Search results for: Learning activities
1943 Boosting Method for Automated Feature Space Discovery in Supervised Quantum Machine Learning Models
Authors: Vladimir Rastunkov, Jae-Eun Park, Abhijit Mitra, Brian Quanz, Steve Wood, Christopher Codella, Heather Higgins, Joseph Broz
Abstract:
Quantum Support Vector Machines (QSVM) have become an important tool in research and applications of quantum kernel methods. In this work we propose a boosting approach for building ensembles of QSVM models and assess performance improvement across multiple datasets. This approach is derived from the best ensemble building practices that worked well in traditional machine learning and thus should push the limits of quantum model performance even further. We find that in some cases, a single QSVM model with tuned hyperparameters is sufficient to simulate the data, while in others - an ensemble of QSVMs that are forced to do exploration of the feature space via proposed method is beneficial.
Keywords: QSVM, Quantum Support Vector Machines, quantum kernel, boosting, ensemble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4391942 Fingers Exergames to Improve Fine Motor Skill in Autistic Children
Authors: Zulhisyam Salleh, Fizatul Aini Patakor, Rosilah Wahab, Awangku Khairul Ridzwan Awangku Jaya
Abstract:
Autism is a lifelong developmental disability that affects how people perceive the world and interact with others. Most of these children have difficulty with fine motor skills which typically struggle with handwriting and fine activities in their routine life such as getting dressed and controlled use of the everyday tool. Because fine motor activities encompass so many routine functions, a fine motor delay can have a measurable negative impact on a person's ability to handle daily practical tasks. This project proposed a simple fine motor exercise aid plus the game (exergame) for autistic children who discover from fine motor difficulties. The proposed exergame will be blinking randomly and user needs to bend their finger accordingly. It will notify the user, whether they bend the right finger or not. The system is realized using Arduino, which is programmed to control all the operated circuit. The feasibility studies with six autistic children were conducted and found the child interested in using exergame and could quickly get used to it. This study provides important guidance for future investigations of the exergame potential for accessing and improving fine motor skill among autistic children.
Keywords: Autism children, Arduino project, fine motor skill, finger exergame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7551941 Effect of Pack Aluminising Conditions on βNiAl Coatings
Authors: A. D. Chandio, P. Xiao
Abstract:
In this study, nickel aluminide coatings were deposited onto CMSX-4 single crystal superalloy and pure Ni substrates by using in-situ chemical vapour deposition (CVD) technique. The microstructural evolutions and coating thickness (CT) were studied upon the variation of processing conditions i.e. time and temperature. The results demonstrated (under identical conditions) that coating formed on pure Ni contains no substrate entrapments and have lower CT in comparison to one deposited on the CMSX-4 counterpart. In addition, the interdiffusion zone (IDZ) of Ni substrate is a γ’-Ni3Al in comparison to the CMSX-4 alloy that is βNiAl phase. The higher CT on CMSX-4 superalloy is attributed to presence of γ-Ni/γ’-Ni3Al structure which contains ~ 15 at.% Al before deposition (that is already present in superalloy). Two main deposition parameters (time and temperature) of the coatings were also studied in addition to standard comparison of substrate effects. The coating formation time was found to exhibit profound effect on CT, whilst temperature was found to change coating activities. In addition, the CT showed linear trend from 800 to 1000 °C, thereafter reduction was observed. This was attributed to the change in coating activities.
Keywords: βNiAl, in-situ CVD, CT, CMSX-4, Ni, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24131940 Determination of the Gain in Learning the Free-Fall Motion of Bodies by Applying the Resource of Previous Concepts
Authors: Ricardo Merlo
Abstract:
In this paper, we analyzed the different didactic proposals for teaching about the free fall motion of bodies available online. An important aspect was the interpretation of the direction and sense of the acceleration of gravity and of the falling velocity of a body, which is why we found different applications of the Cartesian reference system used and also different graphical presentations of the velocity as a function of time and of the distance traveled vertically by the body in the period of time that it was dropped from a height h0. In this framework, a survey of previous concepts was applied to a voluntary group of first-year university students of an Engineering degree before and after the development of the class of the subject in question. Then, Hake's index (0.52) was determined, which resulted in an average learning gain from the meaningful use of the reference system and the respective graphs of velocity versus time and height versus time.
