Search results for: flow field.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4377

Search results for: flow field.

3147 Recent Advances on Computational Proteomics

Authors: Sérgio F. Sousa, Nuno M. F. S. A. Cerqueira, Marta A. S. Perez, Irina S. Moreira, António J. M.Ribeiro, Ana R. A. P. Neves, Maria J. Ramos, Pedro A. Fernandes

Abstract:

In this work we report the recent progresses that have been achieved by our group in the last half decade on the field of computational proteomics. Specifically, we discuss the application of Molecular Dynamics Simulations and Electronic Structure Calculations in drug design, in the clarification of the structural and dynamic properties of proteins and enzymes and in the understanding of the catalytic and inhibition mechanism of cancer-related enzymes. A set of examples illustrate the concepts and help to introduce the reader into this important and fast moving field.

Keywords: Enzyme, Molecular Dynamics, Protein, Quantum Mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
3146 Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software

Authors: Elham Zamiri

Abstract:

In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 C to 70 C. This investigation is developable for any geometry and material used in the nuclear reactor.

Keywords: Nuclear fuel fission, numberal simulation, fuel rod, reactor, fluent software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
3145 Development and Performance Evaluation of a Gladiolus Planter in Field for Planting Corms

Authors: T. P. Singh, Vijay Gautam

Abstract:

Gladiolus is an important cash crop and is grown mainly for its elegant spikes. Traditionally the gladiolus corms are planted manually which is very tedious, time consuming and labor intensive operation. So far, there is no planter available for planting of gladiolus corms. With a view to mechanize the planting operation of this horticultural crop, a prototype of 4-row gladiolus planter was developed and its performance was evaluated in-situ condition. Cupchain type metering device was used to place each single gladiolus corm in furrow at required spacing while planting. Three levels of corm spacing viz 15, 20 and 25 cm and four levels of forward speed viz 1.0, 1.5, 2.0 and 2.5 km/h was taken as evaluation parameter for the planter. The performance indicators namely corm spacing in each row, coefficient of uniformity, missing index, multiple index, quality of feed index, number of corms per meter length, mechanical damage to the corms etc. were determined during the field test. The data was statistically analyzed using Completely Randomized Design (CRD) for testing the significance of the parameters. The result indicated that planter was able to drop the corms at required nominal spacing with minor variations. The highest deviation from the mean corm spacing was observed as 3.53 cm with maximum coefficient of variation as 13.88%. The highest missing and quality of feed indexes were observed as 6.33% and 97.45% respectively with no multiples. The performance of the planter was observed better at lower forward speed and wider corm spacing. The field capacity of the planter was found as 0.103 ha/h with an observed field efficiency of 76.57%.

Keywords: Coefficient of uniformity, corm spacing, gladiolus planter, mechanization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
3144 The Effects of Shot and Grit Blasting Process Parameters on Steel Pipes Coating Adhesion

Authors: Saeed Khorasanizadeh

Abstract:

Adhesion strength of exterior or interior coating of steel pipes is too important. Increasing of coating adhesion on surfaces can increase the life time of coating, safety factor of transmitting line pipe and decreasing the rate of corrosion and costs. Preparation of steel pipe surfaces before doing the coating process is done by shot and grit blasting. This is a mechanical way to do it. Some effective parameters on that process, are particle size of abrasives, distance to surface, rate of abrasive flow, abrasive physical properties, shapes, selection of abrasive, kind of machine and its power, standard of surface cleanness degree, roughness, time of blasting and weather humidity. This search intended to find some better conditions which improve the surface preparation, adhesion strength and corrosion resistance of coating. So, this paper has studied the effect of varying abrasive flow rate, changing the abrasive particle size, time of surface blasting on steel surface roughness and over blasting on it by using the centrifugal blasting machine. After preparation of numbers of steel samples (according to API 5L X52) and applying epoxy powder coating on them, to compare strength adhesion of coating by Pull-Off test. The results have shown that, increasing the abrasive particles size and flow rate, can increase the steel surface roughness and coating adhesion strength but increasing the blasting time can do surface over blasting and increasing surface temperature and hardness too, change, decreasing steel surface roughness and coating adhesion strength.

