Search results for: fuzzy regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1675

Search results for: fuzzy regression

355 A Family of Distributions on Learnable Problems without Uniform Convergence

Authors: César Garza

Abstract:

In supervised binary classification and regression problems, it is well-known that learnability is equivalent to uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.

Keywords: Statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 355
354 Using Historical Data for Stock Prediction of a Tech Company

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices over the past five years of 10 major tech companies: Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We implemented and tested three models – a linear regressor model, a k-nearest neighbor model (KNN), and a sequential neural network – and two algorithms – Multiplicative Weight Update and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: Finance, machine learning, opening price, stock market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
353 Stabilization of Angular-Shaped Riprap under Overtopping Flows

Authors: Dilavar Khan, Z. Ahmad

Abstract:

Riprap is mostly used to prevent erosion by flows down the steep slopes in river engineering. A total of 53 stability tests performed on angular riprap with a median stone size ranging from 15 to 278 mm and slope ranging from 1 to 40% are used in this study. The existing equations for the prediction of medium size of angular stones are checked for their accuracy using the available data. Predictions of median size using these equations are not satisfactory and results show deviation by more than ±20% from the observed values. A multivariable power regression analysis is performed to propose a new equation relating the median size with unit discharge, bed slope, riprap thickness and coefficient of uniformity. The proposed relationship satisfactorily predicts the median angular stone size with ±20% error. Further, the required size of the rounded stone is more than the angular stone for the same unit discharge and the ratio increases with unit discharge and also with embankment slope of the riprap.

Keywords: Angularity, Gradation, Riprap, Stabilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2649
352 Analyzing the Factors Effecting the Passenger Car Breakdowns using Com-Poisson GLM

Authors: N. Mamode Khan, V. Jowaheer

Abstract:

Number of breakdowns experienced by a machinery is a highly under-dispersed count random variable and its value can be attributed to the factors related to the mechanical input and output of that machinery. Analyzing such under-dispersed count observations as a function of the explanatory factors has been a challenging problem. In this paper, we aim at estimating the effects of various factors on the number of breakdowns experienced by a passenger car based on a study performed in Mauritius over a year. We remark that the number of passenger car breakdowns is highly under-dispersed. These data are therefore modelled and analyzed using Com-Poisson regression model. We use quasi-likelihood estimation approach to estimate the parameters of the model. Under-dispersion parameter is estimated to be 2.14 justifying the appropriateness of Com-Poisson distribution in modelling under-dispersed count responses recorded in this study.

Keywords: Breakdowns, under-dispersion, com-poisson, generalized linear model, quasi-likelihood estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
351 Improving the Effectiveness of Software Testing through Test Case Reduction

Authors: R. P. Mahapatra, Jitendra Singh

Abstract:

This paper proposes a new technique for improving the efficiency of software testing, which is based on a conventional attempt to reduce test cases that have to be tested for any given software. The approach utilizes the advantage of Regression Testing where fewer test cases would lessen time consumption of the testing as a whole. The technique also offers a means to perform test case generation automatically. Compared to one of the techniques in the literature where the tester has no option but to perform the test case generation manually, the proposed technique provides a better option. As for the test cases reduction, the technique uses simple algebraic conditions to assign fixed values to variables (Maximum, minimum and constant variables). By doing this, the variables values would be limited within a definite range, resulting in fewer numbers of possible test cases to process. The technique can also be used in program loops and arrays.

Keywords: Software Testing, Test Case Generation, Test CaseReduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3017
350 The Role of Classroom Management Efficacy in Predicting Teacher Burnout

Authors: Yalçın Ozdemir

Abstract:

The purpose of this study was to examine to what extend classroom management efficacy, marital status, gender, and teaching experience predict burnout among primary school teachers. Participants of this study were 523 (345 female, 178 male) teachers who completed inventories. The results of multiple regression analysis indicated that three dimensions of teacher burnout (Emotional Exhaustion, Depersonalization, Personal Accomplishment) were affected differently from four predictor variables. Findings indicated that for the emotional exhaustion, classroom management efficacy, marital status and teaching experience; for depersonalization dimension, classroom management efficacy and marital status and finally for the personal accomplishment dimension, classroom management efficacy, gender, and teaching experience were significant predictors.

