Search results for: Scalar wave equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1590

Search results for: Scalar wave equation

360 On the use of Ionic Liquids for CO2 Capturing

Authors: Emad Ali, Inas Alnashef, Abdelhamid Ajbar, Mohamed HadjKali, Sarwono Mulyono

Abstract:

In this work, ionic liquids (ILs) for CO2 capturing in typical absorption/stripper process are considered. The use of ionic liquids is considered to be cost-effective because it requires less energy for solvent recovery compared to other conventional processes. A mathematical model is developed for the process based on Peng-Robinson (PR) equation of state (EoS) which is validated with experimental data for various solutions involving CO2. The model is utilized to study the sorbent and energy demand for three types of ILs at specific CO2 capturing rates. The energy demand is manifested by the vapor-liquid equilibrium temperature necessary to remove the captured CO2 from the used solvent in the regeneration step. It is found that higher recovery temperature is required for solvents with higher solubility coefficient. For all ILs, the temperature requirement is less than that required by the typical monoethanolamine (MEA) solvent. The effect of the CO2 loading in the sorbent stream on the process performance is also examined.

Keywords: Ionic liquid, CO2 capturing, CO2 solubility, Vaporliquid equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681
359 Development of Maximum Entropy Method for Prediction of Droplet-size Distribution in Primary Breakup Region of Spray

Authors: E. Movahednejad, F. Ommi

Abstract:

Droplet size distributions in the cold spray of a fuel are important in observed combustion behavior. Specification of droplet size and velocity distributions in the immediate downstream of injectors is also essential as boundary conditions for advanced computational fluid dynamics (CFD) and two-phase spray transport calculations. This paper describes the development of a new model to be incorporated into maximum entropy principle (MEP) formalism for prediction of droplet size distribution in droplet formation region. The MEP approach can predict the most likely droplet size and velocity distributions under a set of constraints expressing the available information related to the distribution. In this article, by considering the mechanisms of turbulence generation inside the nozzle and wave growth on jet surface, it is attempted to provide a logical framework coupling the flow inside the nozzle to the resulting atomization process. The purpose of this paper is to describe the formulation of this new model and to incorporate it into the maximum entropy principle (MEP) by coupling sub-models together using source terms of momentum and energy. Comparison between the model prediction and experimental data for a gas turbine swirling nozzle and an annular spray indicate good agreement between model and experiment.

Keywords: Droplet, instability, Size Distribution, Turbulence, Maximum Entropy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
358 Torsional Statics of Circular Nanostructures: Numerical Approach

Authors: M.Z. Islam, C.W. Lim

Abstract:

Based on the standard finite element method, a new finite element method which is known as nonlocal finite element method (NL-FEM) is numerically implemented in this article to study the nonlocal effects for solving 1D nonlocal elastic problem. An Eringen-type nonlocal elastic model is considered. In this model, the constitutive stress-strain law is expressed interms of integral equation which governs the nonlocal material behavior. The new NL-FEM is adopted in such a way that the postulated nonlocal elastic behavior of material is captured by a finite element endowed with a set of (cross-stiffness) element itself by the other elements in mesh. An example with their analytical solutions and the relevant numerical findings for various load and boundary conditions are presented and discussed in details. It is observed from the numerical solutions that the torsional deformation angle decreases with increasing nonlocal nanoscale parameter. It is also noted that the analytical solution fails to capture the nonlocal effect in some cases where numerical solutions handle those situation effectively which prove the reliability and effectiveness of numerical techniques.

Keywords: NL-FEM, nonlocal elasticity, nanoscale, torsion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
357 Effect of Turbulence Models on Simulated Iced Aircraft Airfoil

Authors: Muhammad Afzal, Cao Yihua, Zhao Ming

Abstract:

The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944).The performance of turbulence models SA, Kε, Kω Std, and Kω SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3x106, 6x106, and 10.5x106 on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than Kε and Kω standard in under study problem.