Keywords: Didactic gain, free–fall, physics teaching, previous knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101939 Changes in Subjective and Objective Measures of Performance in Ramadan
Authors: H. Alabed, K. Abuzayan, J. Waterhouse
Abstract:
The Muslim faith requires individuals to fast between the hours of sunrise and sunset during the month of Ramadan. Our recent work has concentrated on some of the changes that take place during the daytime when fasting. A questionnaire was developed to assess subjective estimates of physical, mental and social activities, and fatigue. Four days were studied: in the weeks before and after Ramadan (control days) and during the first and last weeks of Ramadan (experimental days). On each of these four days, this questionnaire was given several times during the daytime and once after the fast had been broken and just before individuals retired at night. During Ramadan, daytime mental, physical and social activities all decreased below control values but then increased to abovecontrol values in the evening. The desires to perform physical and mental activities showed very similar patterns. That is, individuals tried to conserve energy during the daytime in preparation for the evenings when they ate and drank, often with friends. During Ramadan also, individuals were more fatigued in the daytime and napped more often than on control days. This extra fatigue probably reflected decreased sleep, individuals often having risen earlier (before sunrise, to prepare for fasting) and retired later (to enable recovery from the fast). Some physiological measures and objective measures of performance (including the response to a bout of exercise) have also been investigated. Urine osmolality fell during the daytime on control days as subjects drank, but rose in Ramadan to reach values at sunset indicative of dehydration. Exercise performance was also compromised, particularly late in the afternoon when the fast had lasted several hours. Self-chosen exercise work-rates fell and a set amount of exercise felt more arduous. There were also changes in heart rate and lactate accumulation in the blood, indicative of greater cardiovascular and metabolic stress caused by the exercise in subjects who had been fasting. Daytime fasting in Ramadan produces widespread effects which probably reflect combined effects of sleep loss and restrictions to intakes of water and food.Keywords: Drinking, Eating, Mental Performance, Physical Performance, Social Activity, Sleepiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471938 An Automatic Pipeline Monitoring System Based on PCA and SVM
Abstract:
This paper proposes a novel system for monitoring the health of underground pipelines. Some of these pipelines transport dangerous contents and any damage incurred might have catastrophic consequences. However, most of these damage are unintentional and usually a result of surrounding construction activities. In order to prevent these potential damages, monitoring systems are indispensable. This paper focuses on acoustically recognizing road cutters since they prelude most construction activities in modern cities. Acoustic recognition can be easily achieved by installing a distributed computing sensor network along the pipelines and using smart sensors to “listen" for potential threat; if there is a real threat, raise some form of alarm. For efficient pipeline monitoring, a novel monitoring approach is proposed. Principal Component Analysis (PCA) was studied and applied. Eigenvalues were regarded as the special signature that could characterize a sound sample, and were thus used for the feature vector for sound recognition. The denoising ability of PCA could make it robust to noise interference. One class SVM was used for classifier. On-site experiment results show that the proposed PCA and SVM based acoustic recognition system will be very effective with a low tendency for raising false alarms.Keywords: One class SVM, pipeline monitoring system, principal component analysis, sound recognition, third party damage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20181937 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15531936 Preliminary Survey on MATLAB Learning among Power Electronics Students in Technical Education: A Case Study
Authors: Muhammad Mujtaba Asad, Razali Bin Hassan, Fahad Sherwani, Insaf Ali Siming
Abstract:
This paper discusses about the findings of preliminary survey on MATLAB software learning among power electronics students. One of the main focuses of power electronics course is on DC to DC boost convertors, because boost convertors are generally used in different industrial and non industrial applications. Population samples of this study were randomly selected final year bachelor of electronics and electrical engineering students from University Tun Hussein Onn Malaysia (UTHM).As per the results from the survey questioner analysis, almost eighty percent students are facing problem and difficulties in Dc to Dc boost convertors experimental understanding without using MATLAB simulink package. As per finding of this study it is clear that MATLAB play an effective and efficient function for better understanding of boost convertors experimental work among power electronics learners.
Keywords: MATLAB, Simulation, Power Electronics, Experimental Work.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22151935 Cumulative Learning based on Dynamic Clustering of Hierarchical Production Rules(HPRs)
Authors: Kamal K.Bharadwaj, Rekha Kandwal
Abstract:
An important structuring mechanism for knowledge bases is building clusters based on the content of their knowledge objects. The objects are clustered based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity. Clustering can also facilitate taxonomy formation, that is, the organization of observations into a hierarchy of classes that group similar events together. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form Decision If < condition> Generality
Keywords: Cumulative learning, clustering, data mining, hierarchical production rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14391934 A Survey of Response Generation of Dialogue Systems
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.Keywords: Retrieval, generative, deep learning, response generation, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12041933 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall
Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.