Keywords: Classroom management efficacy, teacher burnout.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4941
349 Design and Implementation of a Neural Network for Real-Time Object Tracking

Authors: Javed Ahmed, M. N. Jafri, J. Ahmad, Muhammad I. Khan

Abstract:

Real-time object tracking is a problem which involves extraction of critical information from complex and uncertain imagedata. In this paper, we present a comprehensive methodology to design an artificial neural network (ANN) for a real-time object tracking application. The object, which is tracked for the purpose of demonstration, is a specific airplane. However, the proposed ANN can be trained to track any other object of interest. The ANN has been simulated and tested on the training and testing datasets, as well as on a real-time streaming video. The tracking error is analyzed with post-regression analysis tool, which finds the correlation among the calculated coordinates and the correct coordinates of the object in the image. The encouraging results from the computer simulation and analysis show that the proposed ANN architecture is a good candidate solution to a real-time object tracking problem.

Keywords: Image processing, machine vision, neural networks, real-time object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3509
348 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions

Authors: Betül Özgenç Kaya, Soner Kuslu, Sabri Çolak, Turan Çalban

Abstract:

Ulexite (Na2O.2CaO.5B2O3.16H2O) is boron mineral that is found in large quantities in the Turkey and world. In this study, the dissolution of this mineral in the disodium hydrogen phosphate solutions has been studied. Temperature, concentration, stirring speed, solid liquid ratio and particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.

Keywords: Disodium hydrogen phosphate, Leaching kinetics, Ulexite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
347 Empirical Analysis of Private Listed Companies- Debt Financing and Business Performance in Jiangsu Province

Authors: Chengxuan Geng, Haitao E, Yijie Jiang

Abstract:

According to the theory of capital structure, this paper uses principal component analysis and linear regression analysis to study the relationship between the debt characteristics of the private listed companies in Jiangsu Province and their business performance. The results show that the average debt ratio of the 29 private listed companies selected from the sample is lower. And it is found that for the sample whose debt ratio is lower than 80%, its debt ratio is negatively related to corporate performance, while for the sample whose debt ratio is beyond 80%, the relationship of debt financing and enterprise performance shows the different trends. The conclusions reflect the drawbacks may exist that the debt ratio is relatively low and having not take full advantage of debt governance effect of the private listed companies in Jiangsu Province.

Keywords: private listed companies, debt financing, business performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
346 Integration of Asian Stock Markets

Authors: Noor A. Auzairy, Rubi Ahmad, Catherine S.F. Ho, Ros Z. Z. Sapian

Abstract:

This paper is to explore the relationship and the level of stock market integration of the Asian countries, primarily concentrating on Malaysia, Thailand, Indonesia, and South Korea, with the world from January 1997 to December 2009. The degree of short-run and long-run stock market integration of those Asian countries are analyzed in order to determine the significance of series of regional and world financial crises, liberalization policies and other financial reforms in influencing the level of stock market integration. To test for cointegration, this paper applies coefficient correlation, univariate regression analyses, cointegration tests, and vector autoregressive models (VAR) by using the four Asian stock markets main indices and the MSCI World index. The empirical findings from this work reveal that there is no long-run stock market integration for the four countries and the world market. However, there is short run integration.

Keywords: Asia, integration, relationship, stock market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
345 How Learning Efficiency Affects Job Performance Effectiveness

Authors: Prateep Wajeetongratana

Abstract:

The purpose of this research was to study the influence of learning efficiency on local accountants’ job performance effectiveness. This paper drew upon the survey data collected from 335 local accountants survey conducted at Nakhon Ratchasima province, Thailand. The statistics utilized in this paper included percentage, mean, standard deviation, and regression analysis. The findings revealed that the majority of samples were between 31-40 years old, married, held an undergraduate degree, and had an average income between 10,000-15,000 baht. The majority of respondents had less than five years of accounting experience and worked for local administrations. The overall learning efficiency score was in the highest level while the local accountants’ job performance effectiveness score was also in the high level. The hypothesis testing’s result disclosed that learning efficiency factors which were knowledge, Skill, and Attitude had an influence on local accountants’ job the performance effectiveness.