Keywords: Aerodynamics, Airfoil GLC305, Iced Airfoil, Turbulence Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448
356 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation

Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang

Abstract:

Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method is found to be good.

Keywords: Convective boundary, radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
355 Vortex Shedding at the End of Parallel-plate Thermoacoustic Stack in the Oscillatory Flow Conditions

Authors: Lei Shi, Zhibin Yu, Artur J. Jaworski, Abdulrahman S. Abduljalil

Abstract:

This paper investigates vortex shedding processes occurring at the end of a stack of parallel plates, due to an oscillating flow induced by an acoustic standing wave within an acoustic resonator. Here, Particle Image Velocimetry (PIV) is used to quantify the vortex shedding processes within an acoustic cycle phase-by-phase, in particular during the “ejection" of the fluid out of the stack. Standard hot-wire anemometry measurement is also applied to detect the velocity fluctuations near the end of the stack. Combination of these two measurement techniques allowed a detailed analysis of the vortex shedding phenomena. The results obtained show that, as the Reynolds number varies (by varying the plate thickness and drive ratio), different flow patterns of vortex shedding are observed by the PIV measurement. On the other hand, the time-dependent hot-wire measurements allow obtaining detailed frequency spectra of the velocity signal, used for calculating characteristic Strouhal numbers. The impact of the plate thickness and the Reynolds number on the vortex shedding pattern has been discussed. Furthermore, a detailed map of the relationship between the Strouhal number and Reynolds number has been obtained and discussed.

Keywords: Oscillatory flow, Parallel-plate thermoacoustic stack, Strouhal numbers, Vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
354 Human Fall Detection by FMCW Radar Based on Time-Varying Range-Doppler Features

Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou

Abstract:

The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.

Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-Doppler features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 468
353 Parametric Study of Vertical Diffusion Still for Water Desalination

Authors: A. Seleem, M. Mortada, M. El Morsi, M. Younan

Abstract:

Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semianalytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55- 90°C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).

Keywords: Analytical Model, Solar Distillation, Sustainable Water Systems, Vertical Diffusion Still.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
352 A Semi-Implicit Phase Field Model for Droplet Evolution

Authors: M. H. Kazemi, D. Salac

Abstract:

A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.

Keywords: Coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
351 Bioconversion of Biodiesel Derived Crude Glycerol by Immobilized Clostridium pasteurianum: Effect of Temperature

Authors: Swati Khanna, Arun Goyal, Vijayanand S. Moholkar

Abstract:

Batch fermentation of 5, 10 and 25 g/L biodiesel derived crude glycerol was carried out at 30, 37 and 450C by Clostridium pasteurianum cells immobilized on silica. Maximum yield of 1,3-propanediol (PDO) (0.60 mol/mol), and ethanol (0.26 mol/mol) were obtained from 10 g/L crude glycerol at 30 and 370C respectively. Maximum yield of butanol (0.28 mol/mol substrate added) was obtained at 370C with 25 g/L substrate. None of the three products were detected at 45oC even after 10 days of fermentation. Only traces of ethanol (0.01 mol/mol) were detected at 450C with 5 g/L substrate. The results obtained for 25 g/L substrate utilization were fitted in first order rate equation to obtain the values of rate constant at three different temperatures for bioconversion of glycerol. First order rate constants for bioconversion of glycerol at 30, 37 and 45oC were found to be 0.198, 0.294 and 0.029/day respectively. Activation energy (Ea) for crude glycerol bioconversion was calculated to be 57.62 kcal/mol.

