Search results for: Finite State Machine.
3250 Genetic Algorithm Application in a Dynamic PCB Assembly with Carryover Sequence- Dependent Setups
Authors: M. T. Yazdani Sabouni, Rasaratnam Logendran
Abstract:
We consider a typical problem in the assembly of printed circuit boards (PCBs) in a two-machine flow shop system to simultaneously minimize the weighted sum of weighted tardiness and weighted flow time. The investigated problem is a group scheduling problem in which PCBs are assembled in groups and the interest is to find the best sequence of groups as well as the boards within each group to minimize the objective function value. The type of setup operation between any two board groups is characterized as carryover sequence-dependent setup time, which exactly matches with the real application of this problem. As a technical constraint, all of the boards must be kitted before the assembly operation starts (kitting operation) and by kitting staff. The main idea developed in this paper is to completely eliminate the role of kitting staff by assigning the task of kitting to the machine operator during the time he is idle which is referred to as integration of internal (machine) and external (kitting) setup times. Performing the kitting operation, which is a preparation process of the next set of boards while the other boards are currently being assembled, results in the boards to continuously enter the system or have dynamic arrival times. Consequently, a dynamic PCB assembly system is introduced for the first time in the assembly of PCBs, which also has characteristics similar to that of just-in-time manufacturing. The problem investigated is computationally very complex, meaning that finding the optimal solutions especially when the problem size gets larger is impossible. Thus, a heuristic based on Genetic Algorithm (GA) is employed. An example problem on the application of the GA developed is demonstrated and also numerical results of applying the GA on solving several instances are provided.Keywords: Genetic algorithm, Dynamic PCB assembly, Carryover sequence-dependent setup times, Multi-objective.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15693249 Current Status of Industry 4.0 in Material Handling Automation and In-house Logistics
Authors: Orestis Κ. Efthymiou, Stavros T. Ponis
Abstract:
In the last decade, a new industrial revolution seems to be emerging, supported -once again- by the rapid advancements of Information Technology in the areas of Machine-to-Machine (M2M) communication permitting large numbers of intelligent devices, e.g. sensors to communicate with each other and take decisions without any or minimum indirect human intervention. The advent of these technologies have triggered the emergence of a new category of hybrid (cyber-physical) manufacturing systems, combining advanced manufacturing techniques with innovative M2M applications based on the Internet of Things (IoT), under the umbrella term Industry 4.0. Even though the topic of Industry 4.0 has attracted much attention during the last few years, the attempts of providing a systematic literature review of the subject are scarce. In this paper, we present the authors’ initial study of the field with a special focus on the use and applications of Industry 4.0 principles in material handling automations and in-house logistics. Research shows that despite the vivid discussion and attractiveness of the subject, there are still many challenges and issues that have to be addressed before Industry 4.0 becomes standardized and widely applicable.Keywords: Industry 4.0, internet of things, manufacturing systems, material handling, logistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16583248 Nonlinear Structural Behavior of Micro- and Nano-Actuators Using the Galerkin Discretization Technique
Authors: Hassen M. Ouakad
Abstract:
In this paper, the influence of van der Waals, as well as electrostatic forces on the structural behavior of MEMS and NEMS actuators, has been investigated using of a Euler-Bernoulli beam continuous model. In the proposed nonlinear model, the electrostatic fringing-fields and the mid-plane stretching (geometric nonlinearity) effects have been considered. The nonlinear integro-differential equation governing the static structural behavior of the actuator has been derived. An original Galerkin-based reduced-order model has been developed to avoid problems arising from the nonlinearities in the differential equation. The obtained reduced-order model equations have been solved numerically using the Newton-Raphson method. The basic design parameters such as the pull-in parameters (voltage and deflection at pull-in), as well as the detachment length due to the van der Waals force of some investigated micro- and nano-actuators have been calculated. The obtained numerical results have been compared with some other existing methods (finite-elements method and finite-difference method) and the comparison showed good agreement among all assumed numerical techniques.