Keywords: Accountants, Leaning Efficiency, Performance Effectiveness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
344 The Willingness of Business Students on T Innovative Behavior within the Theory of Planned Behavior

Authors: Mei L. Lin, Pi-Yueh Cheng

Abstract:

Classes on creativity, innovation, and entrepreneurship are becoming quite popular at universities throughout the world. However, it is not easy for business students to get involved to innovative activities, especially patent application. The present study investigated how to enhance business students- intention to participate in innovative activities and which incentives universities should consider. A 22-item research scale was used, and confirmatory factor analysis was conducted to verify its reliability and validity. Multiple regression and discriminant analyses were also conducted. The results demonstrate the effect of growth-need strength on innovative behavior and indicate that the theory of planned behavior can explain and predict business students- intention to participate in innovative activities. Additionally, the results suggest that applying our proposed model in practice would effectively strengthen business students- intentions to engage in innovative activities.

Keywords: discriminant analysis, growth need strength, innovative behavior, TPB model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
343 Extrapolation of Clinical Data from an Oral Glucose Tolerance Test Using a Support Vector Machine

Authors: Jianyin Lu, Masayoshi Seike, Wei Liu, Peihong Wu, Lihua Wang, Yihua Wu, Yasuhiro Naito, Hiromu Nakajima, Yasuhiro Kouchi

Abstract:

To extract the important physiological factors related to diabetes from an oral glucose tolerance test (OGTT) by mathematical modeling, highly informative but convenient protocols are required. Current models require a large number of samples and extended period of testing, which is not practical for daily use. The purpose of this study is to make model assessments possible even from a reduced number of samples taken over a relatively short period. For this purpose, test values were extrapolated using a support vector machine. A good correlation was found between reference and extrapolated values in evaluated 741 OGTTs. This result indicates that a reduction in the number of clinical test is possible through a computational approach.

Keywords: SVM regression, OGTT, diabetes, mathematical model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
342 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
341 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: Machine learning, medical diagnosis, meningitis detection, gradient boosting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
340 Career Counseling Program for the Psychological Well-Being of Freshmen University Students

Authors: Sheila Marie G. Hocson

Abstract:

One of the vital developmental tasks that an individual faces during adolescence is choosing a career. Arriving at a career decision is difficult and anxious for many adolescents in the tertiary level. The main purpose of this study is to determine the factors relating to career indecision among freshmen college students as basis for the formulation of a comprehensive career counseling program for the psychological well-being of freshmen university students. The subjects were purposively selected. The Slovin-s formula was used in determining the sample size, using a 0.05 margin of error in getting the total number of samples per college and per major. The researcher made use of descriptive correlational study in determining significant factors relating to career indecision. Multiple Regression Analysis indicated that career thoughts, career decisions and vocational identity as factors related to career indecision.

Keywords: career decisions, career guidance program, career thoughts, vocational identity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4197
339 Understanding Primary School Students’ Beliefs Regarding the Adoption of Pro-Environmental Behaviors

Authors: Astrid de Leeuw, Pierre Valois

Abstract:

Environmental education is the key to enhancing or changing students’ ways of thinking and acting in order to create an environmentally robust future for all. The present study investigates the beliefs of 812 primary school students, which merit consideration when developing educational interventions. Results of multiple regression analyses reveal that educational interventions should focus on promoting students’ feelings of control over pro-environmental behaviors (PEB). For example, schools could provide recycling bins on the premises. Furthermore, it is critical to develop positive attitudes in students by stressing the various benefits of PEB for keeping our planet clean and protecting wildlife. Unfortunately, our results indicate that students believe that PEB is boring and annoying. Suggestions are offered for making PEB more interesting and relevant. Further research is needed to test the effectiveness of interventions based on the present results.