Keywords: Building energy management, machine learning, simulation-based optimization, operation planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9901932 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.
Keywords: Industrial control systems, prey predator, SCADA, SDC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11761931 Correlation-based Feature Selection using Ant Colony Optimization
Authors: M. Sadeghzadeh, M. Teshnehlab
Abstract:
Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.
Keywords: Ant colony optimization, Classification, Datamining, Feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24201930 Academic Digital Library's Evaluation Criteria: User-Centered Approach
Authors: Razilan A. Kadir, Wan A. K. W. Dollah, Fatimah A. Saaid, S. Diljit
Abstract:
Academic digital libraries emerged as a result of advances in computing and information systems technologies, and had been introduced in universities and to public. As results, moving in parallel with current technology in learning and researching environment indeed offers myriad of advantages especially to students and academicians, as well as researchers. This is due to dramatic changes in learning environment through the use of digital library system which giving spectacular impact on these societies- way of performing their study/research. This paper presents a survey of current criteria for evaluating academic digital libraries- performance. The goal is to discuss criteria being applied so far for academic digital libraries evaluation in the context of user-centered design. Although this paper does not comprehensively take into account all previous researches in evaluating academic digital libraries but at least it can be a guide in understanding the evaluation criteria being widely applied.
Keywords: Academic digital libraries, evaluation criteria, performance, user-centered.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23711929 Mobile Collaboration Learning Technique on Students in Developing Nations
Authors: Amah Nnachi Lofty, Oyefeso Olufemi, Ibiam Udu Ama
Abstract:
New and more powerful communications technologies continue to emerge at a rapid pace and their uses in education are widespread and the impact remarkable in the developing societies. This study investigates Mobile Collaboration Learning Technique (MCLT) on learners’ outcome among students in tertiary institutions of developing nations (a case of Nigeria students). It examines the significance of retention achievement scores of students taught using mobile collaboration and conventional method. The sample consisted of 120 students using Stratified random sampling method. Five research questions and hypotheses were formulated, and tested at 0.05 level of significance. A student achievement test (SAT) was made of 40 items of multiple-choice objective type, developed and validated for data collection by professionals. The SAT was administered to students as pre-test and post-test. The data were analyzed using t-test statistic to test the hypotheses. The result indicated that students taught using MCLT performed significantly better than their counterparts using the conventional method of instruction. Also, there was no significant difference in the post-test performance scores of male and female students taught using MCLT. Based on the findings, the following submissions was made that: Mobile collaboration system be encouraged in the institutions to boost knowledge sharing among learners, workshop and training should be organized to train teachers on the use of this technique, schools and government should consistently align curriculum standard to trends of technological dictates and formulate policies and procedures towards responsible use of MCLT.Keywords: Education, communication, learning, mobile collaboration, technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141928 Improved Artificial Immune System Algorithm with Local Search
Authors: Ramin Javadzadeh., Zahra Afsahi, MohammadReza Meybodi
Abstract:
The Artificial immune systems algorithms are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Artificial Immune System Algorithm is introduced for the first time to overcome its problems of artificial immune system. That use of the small size of a local search around the memory antibodies is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the standard artificial immune system algorithmsKeywords: Artificial immune system, Cellular Automata, Cellular learning automata, Cellular learning automata, , Local search, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18931927 Learning a Song: an ACT-R Model
Authors: Belkacem Chikhaoui, Helene Pigot, Mathieu Beaudoin, Guillaume Pratte, Philippe Bellefeuille, Fernando Laudares
Abstract:
The way music is interpreted by the human brain is a very interesting topic, but also an intricate one. Although this domain has been studied for over a century, many gray areas remain in the understanding of music. Recent advances have enabled us to perform accurate measurements of the time taken by the human brain to interpret and assimilate a sound. Cognitive computing provides tools and development environments that facilitate human cognition simulation. ACT-R is a cognitive architecture which offers an environment for implementing human cognitive tasks. This project combines our understanding of the music interpretation by a human listener and the ACT-R cognitive architecture to build SINGER, a computerized simulation for listening and recalling songs. The results are similar to human experimental data. Simulation results also show how it is easier to remember short melodies than long melodies which require more trials to be recalled correctly.