Keywords: surface preparation, abrasive particles, adhesionstrength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9050
3143 Combined Sewer Overflow forecasting with Feed-forward Back-propagation Artificial Neural Network

Authors: Achela K. Fernando, Xiujuan Zhang, Peter F. Kinley

Abstract:

A feed-forward, back-propagation Artificial Neural Network (ANN) model has been used to forecast the occurrences of wastewater overflows in a combined sewerage reticulation system. This approach was tested to evaluate its applicability as a method alternative to the common practice of developing a complete conceptual, mathematical hydrological-hydraulic model for the sewerage system to enable such forecasts. The ANN approach obviates the need for a-priori understanding and representation of the underlying hydrological hydraulic phenomena in mathematical terms but enables learning the characteristics of a sewer overflow from the historical data. The performance of the standard feed-forward, back-propagation of error algorithm was enhanced by a modified data normalizing technique that enabled the ANN model to extrapolate into the territory that was unseen by the training data. The algorithm and the data normalizing method are presented along with the ANN model output results that indicate a good accuracy in the forecasted sewer overflow rates. However, it was revealed that the accurate forecasting of the overflow rates are heavily dependent on the availability of a real-time flow monitoring at the overflow structure to provide antecedent flow rate data. The ability of the ANN to forecast the overflow rates without the antecedent flow rates (as is the case with traditional conceptual reticulation models) was found to be quite poor.

Keywords: Artificial Neural Networks, Back-propagationlearning, Combined sewer overflows, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
3142 A Fast, Portable Computational Framework for Aerodynamic Simulations

Authors: Mehdi Ghommem, Daniel Garcia, Nathan Collier, Victor Calo

Abstract:

We develop a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM). The computational framework uses the Python programming language which has easy integration with the scripts requiring computationally-expensive operations written in Fortran. The mixed-language approach enables high performance in terms of solution time and high flexibility in terms of easiness of code adaptation to different system configurations and applications. This computational tool is intended to predict the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges...) subject to an incoming air. We simulate different aerodynamic problems to validate and illustrate the usefulness and effectiveness of the developed computational tool.

Keywords: Unsteady aerodynamics, numerical simulations, mixed-language approach, potential flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1187
3141 Lateral Pressure in Squat Silos under Eccentric Discharge

Authors: Y. Z. Zhu, S. P. Meng, W. W. Sun

Abstract:

The influence of eccentric discharge of stored solids in squat silos has been highly valued by many researchers. However, calculation method of lateral pressure under eccentric flowing still needs to be deeply studied. In particular, the lateral pressure distribution on vertical wall could not be accurately recognized mainly because of its asymmetry. In order to build mechanical model of lateral pressure, flow channel and flow pattern of stored solids in squat silo are studied. In this passage, based on Janssen-s theory, the method for calculating lateral static pressure in squat silos after eccentric discharge is proposed. Calculative formulae are deduced for each of three possible cases. This method is also focusing on unsymmetrical distribution characteristic of silo wall normal pressure. Finite element model is used to analysis and compare the results of lateral pressure and the numerical results illustrate the practicability of the theoretical method.

Keywords: Squat silo, eccentric discharge, lateral pressure, asymmetric distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3145
3140 Numerical Simulation of the Flowing of Ice Slurry in Seawater Pipe of Polar Ships

Authors: Li Xu, Huanbao Jiang, Zhenfei Huang, Lailai Zhang

Abstract:

In recent years, as global warming, the sea-ice extent of North Arctic undergoes an evident decrease and Arctic channel has attracted the attention of shipping industry. Ice crystals existing in the seawater of Arctic channel which enter the seawater system of the ship with the seawater were found blocking the seawater pipe. The appearance of cooler paralysis, auxiliary machine error and even ship power system paralysis may be happened if seriously. In order to reduce the effect of high temperature in auxiliary equipment, seawater system will use external ice-water to participate in the cooling cycle and achieve the state of its flow. The distribution of ice crystals in seawater pipe can be achieved. As the ice slurry system is solid liquid two-phase system, the flow process of ice-water mixture is very complex and diverse. In this paper, the flow process in seawater pipe of ice slurry is simulated with fluid dynamics simulation software based on k-ε turbulence model. As the ice packing fraction is a key factor effecting the distribution of ice crystals, the influence of ice packing fraction on the flowing process of ice slurry is analyzed. In this work, the simulation results show that as the ice packing fraction is relatively large, the distribution of ice crystals is uneven in the flowing process of the seawater which has such disadvantage as increase the possibility of blocking, that will provide scientific forecasting methods for the forming of ice block in seawater piping system. It has important significance for the reliability of the operating of polar ships in the future.

Keywords: Ice slurry, seawater pipe, ice packing fraction, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
3139 Using Artificial Neural Network Algorithm for Voltage Stability Improvement

Authors: Omid Borazjani, Mahmoud Roosta, Khodakhast Isapour, Ali Reza Rajabi

Abstract:

This paper presents an application of Artificial Neural Network (ANN) algorithm for improving power system voltage stability. The training data is obtained by solving several normal and abnormal conditions using the Linear Programming technique. The selected objective function gives minimum deviation of the reactive power control variables, which leads to the maximization of minimum Eigen value of load flow Jacobian. The considered reactive power control variables are switchable VAR compensators, OLTC transformers and excitation of generators. The method has been implemented on a modified IEEE 30-bus test system. The results obtain from the test clearly show that the trained neural network is capable of improving the voltage stability in power system with a high level of precision and speed.

Keywords: Artificial Neural Network (ANN), Load Flow, Voltage Stability, Power Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
3138 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins

Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi

Abstract:

A numerical study of natural convection heat transfer in water filled cavity has been examined in 3-Dfor single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5∗37.5mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15 - 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68°C when the heat input was at 40W that is much lower than the recommended computer chips limit temperature of no more than 85°C and hence the performance of the CPU is enhanced.

Keywords: Chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2947
3137 CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine

Authors: Alireza Rasekh, Peter Sergeant, Jan Vierendeels

Abstract:

This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum.

Keywords: Axial flux permanent magnet, CFD, magnet parameters, stator heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
3136 Method of Moments Applied to a Cuboidal Cavity Resonator: Effect of Gravitational Field Produced by a Black Hole

Authors: Arti Vaish, Harish Parthasarathy

Abstract:

This paper deals with the formulation of Maxwell-s equations in a cavity resonator in the presence of the gravitational field produced by a blackhole. The metric of space-time due to the blackhole is the Schwarzchild metric. Conventionally, this is expressed in spherical polar coordinates. In order to adapt this metric to our problem, we have considered this metric in a small region close to the blackhole and expressed this metric in a cartesian system locally.

Keywords: Method of moments, General theory of relativity, Electromagnetism, Metric tensor, schwarzchild metric, Wave Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
3135 Cryptocurrency-Based Mobile Payments with Near-Field Communication-Enabled Devices

Authors: Marko Niinimaki

Abstract:

Cryptocurrencies are getting increasingly popular, but very few of them can be conveniently used in daily mobile phone purchases. To solve this problem, we demonstrate how to build a functional prototype of a mobile cryptocurrency-based e-commerce application the communicates with Near-Field Communication (NFC) tags. Using the system, users are able to purchase physical items with an NFC tag that contains an e-commerce URL. The payment is done simply by touching the tag with a mobile device and accepting the payment. Our method is constructive: we describe the design and technologies used in the implementation and evaluate the security and performance of the solution. Our main finding is that the analysis and measurements show that our solution is feasible for e-commerce.