Keywords: Pro-environmental behaviors, primary school students, theory of planned behavior, beliefs, educational interventions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
338 Consumption Insurance against the Chronic Illness: Evidence from Thailand

Authors: Yuthapoom Thanakijborisut

Abstract:

This paper studies consumption insurance against the chronic illness in Thailand. The study estimates the impact of household consumption in the chronic illness on consumption growth. Chronic illness is the health care costs of a person or a household’s decision in treatment for the long term; the causes and effects of the household’s ability for smooth consumption. The chronic illnesses are measured in health status when at least one member within the household faces the chronic illness. The data used is from the Household Social Economic Panel Survey conducted during 2007 and 2012. The survey collected data from approximately 6,000 households from every province, both inside and outside municipal areas in Thailand. The study estimates the change in household consumption by using an ordinary least squares (OLS) regression model. The result shows that the members within the household facing the chronic illness would reduce the consumption by around 4%. This case indicates that consumption insurance in Thailand is quite sufficient against chronic illness.

Keywords: Consumption insurance, chronic illness, health care, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100
337 Dissolution Leaching Kinetics of Ulexite in Sodium Dihydrogen Phosphate Solutions

Authors: Emine Teke, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of the present study was to investigate the dissolution kinetics of ulexite in sodium dihydrogen phosphate in a mechanical agitation system and also to declare an alternative reactant to produce the boric acid. Reaction temperature, concentration of sodium dihydrogen phosphate, stirring speed, solid-liquid ratio, and ulexite particle size were selected as parameters. The experimental results were successfully correlated by using linear regression and a statistical program. Dissolution curves were evaluated in order to test the shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase in the dissolution rate of ulexite. The activation energy was found to be 36.4 kJ/mol. The leaching of ulexite was controlled by diffusion through the ash (or product) layer.

Keywords: Sodium dihydrogen phosphate, leaching kinetics, ulexite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
336 Measurement Uncertainty Evaluation of Meteorological Model: CALMET

Authors: N. Miklavčič, U. Kugovnik, N. Galkina, P. Ribarič, R. Vončina

Abstract:

Today the need for weather predictions is deeply rooted in the everyday life of people as well as it is in industry. The forecasts influence final decision-making processes in multiple areas from agriculture and prevention of natural disasters to air traffic regulations and solutions on a national level for health, security, and economic problems. Namely in Slovenia, alongside other existing forms of application, weather forecasts are adopted for the prognosis of electrical current transmission through powerlines. Meteorological parameters are one of the key factors which need to be considered in estimations of the reliable supply of electrical energy to consumers. And like for any other measured value, the knowledge about measurement uncertainty is critical also for the secure and reliable supply of energy. The estimation of measurement uncertainty grants us a more accurate interpretation of data, a better quality of the end results, and even a possibility of improvement of weather forecast models.

Keywords: Measurement uncertainty, microscale meteorological model, CALMET meteorological station, orthogonal regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58
335 Designing Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method

Authors: Nor Azuana Ramli, Mohd Tahir Ismail, Hooy Chee Wooi

Abstract:

Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we take the Euclidean distance and the Manhattan as a consideration. For the comparison, we employ three other methods which are logistic regression analysis (logit), back-propagation neural network (NN) and sequential minimal optimization (SMO). The analysis using datasets from 8 countries and 13 macro-economic indicators for each country shows that the proposed k-NN method with k = 4 and Manhattan distance performs better than the other methods.

Keywords: Currency crisis, k-nearest neighbour method, logit, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
334 Does Corporate Governance or Transparency Affect Foreign Direct Investment?

Authors: Haksoon Kim

Abstract:

The paper investigates the relationship between the foreign direct investment (FDI) and the corporate governance or transparency by investigating the country-level FDI flows, FDI inward performance, corporate governance and transparency variables. From the regression analysis with Newey-West estimator of 28 country panel data from 1990- 2002, we find strong positive relationships between corporate governance or transparency level of hosting countries and FDI inward performance within hosting countries. A strong positive relationship is found between anti-director rights level or number of analysts of hosting countries and FDI inward performance within hosting countries. Also, we find a positive relationship between the number of analysts of hosting countries and FDI inflows. The empirical results are consistent with stock market liberalizations and corporate governance explanations of reasons for FDI.