Keywords: activation energy, Clostridium pasteurianum, crude glycerol, immobilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
350 Novel Anti-leukemia Calanone Compounds by Quantitative Structure-Activity Relationship AM1 Semiempirical Method

Authors: Ponco Iswanto, Mochammad Chasani, Muhammad Hanafi, Iqmal Tahir, Eva Vaulina YD, Harjono, Lestari Solikhati, Winkanda S. Putra, Yayuk Yuliantini

Abstract:

Quantitative Structure-Activity Relationship (QSAR) approach for discovering novel more active Calanone derivative as anti-leukemia compound has been conducted. There are 6 experimental activities of Calanone compounds against leukemia cell L1210 that are used as material of the research. Calculation of theoretical predictors (independent variables) was performed by AM1 semiempirical method. The QSAR equation is determined by Principle Component Regression (PCR) analysis, with Log IC50 as dependent variable and the independent variables are atomic net charges, dipole moment (μ), and coefficient partition of noctanol/ water (Log P). Three novel Calanone derivatives that obtained by this research have higher activity against leukemia cell L1210 than pure Calanone.

Keywords: AM1 semiempirical calculation, Calanone, Principle Component Regression, QSAR approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
349 Modified Hybrid Genetic Algorithm-Based Artificial Neural Network Application on Wall Shear Stress Prediction

Authors: Zohreh Sheikh Khozani, Wan Hanna Melini Wan Mohtar, Mojtaba Porhemmat

Abstract:

Prediction of wall shear stress in a rectangular channel, with non-homogeneous roughness distribution, was studied. Estimation of shear stress is an important subject in hydraulic engineering, since it affects the flow structure directly. In this study, the Genetic Algorithm Artificial (GAA) neural network is introduced as a hybrid methodology of the Artificial Neural Network (ANN) and modified Genetic Algorithm (GA) combination. This GAA method was employed to predict the wall shear stress. Various input combinations and transfer functions were considered to find the most appropriate GAA model. The results show that the proposed GAA method could predict the wall shear stress of open channels with high accuracy, by Root Mean Square Error (RMSE) of 0.064 in the test dataset. Thus, using GAA provides an accurate and practical simple-to-use equation.

Keywords: Artificial neural network, genetic algorithm, genetic programming, rectangular channel, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
348 Stature Estimation Based On Lower Limb Dimensions in the Malaysian Population

Authors: F. M. Nor, N. Abdullah, Al-M. Mustapa, L. Q. Wen, N. A. Faisal, D. A. A. Ahmad Nazari

Abstract:

Estimation of stature is an important step in developing a biological profile for human identification. It may provide a valuable indicator for unknown individual in a population. The aim of this study was to analyses the relationship between stature and lower limb dimensions in the Malaysian population. The sample comprised 100 corpses, which included 69 males and 31 females between age ranges of 20 to 90 years old. The parameters measured were stature, thigh length, lower leg length, leg length, foot length, foot height and foot breadth. Results showed that mean values in males were significantly higher than those in females (P < 0.05). There were significant correlations between lower limb dimensions and stature. Cross-validation of the equation on 100 individuals showed close approximation between known stature and estimated stature. It was concluded that lower limb dimensions were useful for estimation of stature, which should be validated in future studies. 

Keywords: Forensic anthropology population data, lower leg length, Malaysian, stature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3176
347 The Governance of Islamic Banks in Morocco: Meaning, Strategic Vision and Purposes Attributed to the Governance System

Authors: Lalla Nezha Lakmiti, Abdelkahar Zahid

Abstract:

Due to the setbacks on the international scene and the wave of cacophonic financial scandals affecting large international groups, the new Islamic finance industry is not immune despite its initial resistance. The purpose of this paper is to understand and analyze the meaning of the Corporate Governance (CG) concept in Moroccan Islamic banking systems with specific reference to their institutions. The research objective is to identify also the path taken and adopted by these banks recently set up in Morocco. The foundation is rooted in shari'a, in particular, no stakeholder (the shareholding approach) must be harmed, and the ethical value is reflected into these parties’ behavior. We chose a qualitative method, semi-structured interviews where six managers provided answers about their banking systems. Since these respondents held a senior position (directors) within their organizations, it is felt that they are well placed and have the necessary knowledge to provide us with information to answer the questions asked. The results identified the orientation of participating banks and assessing how governance works, while determining which party is fovoured: shareholders, stakeholders or both. This study discusses the favorable condition to the harmonization of the regulations and therefore a better integration between Islamic finance and conventional ones in the economic context of Morocco.