Keywords: Cryptocurrency, e-commerce, NFC, mobile devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
3134 Synthesis of Silk Fibroin Fiber for Indoor air Particulate Removal

Authors: Janjira Triped, Wipada Sanongraj, Bovornlak Oonkhanond, Sompop Sanongraj

Abstract:

The main objective of this research is to synthesize silk fibroin fiber for indoor air particulate removal. Silk cocoons were de-gummed using 0.5 wt % Na2CO3 alkaline solutions at 90 Ó╣ìC for 60 mins, washed with distilled water, and dried at 80 Ó╣ìC for 3 hrs in a vacuum oven. Two sets of experiment were conducted to investigate the impacts of initial particulate matter (PM) concentration and that of air flow rate on the removal efficiency. Rice bran collected from a local rice mill in Ubonratchathani province was used as indoor air contaminant in this work. The morphology and physical properties of silk fibroin (SF) fiber were measured. The SEM revealed the deposition of PM on the used fiber. The PM removal efficiencies of 72.29 ± 3.03 % and 39.33 ± 1.99 % were obtained of PM10 and PM2.5, respectively, when using the initial PM concentration at 0.040 mg/m3 and 0.020 mg/m3 of PM10 and PM2.5, respectively, with the air flow rate of 5 L/min.

Keywords: Indoor air, Particulate matter, Scanning electron microscope (SEM), Silk fibroin fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
3133 Development of a Comprehensive Electricity Generation Simulation Model Using a Mixed Integer Programming Approach

Authors: Erik Delarue, David Bekaert, Ronnie Belmans, William D'haeseleer

Abstract:

This paper presents the development of an electricity simulation model taking into account electrical network constraints, applied on the Belgian power system. The base of the model is optimizing an extensive Unit Commitment (UC) problem through the use of Mixed Integer Linear Programming (MILP). Electrical constraints are incorporated through the implementation of a DC load flow. The model encloses the Belgian power system in a 220 – 380 kV high voltage network (i.e., 93 power plants and 106 nodes). The model features the use of pumping storage facilities as well as the inclusion of spinning reserves in a single optimization process. Solution times of the model stay below reasonable values.

Keywords: Electricity generation modeling, Unit Commitment(UC), Mixed Integer Linear Programming (MILP), DC load flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
3132 Proposal of Blue and Green Infrastructure for the Jaguaré Stream Watershed, São Paulo, Brazil

Authors: Juliana C. Alencar, Monica Ferreira do Amaral Porto

Abstract:

The blue-green infrastructure in recent years has been pointed out as a possibility to increase the environmental quality of watersheds. The regulation ecosystem services brought by these areas are many, such as the improvement of the air quality of the air, water, soil, microclimate, besides helping to control the peak flows and to promote the quality of life of the population. This study proposes a blue-green infrastructure scenario for the Jaguaré watershed, located in the western zone of the São Paulo city in Brazil. Based on the proposed scenario, it was verified the impact of the adoption of the blue and green infrastructure in the control of the peak flow of the basin, the benefits for the avifauna that are also reflected in the flora and finally, the quantification of the regulation ecosystem services brought by the adoption of the scenario proposed. A survey of existing green areas and potential areas for expansion and connection of these areas to form a network in the watershed was carried out. Based on this proposed new network of green areas, the peak flow for the proposed scenario was calculated with the help of software, ABC6. Finally, a survey of the ecosystem services contemplated in the proposed scenario was made. It was possible to conclude that the blue and green infrastructure would provide several regulation ecosystem services for the watershed, such as the control of the peak flow, the connection frame between the forest fragments that promoted the environmental enrichment of these fragments, improvement of the microclimate and the provision of leisure areas for the population.

Keywords: Blue and green infrastructure, sustainable drainage, urban waters, ecosystem services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957
3131 Application of Turbulence Modeling in Computational Fluid Dynamics for Airfoil Simulations

Authors: Mohammed Bilal

Abstract:

The precise prediction of aerodynamic behavior is necessary for the design and optimization of airfoils for a variety of applications. Turbulence, a phenomenon of complex and irregular flow, significantly affects the aerodynamic properties of airfoils. Therefore, turbulence modeling is essential for accurately predicting the behavior of airfoils in simulations. This study investigates five commonly employed turbulence models: Spalart-Allmaras (SA) model, k-epsilon model, k-omega model, Reynolds Stress Model (RSM), and Large Eddy Simulation (LES) model. The paper includes a comparison of the models' precision, computational expense, and applicability to various flow conditions. The strengths and weaknesses of each model are highlighted, allowing researchers and engineers to make informed decisions regarding simulations of specific airfoils. Unquestionably, the continuous development of turbulence modeling will contribute to further improvements in airfoil design and optimization, which will be advantageous to numerous industries.