Keywords: corporate governance, corporate transparency, FDIflows, FDI inward performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
333 Big Five Traits and Loneliness among Turkish Emerging Adults

Authors: Hasan Atak

Abstract:

Emerging adulthood, between the ages of 18 and 25, as a distinct developmental stage extending from adolescence to young adulthood. The proportions composing the five-factor model are neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness. In the literature, there is any study which includes the relationship between emerging adults loneliness and personality traits. Therefore, the relationship between emerging adults loneliness and personality traits have to be investigated. This study examines the association between the Big Five personality traits, and loneliness among Turkish emerging adults. A total of 220 emerging adults completed the NEO Five Factor Inventory (NEO-FFI), and the The UCLA Loneliness Scale (UCLALS). Correlation analysis showed that three Big Five personality dimensions which are Neuroticism (positively), and Extraversion and Aggreableness (negatively) are moderately correlated with emerging adults loneliness. Regression analysis shows that Extraversion, Aggreableness and Neuroticism are the most important predictors of emerging adults loneliness. Results can be discussed in the context of emerging adulthood theory.

Keywords: Personality, Big Five Traits, Loneliness, Turkish Emerging Adults

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813
332 Sequence-based Prediction of Gamma-turn Types using a Physicochemical Property-based Decision Tree Method

Authors: Chyn Liaw, Chun-Wei Tung, Shinn-Jang Ho, Shinn-Ying Ho

Abstract:

The γ-turns play important roles in protein folding and molecular recognition. The prediction and analysis of γ-turn types are important for both protein structure predictions and better understanding the characteristics of different γ-turn types. This study proposed a physicochemical property-based decision tree (PPDT) method to interpretably predict γ-turn types. In addition to the good prediction performance of PPDT, three simple and human interpretable IF-THEN rules are extracted from the decision tree constructed by PPDT. The identified informative physicochemical properties and concise rules provide a simple way for discriminating and understanding γ-turn types.

Keywords: Classification and regression tree (CART), γ-turn, Physicochemical properties, Protein secondary structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
331 Extreme Rainfall Frequency Analysis for Meteorological Sub-Division 4 of India Using L-Moments

Authors: Th. Arti Devi, Parthasarthi Choudhury

Abstract:

Extreme rainfall frequency analysis for Meteorological Sub-Division 4 of India was analyzed using L-moments approach. Serial Correlation and Mann Kendall tests were conducted for checking serially independent and stationarity of the observations. The discordancy measure for the sites was conducted to detect the discordant sites. The regional homogeneity was tested by comparing with 500 generated homogeneous regions using a 4 parameter Kappa distribution. The best fit distribution was selected based on ZDIST statistics and L-moments ratio diagram from the five extreme value distributions GPD, GLO, GEV, P3 and LP3. The LN3 distribution was selected and regional rainfall frequency relationship was established using index-rainfall procedure. A regional mean rainfall relationship was developed using multiple linear regression with latitude and longitude of the sites as variables.

Keywords: L-moments, ZDIST statistics, Serial correlation, Mann Kendall test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463
330 Factors Related to Teachers’ Analysis of Classroom Assessments

Authors: Hussain A. Alkharusi, Said S. Aldhafri, Hilal Z. Alnabhani, Muna Alkalbani

Abstract:

Analyzing classroom assessments is one of the responsibilities of the teacher. It aims improving teacher’s instruction and assessment as well as student learning. The present study investigated factors that might explain variation in teachers’ practices regarding analysis of classroom assessments. The factors considered in the investigation included gender, in-service assessment training, teaching load, teaching experience, knowledge in assessment, attitude towards quantitative aspects of assessment, and self-perceived competence in analyzing assessments. Participants were 246 in-service teachers in Oman. Results of a stepwise multiple linear regression analysis revealed that self-perceived competence was the only significant factor explaining the variance in teachers’ analysis of assessments. Implications for research and practice are discussed.