Keywords: Corporate governance, participating banks, stakeholders, shareholders, and interests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
346 Modes of Collapse of Compress–Expand Member under Axial Loading

Authors: Shigeyuki Haruyama, Aidil Khaidir Bin Muhamad, Ken Kaminishi, Dai-Heng Chen

Abstract:

In this paper, a study on the modes of collapse of compress- expand members are presented. Compress- expand member is a compact, multiple-combined cylinders, to be proposed as energy absorbers. Previous studies on the compress- expand member have clarified its energy absorption efficiency, proposed an approximate equation to describe its deformation characteristics and also highlighted the improvement that it has brought. However, for the member to be practical, the actual range of geometrical dimension that it can maintain its applicability must be investigated. In this study, using a virtualized materials that comply the bilinear hardening law, Finite element Method (FEM) analysis on the collapse modes of compress- expand member have been conducted. Deformation maps that plotted the member's collapse modes with regards to the member's geometric and material parameters were then presented in order to determine the dimensional range of each collapse modes.

Keywords: Axial collapse, compress-expand member, tubular member, finite element method, modes of collapse, thin-walled cylindrical tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
345 Frequency-Variation Based Method for Parameter Estimation of Transistor Amplifier

Authors: Akash Rathee, Harish Parthasarathy

Abstract:

In this paper, a frequency-variation based method has been proposed for transistor parameter estimation in a commonemitter transistor amplifier circuit. We design an algorithm to estimate the transistor parameters, based on noisy measurements of the output voltage when the input voltage is a sine wave of variable frequency and constant amplitude. The common emitter amplifier circuit has been modelled using the transistor Ebers-Moll equations and the perturbation technique has been used for separating the linear and nonlinear parts of the Ebers-Moll equations. This model of the amplifier has been used to determine the amplitude of the output sinusoid as a function of the frequency and the parameter vector. Then, applying the proposed method to the frequency components, the transistor parameters have been estimated. As compared to the conventional time-domain least squares method, the proposed method requires much less data storage and it results in more accurate parameter estimation, as it exploits the information in the time and frequency domain, simultaneously. The proposed method can be utilized for parameter estimation of an analog device in its operating range of frequencies, as it uses data collected from different frequencies output signals for parameter estimation.

Keywords: Perturbation Technique, Parameter estimation, frequency-variation based method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
344 The Impact of Stakeholder Communication Strategies on Consumers- Acceptance and Financial Performance: In the Case of Fertilizer Industry in Malaysia

Authors: Hasnida Abdul Wahab, Shahrina Md Nordin, Lai Fong Woon, Hasrina Mustafa

Abstract:

There has been a growing emphasis in communication management from simple coordination of promotional tools to a complex strategic process. This study will examine the current marketing communications and engagement strategies used in addressing the key stakeholders. In the case of fertilizer industry in Malaysia, there has been little empirical research on stakeholder communication when major challenges facing the modern corporation is the need to communicate its identity, its values and products in order to distinguish itself from competitors. The study will employ both quantitative and qualitative methods and the use of Structural Equation Modeling (SEM) to establish a causal relationship amongst the key factors of stakeholder communication strategies and increment in consumers- choice/acceptance and impact on financial performance. One of the major contributions is a conceptual framework for communication strategies and engagement in increasing consumers- acceptance level and the firm-s financial performance.

Keywords: Consumers' acceptance, financial performance, stakeholder communication strategies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
343 Speciation Analysis by Solid-Phase Microextraction and Application to Atrazine

Authors: K. Benhabib, X. Pierens, V-D Nguyen, G. Mimanne

Abstract:

The main hypothesis of the dynamics of solid phase microextraction (SPME) is that steady-state mass transfer is respected throughout the SPME extraction process. It considers steady-state diffusion is established in the two phases and fast exchange of the analyte at the solid phase film/water interface. An improved model is proposed in this paper to handle with the situation when the analyte (atrazine) is in contact with colloid suspensions (carboxylate latex in aqueous solution). A mathematical solution is obtained by substituting the diffusion coefficient by the mean of diffusion coefficient between analyte and carboxylate latex, and also thickness layer by the mean thickness in aqueous solution. This solution provides an equation relating the extracted amount of the analyte to the extraction a little more complicated than previous models. It also gives a better description of experimental observations. Moreover, the rate constant of analyte obtained is in satisfactory agreement with that obtained from the initial curve fitting.