Keywords: MEMS, NEMS, fringing-fields, mid-plane stretching, Galerkin method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14453247 Identification of Arousal and Relaxation by using SVM-Based Fusion of PPG Features
Authors: Chi Jung Kim, Mincheol Whang, Eui Chul Lee
Abstract:
In this paper, we propose a new method to distinguish between arousal and relaxation states by using multiple features acquired from a photoplethysmogram (PPG) and support vector machine (SVM). To induce arousal and relaxation states in subjects, 2 kinds of sound stimuli are used, and their corresponding biosignals are obtained using the PPG sensor. Two features–pulse to pulse interval (PPI) and pulse amplitude (PA)–are extracted from acquired PPG data, and a nonlinear classification between arousal and relaxation is performed using SVM. This methodology has several advantages when compared with previous similar studies. Firstly, we extracted 2 separate features from PPG, i.e., PPI and PA. Secondly, in order to improve the classification accuracy, SVM-based nonlinear classification was performed. Thirdly, to solve classification problems caused by generalized features of whole subjects, we defined each threshold according to individual features. Experimental results showed that the average classification accuracy was 74.67%. Also, the proposed method showed the better identification performance than the single feature based methods. From this result, we confirmed that arousal and relaxation can be classified using SVM and PPG features.Keywords: Support Vector Machine, PPG, Emotion Recognition, Arousal, Relaxation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24843246 Study on the Effect of Bolt Locking Method on the Deformation of Bipolar Plate in PEMFC
Authors: Tao Chen, ShiHua Liu, JiWei Zhang
Abstract:
Assembly of the proton exchange membrane fuel cells (PEMFC) has a very important influence on its performance and efficiency. The various components of PEMFC stack are usually locked and fixed by bolts. Locking bolt will cause the deformation of the bipolar plate and the other components, which will affect directly the deformation degree of the integral parts of the PEMFC as well as the performance of PEMFC. This paper focuses on the object of three-cell stack of PEMFC. Finite element simulation is used to investigate the deformation of bipolar plate caused by quantity and layout of bolts, bolt locking pressure, and bolt locking sequence, etc. Finally, we made a conclusion that the optimal combination packaging scheme was adopted to assemble the fuel cell stack. The scheme was in use of 3.8 MPa locking pressure imposed on the fuel cell stack, type Ⅱ of four locking bolts and longitudinal locking method. The scheme was obtained by comparatively analyzing the overall displacement contour of PEMFC stack, absolute displacement curve of bipolar plate along the given three paths in the Z direction and the polarization curve of fuel cell. The research results are helpful for the fuel cell stack assembly.
Keywords: Bipolar plate, deformation, finite element simulation, fuel cell, locking bolt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8343245 The Analysis of Radial/Axial Error Motion on a Precision Rotation Stage
Authors: Jinho Kim, Dongik Shin, Deokwon Yun, Changsoo Han
Abstract:
Rotating stages in semiconductor, display industry and many other fields require challenging accuracy to perform their functions properly. Especially, Axis of rotation error on rotary system is significant; such as the spindle error motion of the aligner, wire bonder and inspector machine which result in the poor state of manufactured goods. To evaluate and improve the performance of such precision rotary stage, unessential movements on the other 5 degrees of freedom of the rotary stage must be measured and analyzed. In this paper, we have measured the three translations and two tilt motions of a rotating stage with high precision capacitive sensors. To obtain the radial error motion from T.I.R (Total Indicated Reading) of radial direction, we have used Donaldson's reversal technique. And the axial components of the spindle tilt error motion can be obtained accurately from the axial direction outputs of sensors by Estler face motion reversal technique. Further more we have defined and measured the sensitivity of positioning error to the five error motions.Keywords: Donaldson's reversal methods, Estler face motionreversal method, Error motion, sensitivity, T.I.R (Total IndicatedReading).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35433244 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance
Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang
Abstract:
In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.
Keywords: Optimal linear quadratic tracker, proportional plus integral observer, state estimator, disturbance estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12933243 Some Applications of Transition Matrices via Eigen Values
Authors: Adil AL-Rammahi
Abstract:
In this short paper, new properties of transition matrix were introduced. Eigen values for small order transition matrices are calculated in flexible method. For benefit of these properties applications of these properties were studied in the solution of Markov's chain via steady state vector, and information theory via channel entropy. The implemented test examples were promised for usages.
Keywords: Eigen value problem, transition matrix, state vector, information theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26683242 Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations
Authors: Sidharth Talan, Sanjay Kumar Sharma, Eoin Joseph Wallace, Nikita Agrawal
Abstract:
Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them.
Keywords: Process map, drilling loss matrix, availability, utilization, productivity, percussion rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10893241 Tuning Cubic Equations of State for Supercritical Water Applications
Authors: Shyh-Ming Chern
Abstract:
Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and reasonable accuracy, are normally fitted to vapor-liquid equilibrium P-v-T data. As a result, they often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS’s around the critical area has been examined against the P-v-T data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating P-v-T data of the supercritical region into the retuning of a cubic EoS can improve its performance at and above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new F of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.