 

Keywords: Analysis of assessment, Classroom assessment, In-service teachers, Self-competence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
329 A Quantification Method of Attractiveness of Stations and an Estimation Method of Number of Passengers Taking into Consideration the Attractiveness of the Station

Authors: Naoya Ozaki, Takuya Watanabe, Ryosuke Matsumoto, Noriko Fukasawa

Abstract:

In the metropolitan areas in Japan, in many stations, shopping areas are set up, and escalators and elevators are installed to make the stations be barrier-free. Further, many areas around the stations are being redeveloped. Railway business operators want to know how much effect these circumstances have on attractiveness of the station or number of passengers using the station. So, we performed a questionnaire survey of the station users in the metropolitan areas for finding factors to affect the attractiveness of stations. Then, based on the analysis of the survey, we developed a method to quantitatively evaluate attractiveness of the stations. We also developed an estimation method for number of passengers based on combination of attractiveness of the station quantitatively evaluated and the residential and labor population around the station. Then, we derived precise linear regression models estimating the attractiveness of the station and number of passengers of the station.

Keywords: Attractiveness of the station, estimation method, number of passengers of the station, redevelopment around the station, renovation of the station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 904
328 A Statistical Approach for Predicting and Optimizing Depth of Cut in AWJ Machining for 6063-T6 Al Alloy

Authors: Farhad Kolahan, A. Hamid Khajavi

Abstract:

In this paper, a set of experimental data has been used to assess the influence of abrasive water jet (AWJ) process parameters in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. The effects of these input parameters are studied on depth of cut (h); one of most important characteristics of AWJ. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the AWJ process parameters. The objective is to determine a suitable set of process parameters that can produce a desired depth of cut, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.

Keywords: AWJ machining, Mathematical modeling, Simulated Annealing, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
327 Prediction of Soil Exchangeable Sodium Ratio Based on Soil Sodium Adsorption Ratio

Authors: M. Siosemarde, F. Kave, E. Pazira, H. Sedghi, S. J. Ghaderi

Abstract:

Researchers have long had trouble in measurement of Exchangeable Sodium Ratio (ESR) at salt-affected soils. this parameter are often determined using laborious and time consuming laboratory tests, but it may be more appropriate and economical to develop a method which uses a more simple soil salinity index. The aim of this study was to determine the relationship between exchangeable sodium ratio (ESR) and sodium adsorption ratio (SAR) in some salt-affected soils of Khuzestan plain. To this purpose, two experimental areas (S1, S2) of Khuzestan province-IRAN were selected and four treatments with three replications by series of double rings were applied. The treatments were included 25cm, 50cm, 75cm and 100cm water application. The statistical results of the study indicated that in order to predict soil ESR based on soil SAR the linear regression model ESR=0.2048+0.0066 SAR (R2=0.53) & ESR=0.0564+0.0171 SAR (R2=0.76) can be recommended in Pilot S1 and S2 respectively.

Keywords: exchangeable sodium ratio, Khuzestan plain, saltaffectedsoils and sodium adsorption ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3253
326 How Team Efficacy Beliefs Impact Project Performance: An Empirical Investigation of Team Potency in Capital Projects in the Process Industries

Authors: C. Scott-Young, D. Samson

Abstract:

Team efficacy beliefs show promise in enhancing team performance. Using a model-based quantitative research design, we investigated the antecedents and performance consequences of generalized team efficacy (potency) in a sample of 56 capital projects executed by 15 Fortune 500 companies in the process industries. Empirical analysis of our field survey identified that generalized team efficacy beliefs were positively associated with an objective measure of project cost performance. Regression analysis revealed that team competence, empowering leadership, and performance feedback all predicted generalized team efficacy beliefs. Tests of mediation revealed that generalized team efficacy fully mediated between these three inputs and project cost performance.

Keywords: Team efficacy, Potency, Leadership, Feedback, Project cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165