Keywords: Pesticide, SPME methods, polyacrylate, steady state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
342 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy

Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang

Abstract:

This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid-particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.

Keywords: Liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2624
341 Conducting Flow Measurement Laboratory Test Work

Authors: M. B. Kime

Abstract:

Mass flow measurement is the basis of most technoeconomic formulations in the chemical industry. This calls for reliable and accurate detection of mass flow. Flow measurement laboratory experiments were conducted using various instruments. These consisted of orifice plates, various sized rotameters, wet gas meter and soap bubble meter. This work was aimed at evaluating appropriate operating conditions and accuracy of the aforementioned devices. The experimental data collected were compared to theoretical predictions from Bernoulli’s equation and calibration curves supplied by the instrument’s manufacturers. The results obtained showed that rotameters were more reliable for measuring high and low flow rates; while soap-bubble meters and wet-gas meters were found to be suitable for measuring low flow rates. The laboratory procedures and findings of the actual work can assist engineering students and professionals in conducting their flow measurement laboratory test work.

Keywords: Flow measurement, orifice plates, rotameters, wet gas meter, soap bubble meter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4915
340 Outer-Brace Stress Concentration Factors of Offshore Two-Planar Tubular DKT-Joints

Authors: Mohammad Ali Lotfollahi-Yaghin, Hamid Ahmadi

Abstract:

In the present paper, a set of parametric FE stress analyses is carried out for two-planar welded tubular DKT-joints under two different axial load cases. Analysis results are used to present general remarks on the effect of geometrical parameters on the stress concentration factors (SCFs) at the inner saddle, outer saddle, toe, and heel positions on the main (outer) brace. Then a new set of SCF parametric equations is developed through nonlinear regression analysis for the fatigue design of two-planar DKT-joints. An assessment study of these equations is conducted against the experimental data; and the satisfaction of the criteria regarding the acceptance of parametric equations is checked. Significant effort has been devoted by researchers to the study of SCFs in various uniplanar tubular connections. Nevertheless, for multi-planar joints covering the majority of practical applications, very few investigations have been reported due to the complexity and high cost involved.

Keywords: Offshore jacket structure, Parametric equation, Stress concentration factor (SCF), Two-planar tubular KT-joint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2785
339 Heat Flux Reduction Research in Hypersonic Flow with Opposing Jet

Authors: Yisheng Rong, Jian Sun, Weiqiang Liu, Renjun Zhan

Abstract:

A CFD study on heat flux reduction in hypersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position, surface pressure distributions and heat flux distributions are obtained and validated with experiments. The physical mechanism of heat reduction has been analyzed. When the opposing jet blows, the freestream is blocked off, flows to the edges and not interacts with the surface to form aerodynamic heating. At the same time, the jet flows back to form cool recirculation region, which reduces the difference in temperature between the surface and the nearby gas, and then reduces the heat flux. As the pressure ratio increases, the interface between jet and freestream is gradually pushed away from the surface. Larger the total pressure ratio is, lower the heat flux is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and total heat load can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic heating.

