIHT, 3D QT-L and JPEG2K. For this purpose, eight MRI head scan test sets of 256 x 256x124 voxels have been used. Results show superior performance of 3D SPIHT algorithm, whereas 3D QT-L outperforms JPEG2K. The second step consists of evaluating the robustness of 3D SPIHT and JPEG2K coding algorithm over wireless transmission. Compressed dataset images are then transmitted over AWGN wireless channel or over Rayleigh wireless channel. Results show the superiority of JPEG2K over these two models. In fact, it has been deduced that JPEG2K is more robust regarding coding errors. Thus we may conclude the necessity of using corrector codes in order to protect the transmitted medical information.

Keywords: Image coding, medical imaging, wavelet basedcoder, wireless transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
300 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: Outlier detection, generative adversary networks, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
299 Homogeneity of Microstructure and Mechanical Properties in Horizontal Continuous Cast Billet

Authors: V. Arbabi , I. Ebrahimzadeh, H. Ghanbari, M.M. Kaykha

Abstract:

Horizontal continuous casting is widely used to produce semi-finished non-Ferrous products. Homogeneity in the metallurgical characteristics and mechanical properties for this product is vital for industrial application. In the present work, the microstructure and mechanical properties of a horizontal continuous cast two-phase brass billet have been studied. Impact strength and hardness variations were examined and the phase composition and porosity studied with image analysis software. Distinct differences in mechanical properties were observed between the upper, middle and lower parts of the billet, which are explained in terms of the morphology and size of the phase in the microstructure. Hardness variation in the length of billet is higher in upper area but impact strength is higher in lower areas.

Keywords: Horizontal Continuous Casting, Two-phase brasses, CuZn40Al1 alloy, Microstructure, Impact Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
298 Remote Sensing, GIS, and AHP for Assessing Physical Vulnerability to Tsunami Hazard

Authors: Abu Bakar Sambah, Fusanori Miura

Abstract:

Remote sensing image processing, spatial data analysis through GIS approach, and analytical hierarchy process were introduced in this study for assessing the vulnerability area and inundation area due to tsunami hazard in the area of Rikuzentakata, Iwate Prefecture, Japan. Appropriate input parameters were derived from GSI DEM data, ALOS AVNIR-2, and field data. We used the parameters of elevation, slope, shoreline distance, and vegetation density. Five classes of vulnerability were defined and weighted via pairwise comparison matrix. The assessment results described that 14.35km2 of the study area was under tsunami vulnerability zone. Inundation areas are those of high and slightly high vulnerability. The farthest area reached by a tsunami was about 7.50km from the shoreline and shows that rivers act as flooding strips that transport tsunami waves into the hinterland. This study can be used for determining a priority for land-use planning in the scope of tsunami hazard risk management.

Keywords: AHP, GIS, remote sensing, tsunami vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3335
297 Computer Vision Applied to Flower, Fruit and Vegetable Processing

Authors: Luis Gracia, Carlos Perez-Vidal, Carlos Gracia

Abstract:

This paper presents the theoretical background and the real implementation of an automated computer system to introduce machine vision in flower, fruit and vegetable processing for recollection, cutting, packaging, classification, or fumigation tasks. The considerations and implementation issues presented in this work can be applied to a wide range of varieties of flowers, fruits and vegetables, although some of them are especially relevant due to the great amount of units that are manipulated and processed each year over the world. The computer vision algorithms developed in this work are shown in detail, and can be easily extended to other applications. A special attention is given to the electromagnetic compatibility in order to avoid noisy images. Furthermore, real experimentation has been carried out in order to validate the developed application. In particular, the tests show that the method has good robustness and high success percentage in the object characterization.

Keywords: Image processing, Vision system, Automation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3323