Keywords: Equation of state, EoS, supercritical water, SCW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20263240 Color Image Segmentation Using SVM Pixel Classification Image
Authors: K. Sakthivel, R. Nallusamy, C. Kavitha
Abstract:
The goal of image segmentation is to cluster pixels into salient image regions. Segmentation could be used for object recognition, occlusion boundary estimation within motion or stereo systems, image compression, image editing, or image database lookup. In this paper, we present a color image segmentation using support vector machine (SVM) pixel classification. Firstly, the pixel level color and texture features of the image are extracted and they are used as input to the SVM classifier. These features are extracted using the homogeneity model and Gabor Filter. With the extracted pixel level features, the SVM Classifier is trained by using FCM (Fuzzy C-Means).The image segmentation takes the advantage of both the pixel level information of the image and also the ability of the SVM Classifier. The Experiments show that the proposed method has a very good segmentation result and a better efficiency, increases the quality of the image segmentation compared with the other segmentation methods proposed in the literature.
Keywords: Image Segmentation, Support Vector Machine, Fuzzy C–Means, Pixel Feature, Texture Feature, Homogeneity model, Gabor Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67473239 Adsorption of H2 and CO on Iron-based Catalysts for Fischer-Tropsch Synthesis
Authors: Weixin Qian, Haitao Zhang, Hongfang Ma, Yongdi Liu, Weiyong Ying, Dingye Fang
Abstract:
The adsorption properties of CO and H2 on iron-based catalyst with addition of Zr and Ni were investigated using temperature programmed desorption process. It was found that on the carburized iron-based catalysts, molecular state and dissociative state CO existed together. The addition of Zr was preferential for the molecular state adsorption of CO on iron-based catalyst and the presence of Ni was beneficial to the dissociative adsorption of CO. On H2 reduced catalysts, hydrogen mainly adsorbs on the surface iron sites and surface oxide sites. On CO reduced catalysts, hydrogen probably existed as the most stable CH and OH species. The addition of Zr was not benefit to the dissociative adsorption of hydrogen on iron-based catalyst and the presence of Ni was preferential for the dissociative adsorption of hydrogen.Keywords: adsorption, Fischer-Tropsch synthesis, iron-based catalysts
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25783238 An Integrated Cloud Service of Application Delivery in Virtualized Environments
Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang
Abstract:
Virtualization technologies are experiencing a renewed interest as a way to improve system reliability, and availability, reduce costs, and provide flexibility. This paper presents the development on leverage existing cloud infrastructure and virtualization tools. We adopted some virtualization technologies which improve portability, manageability and compatibility of applications by encapsulating them from the underlying operating system on which they are executed. Given the development of application virtualization, it allows shifting the user’s applications from the traditional PC environment to the virtualized environment, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the platform maintenances and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible and web-based application virtualization service represents the next significant step to the mobile workplace, and it lets user executes their applications from virtually anywhere.Keywords: Cloud service, application virtualization, virtual machine, elastic environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9523237 Three-dimensional Finite Element Analysis of the Front Cross Member of the Peugeot 405
Authors: Kh.Farhangdoust, H.Kamankesh
Abstract:
Undoubtedly, chassis is one of the most important parts of a vehicle. Chassis that today are produced for vehicles are made up of four parts. These parts are jointed together by screwing. Transverse parts are called cross member. This study reviews the stress generated by cyclic laboratory loads in front cross member of Peugeot 405. In this paper the finite element method is used to simulate the welding process and to determine the physical response of the spot-welded joints. Analysis is done by the Abaqus software. The Stresses generated in cross member structure are generally classified into two groups: The stresses remained in form of residual stresses after welding process and the mechanical stress generated by cyclic load. Accordingly the total stress must be obtained by determining residual stress and mechanical stress separately and then sum them according to the superposition principle. In order to improve accuracy, material properties including physical, thermal and mechanical properties were supposed to be temperature-dependent. Simulation shows that maximum Von Misses stresses are located at special points. The model results are then compared to the experimental results which are reported by producing factory and good agreement is observed.Keywords: Chassis, cross member, residual stress, resistancespot weld.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16103236 Investigation of Boll Properties on Cotton Picker Machine Performance
Authors: Shahram Nowrouzieh, Abbas Rezaei Asl, Mohamad Ali Jafari
Abstract:
Cotton, as a strategic crop, plays an important role in providing human food and clothing need, because of its oil, protein, and fiber. Iran has been one of the largest cotton producers in the world in the past, but unfortunately, for economic reasons, its production is reduced now. One of the ways to reduce the cost of cotton production is to expand the mechanization of cotton harvesting. Iranian farmers do not accept the function of cotton harvesters. One reason for this lack of acceptance of cotton harvesting machines is the number of field losses on these machines. So, the majority of cotton fields are harvested by hand. Although the correct setting of the harvesting machine is very important in the cotton losses, the morphological properties of the cotton plant also affect the performance of cotton harvesters. In this study, the effect of some cotton morphological properties such as the height of the cotton plant, number, and length of sympodial and monopodial branches, boll dimensions, boll weight, number of carpels and bracts angle were evaluated on the performance of cotton picker. In this research, the efficiency of John Deere 9920 spindle Cotton picker is investigated on five different Iranian cotton cultivars. The results indicate that there was a significant difference between the five cultivars in terms of machine harvest efficiency. Golestan cultivar showed the best cotton harvester performance with an average of 87.6% of total harvestable seed cotton and Khorshid cultivar had the least cotton harvester performance. The principal component analysis showed that, at 50.76% probability, the cotton picker efficiency is affected by the bracts angle positively and by boll dimensions, the number of carpels and the height of cotton plants negatively. The seed cotton remains (in the plant and on the ground) after harvester in PCA scatter plot were in the same zone with boll dimensions and several carpels.
Keywords: Cotton, bract, harvester, carpel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7113235 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation
Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril
Abstract:
This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.
Keywords: Cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8473234 Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm
Authors: S.C.Swain, A.K.Balirsingh, S. Mahapatra, S. Panda
Abstract:
This paper presents a systematic approach for designing Static Synchronous Series Compensator (SSSC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.Keywords: Low frequency Oscillations, Phase CompensationTechnique, Real Coded Genetic Algorithm, Single-machine InfiniteBus Power System, Static Synchronous Series Compensator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25023233 Machine Translation Analysis of Chinese Dish Names
Authors: Xinyu Zhang, Olga Torres-Hostench
Abstract:
This article presents a comparative study evaluating and comparing the quality of machine translation (MT) output of Chinese gastronomy nomenclature. Chinese gastronomic culture is experiencing an increased international acknowledgment nowadays. The nomenclature of Chinese gastronomy not only reflects a specific aspect of culture, but it is related to other areas of society such as philosophy, traditional medicine, etc. Chinese dish names are composed of several types of cultural references, such as ingredients, colors, flavors, culinary techniques, cooking utensils, toponyms, anthroponyms, metaphors, historical tales, among others. These cultural references act as one of the biggest difficulties in translation, in which the use of translation techniques is usually required. Regarding the lack of Chinese food-related translation studies, especially in Chinese-Spanish translation, and the current massive use of MT, the quality of the MT output of Chinese dish names is questioned. Fifty Chinese dish names with different types of cultural components were selected in order to complete this study. First, all of these dish names were translated by three different MT tools (Google Translate, Baidu Translate and Bing Translator). Second, a questionnaire was designed and completed by 12 Chinese online users (Chinese graduates of a Hispanic Philology major) in order to find out user preferences regarding the collected MT output. Finally, human translation techniques were observed and analyzed to identify what translation techniques would be observed more often in the preferred MT proposals. The result reveals that the MT output of the Chinese gastronomy nomenclature is not of high quality. It would be recommended not to trust the MT in occasions like restaurant menus, TV culinary shows, etc. However, the MT output could be used as an aid for tourists to have a general idea of a dish (the main ingredients, for example). Literal translation turned out to be the most observed technique, followed by borrowing, generalization and adaptation, while amplification, particularization and transposition were infrequently observed. Possibly because that the MT engines at present are limited to relate equivalent terms and offer literal translations without taking into account the whole context meaning of the dish name, which is essential to the application of those less observed techniques. This could give insight into the post-editing of the Chinese dish name translation. By observing and analyzing translation techniques in the proposals of the machine translators, the post-editors could better decide which techniques to apply in each case so as to correct mistakes and improve the quality of the translation.Keywords: Chinese dish names, cultural references, machine translation, translation techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13393232 Improvement in Power Transformer Intelligent Dissolved Gas Analysis Method
Authors: S. Qaedi, S. Seyedtabaii
Abstract:
Non-Destructive evaluation of in-service power transformer condition is necessary for avoiding catastrophic failures. Dissolved Gas Analysis (DGA) is one of the important methods. Traditional, statistical and intelligent DGA approaches have been adopted for accurate classification of incipient fault sources. Unfortunately, there are not often enough faulty patterns required for sufficient training of intelligent systems. By bootstrapping the shortcoming is expected to be alleviated and algorithms with better classification success rates to be obtained. In this paper the performance of an artificial neural network, K-Nearest Neighbour and support vector machine methods using bootstrapped data are detailed and shown that while the success rate of the ANN algorithms improves remarkably, the outcome of the others do not benefit so much from the provided enlarged data space. For assessment, two databases are employed: IEC TC10 and a dataset collected from reported data in papers. High average test success rate well exhibits the remarkable outcome.Keywords: Dissolved gas analysis, Transformer incipient fault, Artificial Neural Network, Support Vector Machine (SVM), KNearest Neighbor (KNN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27393231 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.