Keywords: Computational fluid dynamics, airfoil, turbulence, aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226
3130 A System Functions Set-Up through Near Field Communication of a Smartphone

Authors: Jaemyoung Lee

Abstract:

We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.

Keywords: System set-up, near field communication, smartphone, Android.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
3129 Significance of Splitting Method in Non-linear Grid system for the Solution of Navier-Stokes Equation

Authors: M. Zamani, O. Kahar

Abstract:

Solution to unsteady Navier-Stokes equation by Splitting method in physical orthogonal algebraic curvilinear coordinate system, also termed 'Non-linear grid system' is presented. The linear terms in Navier-Stokes equation are solved by Crank- Nicholson method while the non-linear term is solved by the second order Adams-Bashforth method. This work is meant to bring together the advantage of Splitting method as pressure-velocity solver of higher efficiency with the advantage of consuming Non-linear grid system which produce more accurate results in relatively equal number of grid points as compared to Cartesian grid. The validation of Splitting method as a solution of Navier-Stokes equation in Nonlinear grid system is done by comparison with the benchmark results for lid driven cavity flow by Ghia and some case studies including Backward Facing Step Flow Problem.

Keywords: Navier-Stokes, 'Non-linear grid system', Splitting method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
3128 A Refined Nonlocal Strain Gradient Theory for Assessing Scaling-Dependent Vibration Behavior of Microbeams

Authors: Xiaobai Li, Li Li, Yujin Hu, Weiming Deng, Zhe Ding

Abstract:

A size-dependent Euler–Bernoulli beam model, which accounts for nonlocal stress field, strain gradient field and higher order inertia force field, is derived based on the nonlocal strain gradient theory considering velocity gradient effect. The governing equations and boundary conditions are derived both in dimensional and dimensionless form by employed the Hamilton principle. The analytical solutions based on different continuum theories are compared. The effect of higher order inertia terms is extremely significant in high frequency range. It is found that there exists an asymptotic frequency for the proposed beam model, while for the nonlocal strain gradient theory the solutions diverge. The effect of strain gradient field in thickness direction is significant in low frequencies domain and it cannot be neglected when the material strain length scale parameter is considerable with beam thickness. The influence of each of three size effect parameters on the natural frequencies are investigated. The natural frequencies increase with the increasing material strain gradient length scale parameter or decreasing velocity gradient length scale parameter and nonlocal parameter.

Keywords: Euler-Bernoulli Beams, free vibration, higher order inertia, nonlocal strain gradient theory, velocity gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983
3127 A Study on the Effects of Thermodynamic Nonideality and Mass Transfer on Multi-phase Hydrodynamics Using CFD Methods

Authors: Irani, Mohammad, Bozorgmehry Boozarjomehry, Ramin, Pishvaie Mahmoud Reza, Ahmad Tavasoli

Abstract:

Considering non-ideal behavior of fluids and its effects on hydrodynamic and mass transfer in multiphase flow is very essential. Simulations were performed that takes into account the effects of mass transfer and mixture non-ideality on hydrodynamics reported by Irani et al. In this paper, by assuming the density of phases to be constant and Raullt-s law instead of using EOS and fugacity coefficient definition, respectively for both the liquid and gas phases, the importance of non-ideality effects on mass transfer and hydrodynamic behavior was studied. The results for a system of octane/propane (T=323 K, P =445 kpa) also indicated that the assumption of constant density in simulation had major role to diverse from experimental data. Furthermore, comparison between obtained results and the previous report indicated significant differences between experimental data and simulation results with more ideal assumptions.

Keywords: Multiphase flow, VOF, mass transfer, Raoult's law, non-ideal thermodynamic, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
3126 Evolution of Developing Flushing Cone during the Pressurized Flushing in Reservoir Storage

Authors: Meshkati M. E., Dehghani A. A., Naser G., E mamgholizadeh S., Mosaedi A.