Keywords: Computational model, cognitive modeling, simulation, learning, song, music.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671926 Training Engineering Students in Sustainable Development
Authors: Hoong C. Chin, Soon H. Chew, Zhaoxia Wang
Abstract:
Work on sustainable developments and the call for action in education for sustainable development have been ongoing for a number of years. Training engineering students with the relevant competencies, particularly in sustainable development literacy, has been identified as an urgent task in universities. This requires not only a holistic, multi-disciplinary approach to education but also a suitable training environment to develop the needed skills and to inculcate the appropriate attitudes in students towards sustainable development. To demonstrate how this can be done, a module involving an overseas field trip was introduced in 2013 at the National University of Singapore. This paper provides details of the module and describes its training philosophy and methods. Measured against the student learning outcomes, stipulated by the Engineering Accreditation Board, the module scored well on all of them, particularly those related to complex problem solving, environmental and sustainability awareness, multi-disciplinary team work and varied-level communications.Keywords: Civil engineering education, student learning outcomes, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14081925 Avoiding Catastrophic Forgetting by a Dual-Network Memory Model Using a Chaotic Neural Network
Authors: Motonobu Hattori
Abstract:
In neural networks, when new patterns are learned by a network, the new information radically interferes with previously stored patterns. This drawback is called catastrophic forgetting or catastrophic interference. In this paper, we propose a biologically inspired neural network model which overcomes this problem. The proposed model consists of two distinct networks: one is a Hopfield type of chaotic associative memory and the other is a multilayer neural network. We consider that these networks correspond to the hippocampus and the neocortex of the brain, respectively. Information given is firstly stored in the hippocampal network with fast learning algorithm. Then the stored information is recalled by chaotic behavior of each neuron in the hippocampal network. Finally, it is consolidated in the neocortical network by using pseudopatterns. Computer simulation results show that the proposed model has much better ability to avoid catastrophic forgetting in comparison with conventional models.
Keywords: catastrophic forgetting, chaotic neural network, complementary learning systems, dual-network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21021924 System Reliability by Prediction of Generator Output and Losses in a Competitive Energy Market
Authors: Perumal Nallagownden, Ravindra N. Mukerjee, Syafrudin Masri
Abstract:
In a competitive energy market, system reliability should be maintained at all times. Power system operation being of online in nature, the energy balance requirements must be satisfied to ensure reliable operation the system. To achieve this, information regarding the expected status of the system, the scheduled transactions and the relevant inputs necessary to make either a transaction contract or a transmission contract operational, have to be made available in real time. The real time procedure proposed, facilitates this. This paper proposes a quadratic curve learning procedure, which enables a generator-s contribution to the retailer demand, power loss of transaction in a line at the retail end and its associated losses for an oncoming operating scenario to be predicted. Matlab program was used to test in on a 24-bus IEE Reliability Test System, and the results are found to be acceptable.Keywords: Deregulation, learning coefficients, reliability, prediction, competitive energy market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14781923 Using a Semantic Self-Organising Web Page-Ranking Mechanism for Public Administration and Education
Authors: Marios Poulos, Sozon Papavlasopoulos, V. S. Belesiotis
Abstract:
In the proposed method for Web page-ranking, a novel theoretic model is introduced and tested by examples of order relationships among IP addresses. Ranking is induced using a convexity feature, which is learned according to these examples using a self-organizing procedure. We consider the problem of selforganizing learning from IP data to be represented by a semi-random convex polygon procedure, in which the vertices correspond to IP addresses. Based on recent developments in our regularization theory for convex polygons and corresponding Euclidean distance based methods for classification, we develop an algorithmic framework for learning ranking functions based on a Computational Geometric Theory. We show that our algorithm is generic, and present experimental results explaining the potential of our approach. In addition, we explain the generality of our approach by showing its possible use as a visualization tool for data obtained from diverse domains, such as Public Administration and Education.Keywords: Computational Geometry, Education, e-Governance, Semantic Web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17581922 Connectionist Approach to Generic Text Summarization
Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad
Abstract:
As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15911921 Exploration and Exploitation within Operations
Authors: D. Gåsvaer, L. Stålberg, A. Fundin, M. Jackson, P. Johansson
Abstract:
Exploration and exploitation capabilities are both important within Operations as means for improvement when managed separately, and for establishing dynamic improvement capabilities when combined in balance. However, it is unclear what exploration and exploitation capabilities imply in improvement and development work within an Operations context. So, in order to better understand how to develop exploration and exploitation capabilities within Operations, the main characteristics of these constructs needs to be identified and further understood. Thus, the objective of this research is to increase the understanding about exploitation and exploration characteristics, to concretize what they translates to within the context of improvement and development work in an Operations unit, and to identify practical challenges. A literature review and a case study are presented. In the literature review, different interpretations of exploration and exploitation are portrayed, key characteristics have been identified, and a deepened understanding of exploration and exploitation characteristics is described. The case in the study is an Operations unit, and the aim is to explore to what extent and in what ways exploration and exploitation activities are part of the improvement structures and processes. The contribution includes an identification of key characteristics of exploitation and exploration, as well as an interpretation of the constructs. Further, some practical challenges are identified. For instance, exploration activities tend to be given low priority, both in daily work as in the manufacturing strategy. Also, the overall understanding about the concepts of exploitation and exploration (or any similar aspect of dynamic improvement capabilities) is very low.Keywords: Exploitation, Exploration, Improvement, Lean production, Manufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26161920 The Role of Knowledge Management in Innovation: Spanish Evidence
Authors: María Jesús Luengo-Valderrey, Mónica Moso-Díez
Abstract:
In the knowledge-based economy, innovation is considered essential in order to achieve survival and growth in organizations. On the other hand, knowledge management is currently understood as one of the keys to innovation process. Both factors are generally admitted as generators of competitive advantage in organizations. Specifically, activities on R&D&I and those that generate internal knowledge have a positive influence in innovation results. This paper examines this effect and if it is similar or not is what we aimed to quantify in this paper. We focus on the impact that proportion of knowledge workers, the R&D&I investment, the amounts destined for ICTs and training for innovation have on the variation of tangible and intangibles returns for the sector of high and medium technology in Spain. To do this, we have performed an empirical analysis on the results of questionnaires about innovation in enterprises in Spain, collected by the National Statistics Institute. First, using clusters methodology, the behavior of these enterprises regarding knowledge management is identified. Then, using SEM methodology, we performed, for each cluster, the study about cause-effect relationships among constructs defined through variables, setting its type and quantification. The cluster analysis results in four groups in which cluster number 1 and 3 presents the best performance in innovation with differentiating nuances among them, while clusters 2 and 4 obtained divergent results to a similar innovative effort. However, the results of SEM analysis for each cluster show that, in all cases, knowledge workers are those that affect innovation performance most, regardless of the level of investment, and that there is a strong correlation between knowledge workers and investment in knowledge generation. The main findings reached is that Spanish high and medium technology companies improve their innovation performance investing in internal knowledge generation measures, specially, in terms of R&D activities, and underinvest in external ones. This, and the strong correlation between knowledge workers and the set of activities that promote the knowledge generation, should be taken into account by managers of companies, when making decisions about their investments for innovation, since they are key for improving their opportunities in the global market.
Keywords: High and medium technology sector, innovation, knowledge management, Spanish companies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21981919 Federalism and Foreign Affairs: The International Relations of Mexican Sub-State Governments
Authors: Jorge A. Schiavon
Abstract:
This article analyzes the international relations of sub-State governments (IRSSG) in Mexico. It aims to answer five questions: 1) What explains the recent and dramatic increase in their international activities? 2) What is the impact of federalism on the foreign affairs of the federal units? 3) What are the levels or degrees of IRSSG and how have they changed over the last years? 4) How do Mexican federal units institutionalize their international activities? 5) What are the perceptions and capacities of the federal units in their internationalization process? The first section argues that the growth in the IRSSG is generated by growing interdependence and globalization in the international system, and democratization, decentralization and structural reform in the national arena. The second section sustains that the renewed Mexican federalism has generated the incentives for SSG to participate more intensively in international affairs. The third section defends that there is a wide variation in their degree of international participation, which is measured in three moments in time (2004 2009 and 2014), and explains how this activity has changed in the last decade. The fourth section studies the institutionalization of the IRSSG in Mexico through the analysis of Inter-Institutional Agreements (IIA). Finally, the last section concentrates in explaining the perceptions and capacities of Mexican sub-State governments to conduct international relations.