Keywords: Artificial Neural Networks, ANNs, classifier algorithms, credit risk assessment, logistic regression, machine learning, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12813230 Evaluating the Durability and Safety of Lithium-Ion Batteries in High-Temperature Desert Climates
Authors: Kenza Maher, Yahya Zakaria, Noora S. Al-Jaidah
Abstract:
Temperature is a critical parameter for lithium-ion battery performance, life, and safety. In this study, four commercially available 18650 lithium-ion cells from four different manufacturers are subjected to accelerated cycle aging for up to 500 cycles at two different temperatures (25 °C and 45 °C). The cells are also calendar-aged at the same temperatures in both charged and discharged states for six months to investigate the effect of aging and temperature on capacity fade and state of health. The results showed that all battery cells demonstrated good cyclability and had a good state of health at both temperatures. However, the capacity loss and state of health of these cells are found to be dependent on the cell chemistry and aging conditions, including temperature. Specifically, the capacity loss is found to be higher at the higher aging temperature, indicating the significant impact of temperature on the aging of lithium-ion batteries.
Keywords: Lithium-ion battery, aging mechanisms, cycle aging, calendar aging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063229 Elman Neural Network for Diagnosis of Unbalance in a Rotor-Bearing System
Authors: S. Sendhilkumar, N. Mohanasundaram, M. Senthilkumar, S. N. Sivanandam
Abstract:
The operational life of rotating machines has to be extended using a predictive condition maintenance tool. Among various condition monitoring techniques, vibration analysis is most widely used technique in industry. Signals are extracted for evaluating the condition of machine; further diagnostics is carried out with detected signals to extend the life of machine. With help of detected signals, further interpretations are done to predict the occurrence of defects. To study the problem of defects, a test rig with various possibilities of defects is constructed and experiments are performed considering the unbalanced condition. Further, this paper presents an approach for fault diagnosis of unbalance condition using Elman neural network and frequency-domain vibration analysis. Amplitudes with variation in acceleration are fed to Elman neural network to classify fault or no-fault condition. The Elman network is trained, validated and tested with experimental readings. Results illustrate the effectiveness of Elman network in rotor-bearing system.Keywords: Elman neural network, fault detection, rotating machines, unbalance, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14703228 Effect of Unbound Granular Materials Nonlinear Resilient Behavior on Pavement Response and Performance of Low Volume Roads
Authors: K. Sandjak, B. Tiliouine
Abstract:
Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behavior of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behavior of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by Falling Weight Deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated.
Keywords: Nonlinear resilient behavior, unbound granular materials, RLT test results, FWD backcalculations, finite element simulations, pavement response and performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22933227 Design and Analysis of Fault Tolerate feature of n-Phase Induction Motor Drive
Authors: G. Renuka Devi
Abstract:
This paper presents design and analysis of fault tolerate feature of n-phase induction motor drive. The n-phase induction motor (more than 3-phases) has a number of advantages over conventional 3-phase induction motor, it has low torque pulsation with increased torque density, more fault tolerant feature, low current ripple with increased efficiency. When increasing the number of phases, it has reduced current per phase without increasing per phase voltage, resulting in an increase in the total power rating of n-phase motors in the same volume machine. In this paper, the theory of operation of a multi-phase induction motor is discussed. The detailed study of d-q modeling of n-phase induction motors is elaborated. The d-q model of n-phase (5, 6, 7, 9 and 12) induction motors is developed in a MATLAB/Simulink environment. The steady state and dynamic performance of the multi-phase induction motor is studied under varying load conditions. Comparison of 5-phase induction is presented under normal and fault conditions.