Abstract:

Sedimentation in reservoirs and the corresponding loss of storage capacity is one of the most serious problems in dam engineering. Pressurized flushing, a way to remove sediments from the reservoir, is flushing under a pressurized flow condition and nearly constant water level. Pressurized flushing has only local effects around the outlet. Sediment in the vicinity of the outlet openings is scoured and a funnel shaped crater is created. In this study, the temporal development of flushing cone under various hydraulic conditions was studied experimentally. Time variations of parameters such as maximum length and width of flushing and also depth of scouring cone was measured. Results indicated that an increase in flow velocity (and consequently in Froude number) established new hydraulically conditions for flushing mechanism and so a sudden growth was observed in the amount of sediment released and also scouring dimenssions. In addition, a set of nondimensional relationships were identified for temporal variations of flushing scour dimenssions, which can eventuallt be used to estimate the development of flushing cone.

Keywords: Pressure Flushing, Dam, Sediment, Scouring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
3125 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling

Authors: Erfan Niazi, Marianne Fenech

Abstract:

Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.

Keywords: Red blood cell, Rouleaux, microfluidics, image processing, population balance modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
3124 Modification of the Conventional Power Flow Analysis for the Deployment of an HVDC Grid System in the Indian Subcontinent

Authors: Farhan Beg

Abstract:

The Indian subcontinent is facing a massive challenge with regards to the energy security in member countries, i.e. providing a reliable source of electricity to facilitate development across various sectors of the economy and thereby achieve the developmental targets it has set for itself. A highly precarious situation exists in the subcontinent which is observed in the series of system failures which most of the times leads to system collapses-blackouts. To mitigate the issues related with energy security as well as keep in check the increasing supply demand gap, a possible solution that stands in front of the subcontinent is the deployment of an interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the sub continent as well as provide the infra structure for RES integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on VSC HVDC converters for the Supergrid modeling.

Keywords: Super grid, Wind and Solar Energy, HVDC, Electricity management, Load Flow Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
3123 Rheological Behaviors of Crude Oil in the Presence of Water

Authors: Madjid Meriem-Benziane, Hamou Zahloul

Abstract:

The rheological properties of light crude oil and its mixture with water were investigated experimentally. These rheological properties include steady flow behavior, yield stress, transient flow behavior, and viscoelastic behavior. A RheoStress RS600 rheometer was employed in all of the rheological examination tests. The light crude oil exhibits a Newtonian and for emulsion exhibits a non-Newtonian shear thinning behavior over the examined shear rate range of 0.1–120 s-1. In first time, a series of samples of crude oil from the Algerian Sahara has been tested and the results expressed in terms of τ=f(γ) have demonstrated their Newtonian character for the temperature included in [20°C, 70°C]. In second time and at T=20°C, the oil-water emulsions (30%, 50% and 70%) by volume of water), thermodynamically stable, have demonstrated a non-Newtonian rheological behavior that is to say, Herschel-Bulkley and Bingham types. For each type of crude oil-water emulsion, the rheological parameters are calculated by numerical treatment of results.

Keywords: Crude oil Algerian, Emulsion, Newtonian, Non- Newtonian, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3390
3122 Application of AIMSUN Microscopic Simulation Model in Evaluating Side Friction Impacts on Traffic Stream Performance

Authors: H. Naghawi, M. Abu Shattal, W. Idewu

Abstract:

Side friction factors can be defined as all activities taking place at the side of the road and within the traffic stream, which would negatively affect the traffic stream performance. If the effect of these factors is adequately addressed and managed, traffic stream performance and capacity could be improved. The main objective of this paper is to identify and assess the impact of different side friction factors on traffic stream performance of a hypothesized urban arterial road. Hypothetical data were assumed mainly because there is no road operating under ideal conditions, with zero side friction, in the developing countries. This is important for the creation of the base model which is important for comparison purposes. For this purpose, three essential steps were employed. Step one, a hypothetical base model was developed under ideal traffic and geometric conditions. Step two, 18 hypothetical alternative scenarios were developed including side friction factors such as on-road parking, pedestrian movement, and the presence of trucks in the traffic stream. These scenarios were evaluated for one, two, and three lane configurations and under different traffic volumes ranging from low to high. Step three, the impact of side friction, of each scenario, on speed-flow models was evaluated using AIMSUN microscopic traffic simulation software. Generally, it was found that, a noticeable negative shift in the speed flow curves from the base conditions was observed for all scenarios. This indicates negative impact of the side friction factors on free flow speed and traffic stream average speed as well as on capacity.