Keywords: opposing jet, aerodynamic heating, total pressure ratio, thermal protection system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
338 The Factors Influencing Consumer Intentions to Use Internet Banking and Apps: A Case of Banks in Cambodia

Authors: Tithdanin Chav, Phichhang Ou

Abstract:

The study is about the e-banking consumer behavior of five major banks in Cambodia. This work aims to examine the relationships among job relevance, trust, mobility, perceived ease of use, perceived usefulness, attitude toward using, and intention to use of internet banking and apps. Also, the research develops and tests a conceptual model of intention to use internet banking by integrating the Technology Acceptance Model (TAM) and job relevance, trust, and mobility which were supported by Theory of Reasoned Action (TRA) and Theory of Planned Behavior (TPB). The proposed model was tested using Structural Equation Modeling (SEM), which was processed by using SPSS and AMOS with a sample size of 250 e-banking users. The results showed that there is a significant positive relationship among variables and attitudes toward using internet banking, and apps are the most factor influencing consumers’ intention to use internet banking and apps with the importance level in SEM 0.82 accounted by 82%. Significantly, all six hypotheses were accepted.

Keywords: Bank Apps, consumer intention, internet banking, technology acceptance model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
337 Development of a 3D Mathematical Model for a Doxorubicin Controlled Release System using Pluronic Gel for Breast Cancer Treatment

Authors: W. Kaowumpai, D. Koolpiruck, K. Viravaidya

Abstract:

Female breast cancer is the second in frequency after cervical cancer. Surgery is the most common treatment for breast cancer, followed by chemotherapy as a treatment of choice. Although effective, it causes serious side effects. Controlled-release drug delivery is an alternative method to improve the efficacy and safety of the treatment. It can release the dosage of drug between the minimum effect concentration (MEC) and minimum toxic concentration (MTC) within tumor tissue and reduce the damage of normal tissue and the side effect. Because an in vivo experiment of this system can be time-consuming and labor-intensive, a mathematical model is desired to study the effects of important parameters before the experiments are performed. Here, we describe a 3D mathematical model to predict the release of doxorubicin from pluronic gel to treat human breast cancer. This model can, ultimately, be used to effectively design the in vivo experiments.

Keywords: Breast Cancer, Doxorubicin, Controlled ReleaseSystem, Diffusion and Convection Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
336 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory

Authors: J. Ranjbarn, A. Alibeigloo

Abstract:

In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.

Keywords: Nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
335 Predicting Dietary Practice Behavior among Type 2 Diabetics Using the Theory of Planned Behavior and Mixed Methods Design

Authors: D.O. Omondi, M.K. Walingo, G.M. Mbagaya, L.O.A. Othuon

Abstract:

This study applied the Theory of Planned Behavior model in predicting dietary behavior among Type 2 diabetics in a Kenyan environment. The study was conducted for three months within the diabetic clinic at Kisii Hospital in Nyanza Province in Kenya and adopted sequential mixed methods design combing both qualitative and quantitative phases. Qualitative data was analyzed using grounded theory analysis method. Structural equation modeling using maximum likelihood was used to analyze quantitative data. The results based on the common fit indices revealed that the theory of planned behavior fitted the data acceptably well among the Type 2 diabetes and within dietary behavior {χ2 = 223.3, df = 77, p = .02, χ2/df = 2.9, n=237; TLI = .93; CFI =.91; RMSEA (90CI) = .090(.039, .146)}. This implies that the Theory of Planned Behavior holds and forms a framework for promoting dietary practice among Type 2 diabetics.

Keywords: Dietary practice, Kenya, Theory of PlannedBehavior, Type 2 diabetes, Mixed Methods Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
334 Closed Form Optimal Solution of a Tuned Liquid Column Damper Responding to Earthquake

Authors: A. Farshidianfar, P. Oliazadeh

Abstract:

In this paper the vibration behaviors of a structure equipped with a tuned liquid column damper (TLCD) under a harmonic type of earthquake loading are studied. However, due to inherent nonlinear liquid damping, it is no doubt that a great deal of computational effort is required to search the optimum parameters of the TLCD, numerically. Therefore by linearization the equation of motion of the single degree of freedom structure equipped with the TLCD, the closed form solutions of the TLCD-structure system are derived. To find the reliability of the analytical method, the results have been compared with other researcher and have good agreement. Further, the effects of optimal design parameters such as length ratio and mass ratio on the performance of the TLCD for controlling the responses of a structure are investigated by using the harmonic type of earthquake excitation. Finally, the Citicorp Center which has a very flexible structure is used as an example to illustrate the design procedure for the TLCD under the earthquake excitation.