Keywords: d-q model, dynamic Response, fault tolerant feature, matlab/simulink, multi-phase induction motor, transient response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5783226 Influence of Optical Fluence Distribution on Photoacoustic Imaging
Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim
Abstract:
Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.
Keywords: Finite Element Method, Fluence Distribution, Monte Carlo Method, Photoacoustic Imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26803225 Numerical Simulation of Heating Characteristics in a Microwave T-Prong Antenna for Cancer Therapy
Authors: M. Chaichanyut, S. Tungjitkusolmun
Abstract:
This research is presented with microwave (MW) ablation by using the T-Prong monopole antennas. In the study, three-dimensional (3D) finite-element methods (FEM) were utilized to analyse: the tissue heat flux, temperature distributions (heating pattern) and volume destruction during MW ablation in liver cancer tissue. The configurations of T-Prong monopole antennas were considered: Three T-prong antenna, Expand T-Prong antenna and Arrow T-Prong antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The microwave power deliveries were 10 W; the duration of ablation in all cases was 300s. Our numerical result, heat flux and the hotspot occurred at the tip of the T-prong antenna for all cases. The temperature distribution pattern of all antennas was teardrop. The Arrow T-Prong antenna can induce the highest temperature within cancer tissue. The microwave ablation was successful when the region where the temperatures exceed 50°C (i.e. complete destruction). The Expand T-Prong antenna could complete destruction the liver cancer tissue was maximized (6.05 cm3). The ablation pattern or axial ratio (Widest/length) of Expand T-Prong antenna and Arrow T-Prong antenna was 1, but the axial ratio of Three T-prong antenna of about 1.15.Keywords: Liver cancer, T-Prong antenna, Finite element, Microwave ablation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14293224 Numerical Investigation on Optimizing Fatigue Life in a Lap Joint Structure
Authors: P. Zamani, S. Mohajerzadeh, R. Masoudinejad, Kh. Farhangdoost
Abstract:
Riveting process is one of the important ways to keep fastening the lap joints in aircraft structures. Failure of aircraft lap joints directly depends on the stress field in the joint. An important application of riveting process is in the construction of aircraft fuselage structures. In this paper, a 3D finite element method is carried out in order to optimize residual stress field in a riveted lap joint and also to estimate its fatigue life. In continue, a number of experiments are designed and analyzed using design of experiments (DOE). Then, Taguchi method is used to select an optimized case between different levels of each factor. Besides that, the factor which affects the most on residual stress field is investigated. Such optimized case provides the maximum residual stress field. Fatigue life of the optimized joint is estimated by Paris-Erdogan law. Stress intensity factors (SIFs) are calculated using both finite element analysis and experimental formula. In addition, the effect of residual stress field, geometry and secondary bending are considered in SIF calculation. A good agreement is found between results of such methods. Comparison between optimized fatigue life and fatigue life of other joints has shown an improvement in the joint’s life.Keywords: Fatigue life, Residual stress, Riveting process, Stress intensity factor, Taguchi method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21733223 Fisheries Education in Karnataka: Trends, Current Status, Performance and Prospects
Authors: A. Vinay, Mary Josephine, Shreesha. S. Rao, Dhande Kranthi Kumar, J. Nandini
Abstract:
This paper looks at the development of Fisheries education in Karnataka and the supply of skilled human capital to the sector. The study tries to analyse their job occupancy patterns, Compound Growth Rate (CGR) and forecasts the fisheries graduates supply using the Holt method. In Karnataka, fisheries are one of the neglected allied sectors of agriculture in spite of having enormous scope and potential to contribute to the State's agriculture GDP. The State Government has been negligent in absorbing skilled human capital for the development of fisheries, as there are so many vacant positions in both education institutes, as well as the State fisheries department. CGR and forecasting of fisheries graduates shows a positive growth rate and increasing trend, from which we can understand that by proper utilization of skilled human capital can bring development in the fisheries sector of Karnataka.Keywords: Compound growth rate, fisheries education, Holt method, skilled human capital.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14723222 A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning
Authors: Lahcene Boukelkoul
Abstract:
The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometers from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behavior and for low frequency range.
Keywords: Ground impedance, horizontal electric field, lightning, transient propagation, vertical electric field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18743221 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development
Authors: Ambra Giovannelli, Erika Maria Archilei
Abstract:
The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.
Keywords: Energy saving, organic fluids, radial turbine, refrigeration plant, vapor compression systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219