Keywords: AIMSUN, parked vehicles, pedestrians, side friction, traffic performance, trucks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
3121 Passive Ventilation System Analysis using Solar Chimney in South of Algeria

Authors: B. Belfuguais, S. Larbi

Abstract:

The work presented in this study is related to an energy system analysis based on passive cooling system for dwellings. It consists to solar chimney energy performances determination versus geometrical and environmental considerations as the size and inlet width conditions of the chimney. Adrar site located in the southern region of Algeria is chosen for this study according to ambient temperature and solar irradiance technical data availability. Obtained results are related to the glazing temperature distributions, the chimney air flow and internal wall temperatures. The air room change per hour (ACH) parameter, the outlet air velocity and mass air flow rate are also determined. It is shown that the chimney width has a significant effect on energy performances compared to its entry size. A good agreement is observed between these results and those obtained by others from the literature.

Keywords: Solar chimney, Energy performances, Passive ventilation, Numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901
3120 The Design of Self-evolving Artificial Immune System II for Permutation Flow-shop Problem

Authors: Meng-Hui Chen, Pei-Chann Chang, Wei-Hsiu Huang

Abstract:

Artificial Immune System is adopted as a Heuristic Algorithm to solve the combinatorial problems for decades. Nevertheless, many of these applications took advantage of the benefit for applications but seldom proposed approaches for enhancing the efficiency. In this paper, we continue the previous research to develop a Self-evolving Artificial Immune System II via coordinating the T and B cell in Immune System and built a block-based artificial chromosome for speeding up the computation time and better performance for different complexities of problems. Through the design of Plasma cell and clonal selection which are relative the function of the Immune Response. The Immune Response will help the AIS have the global and local searching ability and preventing trapped in local optima. From the experimental result, the significant performance validates the SEAIS II is effective when solving the permutation flows-hop problems.

Keywords: Artificial Immune System, Clonal Selection, Immune Response, Permutation Flow-shop Scheduling Problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
3119 Lorentz Forces in the Container

Authors: K. Horáková, K. Fraňa

Abstract:

Leading topic of this article is description of Lorentz forces in the container with cuboid and cylindrical shape. Inside of the container is an electrically conductive melt. This melt is driven by rotating magnetic field. Input data for comparing Lorentz forces in the container with cuboid shape were obtained from the computing program NS-FEM3D, which uses DDS method of computing. Values of Lorentz forces for container with cylindrical shape were obtained from inferred analytical formula.

Keywords: Lorentz forces, magnetohydrodynamics, rotatingmagnetic field, computing program NS-FEM3D

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
3118 Numerical Analysis of Air Flow and Conjugated Heat Transfer in Internally Grooved Parallel- Plate Channels

Authors: Hossein Shokouhmand , Koohyar Vahidkhah, Mohammad A. Esmaeili

Abstract:

A numerical investigation of surface heat transfer characteristics of turbulent air flows in different parallel plate grooved channels is performed using CFD code. The results are obtained for Reynolds number ranging from 10,000 to 30,000 and for arc-shaped and rectangular grooved channels. The influence of different geometric parameters of dimples as well as the number of them and the geometric and thermophysical properties of channel walls are studied. It is found that there exists an optimum value for depth of dimples in which the largest wall heat flux can be achieved. Also, the results show a critical value for the ratio of wall thermal conductivity to the one of fluid in which the dependence of wall heat flux to this ratio almost vanishes. In most cases examined, heat transfer enhancement is larger for arc-shaped grooved channels than rectangular ones.

Keywords: dimple, heat transfer enhancement, Numerical, optimum value, turbulent air flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869