Keywords: Closed form solution, Earthquake excitation, TLCD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
333 Numerical Comparison of Rushton Turbine and CD-6 Impeller in Non-Newtonian Fluid Stirred Tank

Authors: Akhilesh Khapre, Basudeb Munshi

Abstract:

A computational fluid dynamics simulation is done for non-Newtonian fluid in a baffled stirred tank. The CMC solution is taken as non-Newtonian shear thinning fluid for simulation. The Reynolds Average Navier Stocks equation with steady state multi reference frame approach is used to simulate flow in the stirred tank. The turbulent flow field is modelled using realizable k-ε turbulence model. The simulated velocity profiles of Rushton turbine is validated with literature data. Then, the simulated flow field of CD-6 impeller is compared with the Rushton turbine. The flow field generated by CD-6 impeller is less in magnitude than the Rushton turbine. The impeller global parameter, power number and flow number, and entropy generation due to viscous dissipation rate is also reported.

Keywords: Computational fluid dynamics, non-Newtonian, Rushton turbine, CD-6 impeller, power number, flow number, viscous dissipation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4113
332 Dynamic Analysis of Composite Doubly Curved Panels with Variable Thickness

Authors: I. Algul, G. Akgun, H. Kurtaran

Abstract:

Dynamic analysis of composite doubly curved panels with variable thickness subjected to different pulse types using Generalized Differential Quadrature method (GDQ) is presented in this study. Panels with variable thickness are used in the construction of aerospace and marine industry. Giving variable thickness to panels can allow the designer to get optimum structural efficiency. For this reason, estimating the response of variable thickness panels is very important to design more reliable structures under dynamic loads. Dynamic equations for composite panels with variable thickness are obtained using virtual work principle. Partial derivatives in the equation of motion are expressed with GDQ and Newmark average acceleration scheme is used for temporal discretization. Several examples are used to highlight the effectiveness of the proposed method. Results are compared with finite element method. Effects of taper ratios, boundary conditions and loading type on the response of composite panel are investigated.

Keywords: Generalized differential quadrature method, doubly curved panels, laminated composite materials, small displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 915
331 Extent of Highway Capacity Loss Due to Rainfall

Authors: Hashim Mohammed Alhassan, Johnnie Ben-Edigbe

Abstract:

Traffic flow in adverse weather conditions have been investigated in this study for general traffic, week day and week end traffic. The empirical evidence is strong in support of the view that rainfall affects macroscopic traffic flow parameters. Data generated from a basic highway section along J5 in Johor Bahru, Malaysia was synchronized with 161 rain events over a period of three months. This revealed a 4.90%, 6.60% and 11.32% reduction in speed for light rain, moderate rain and heavy rain conditions respectively. The corresponding capacity reductions in the three rainfall regimes are 1.08% for light rain, 6.27% for moderate rain and 29.25% for heavy rain. In the week day traffic, speed drops of 8.1% and 16.05% were observed for light and heavy conditions. The moderate rain condition speed increased by 12.6%. The capacity drops for week day traffic are 4.40% for light rain, 9.77% for moderate rain and 45.90% for heavy rain. The weekend traffic indicated speed difference between the dry condition and the three rainy conditions as 6.70% for light rain, 8.90% for moderate rain and 13.10% for heavy rain. The capacity changes computed for the weekend traffic were 0.20% in light rain, 13.90% in moderate rain and 16.70% in heavy rain. No traffic instabilities were observed throughout the observation period and the capacities reported for each rain condition were below the norain condition capacity. Rainfall has tremendous impact on traffic flow and this may have implications for shock wave propagation.

Keywords: Highway Capacity, Dry condition, Rainfall Intensity, Rainy condition, Traffic Flow Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055