Keywords: Federalism, foreign policy, international relations of sub-state governments, paradiplomacy, Mexico.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9921918 Prioritizing Influential Factors on the Promotion of Virtual Training System
Authors: Nader Gharibnavaz, Mostafa Mosadeghi, Naser Gharibnavaz
Abstract:
In today's world where everything is rapidly changing and information technology is high in development, many features of culture, society, politic and economy has changed. The advent of information technology and electronic data transmission lead to easy communication and fields like e-learning and e-commerce, are accessible for everyone easily. One of these technologies is virtual training. The "quality" of such kind of education systems is critical. 131 questionnaires were prepared and distributed among university student in Toba University. So the research has followed factors that affect the quality of learning from the perspective of staff, students, professors and this type of university. It is concluded that the important factors in virtual training are the quality of professors, the quality of staff, and the quality of the university. These mentioned factors were the most prior factors in this education system and necessary for improving virtual training.Keywords: Training , Virtual Training, Strategic Positioning, Positioning Mapping, Unique Selling Proposition, Strong Brands, Indoors industry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14731917 Knowledge Sharing Behavior and Cognitive Dissonance: The Influence of Assertive Conflict Management Strategy and Team Psychological Safety
Authors: Matthew P. Mancini, Vincent Ribiere
Abstract:
Today’s workers face more numerous and complex challenges and are required to be increasingly interdependent and faster learners. Knowledge sharing activities between people have been understood as a significant element affecting organizational innovation performance. While they do have the potential to spark cognitive conflict, disagreement is important from an organizational perspective because it can stimulate the development of new ideas and perhaps pave the way for creativity, innovation, and competitive advantage. How teams cope with the cognitive conflict dimension of knowledge sharing and the associated interpersonal risk is what captures our attention. Specifically, assertive conflict management strategies have a positive influence on knowledge sharing behaviors, and team psychological safety has a positive influence on knowledge sharing intention. This paper focuses on explaining the impact that these factors have on the shaping of an individual’s decision to engage or not in knowledge sharing activities. To accomplish this, we performed an empirical analysis on the results of our questionnaire about knowledge-sharing related conflict management and team psychological safety in pharmaceutical enterprises located in North America, Europe, and Asia. First, univariate analysis is used to characterize behavior regarding conflict management strategy into two groups. Group 1 presents assertive conflict management strategies and group 2 shows unassertive ones. Then, by using SEM methodology, we evaluated the relationships between them and the team psychological safety construct with the knowledge sharing process. The results of the SEM analysis show that assertive conflict management strategies affect the knowledge sharing process the most with a small, but significant effect from team psychological safety. The findings suggest that assertive conflict management strategies are just as important as knowledge sharing intentions for encouraging knowledge sharing behavior. This paper provides clear insights into how employees manage the sharing of their knowledge in the face of conflict and interpersonal risk and the relative importance of these factors in sustaining productive knowledge sharing activities.
Keywords: Cognitive dissonance, conflict management, knowledge sharing, organizational behavior, psychological safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841916 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.
Keywords: Intelligent transportation systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471915 Machine Vision System for Automatic Weeding Strategy in Oil Palm Plantation using Image Filtering Technique
Authors: Kamarul Hawari Ghazali, Mohd. Marzuki Mustafa, Aini Hussain
Abstract:
Machine vision is an application of computer vision to automate conventional work in industry, manufacturing or any other field. Nowadays, people in agriculture industry have embarked into research on implementation of engineering technology in their farming activities. One of the precision farming activities that involve machine vision system is automatic weeding strategy. Automatic weeding strategy in oil palm plantation could minimize the volume of herbicides that is sprayed to the fields. This paper discusses an automatic weeding strategy in oil palm plantation using machine vision system for the detection and differential spraying of weeds. The implementation of vision system involved the used of image processing technique to analyze weed images in order to recognized and distinguished its types. Image filtering technique has been used to process the images as well as a feature extraction method to classify the type of weed images. As a result, the image processing technique contributes a promising result of classification to be implemented in machine vision system for automated weeding strategy.Keywords: Machine vision, Automatic Weeding Strategy, filter, feature extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18671914 Virtual Reality Classrooms Strategies for Creating a Social Presence
Authors: Elizabeth M. Hodge, M.H.N. Tabrizi, Mary A. Farwell, Karl L. Wuensch
Abstract:
Delivering course material via a virtual environment is beneficial to today-s students because it offers the interactivity, real-time interaction and social presence that students of all ages have come to accept in our gaming rich community. It is essential that the Net Generation also known as Generation Why, have exposure to learning communities that encompass interactivity to form social and educational connections. As student and professor become interconnected through collaboration and interaction in a virtual learning space, relationships develop and students begin to take on an individual identity. With this in mind the research project was developed to investigate the use of virtual environments on student satisfaction and the effectiveness of course delivery. Furthermore, the project was designed to integrate both interactive (real-time) classes conducted in the Virtual Reality (VR) environment while also creating archived VR sessions for student use in retaining and reviewing course content.Keywords: Virtual Reality, Social Presence, Virtual Environments, Course Delivery Methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915