Search results for: Low cost ECG machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3233

Search results for: Low cost ECG machine

2003 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: Artificial neural network, ANN, high performance concrete, rebound hammer, strength prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
2002 Data Preprocessing for Supervised Leaning

Authors: S. B. Kotsiantis, D. Kanellopoulos, P. E. Pintelas

Abstract:

Many factors affect the success of Machine Learning (ML) on a given task. The representation and quality of the instance data is first and foremost. If there is much irrelevant and redundant information present or noisy and unreliable data, then knowledge discovery during the training phase is more difficult. It is well known that data preparation and filtering steps take considerable amount of processing time in ML problems. Data pre-processing includes data cleaning, normalization, transformation, feature extraction and selection, etc. The product of data pre-processing is the final training set. It would be nice if a single sequence of data pre-processing algorithms had the best performance for each data set but this is not happened. Thus, we present the most well know algorithms for each step of data pre-processing so that one achieves the best performance for their data set.

Keywords: Data mining, feature selection, data cleaning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6105
2001 A Study of Cooperative Co-evolutionary Genetic Algorithm for Solving Flexible Job Shop Scheduling Problem

Authors: Lee Yih Rou, Hishammuddin Asmuni

Abstract:

Flexible Job Shop Problem (FJSP) is an extension of classical Job Shop Problem (JSP). The FJSP extends the routing flexibility of the JSP, i.e assigning machine to an operation. Thus it makes it more difficult than the JSP. In this study, Cooperative Coevolutionary Genetic Algorithm (CCGA) is presented to solve the FJSP. Makespan (time needed to complete all jobs) is used as the performance evaluation for CCGA. In order to test performance and efficiency of our CCGA the benchmark problems are solved. Computational result shows that the proposed CCGA is comparable with other approaches.

Keywords: Co-evolution, Genetic Algorithm (GA), Flexible JobShop Problem(FJSP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
2000 Hardiness vs Alienation Personality Construct Essentially Explains Burnout Proclivity and Erroneous Computer Entry Problems in Rural Hellenic Hospital Labs

Authors: Angela–M. Paleologou, Aphrodite Dellaporta

Abstract:

Erroneous computer entry problems [here: 'e'errors] in hospital labs threaten the patients-–health carers- relationship, undermining the health system credibility. Are e-errors random, and do lab professionals make them accidentally, or may they be traced through meaningful determinants? Theories on internal causality of mistakes compel to seek specific causal ascriptions of hospital lab eerrors instead of accepting some inescapability. Undeniably, 'To Err is Human'. But in view of rapid global health organizational changes, e-errors are too expensive to lack in-depth considerations. Yet, that efunction might supposedly be entrenched in the health carers- job description remains under dispute – at least for Hellenic labs, where e-use falls behind generalized(able) appreciation and application. In this study: i) an empirical basis of a truly high annual cost of e-errors at about €498,000.00 per rural Hellenic hospital was established, hence interest in exploring the issue was sufficiently substantiated; ii) a sample of 270 lab-expert nurses, technicians and doctors were assessed on several personality, burnout and e-error measures, and iii) the hypothesis that the Hardiness vs Alienation personality construct disposition explains resistance vs proclivity to e-errors was tested and verified: Hardiness operates as a resilience source in the encounter of high pressures experienced in the hospital lab, whereas its 'opposite', i.e., Alienation, functions as a predictor, not only of making e-errors, but also of leading to burn-out. Implications for apt interventions are discussed.

Keywords: Hospital lab, personality hardiness/alienation, e-errors' cost, burnout.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
1999 Development of Better Quality Low-Cost Activated Carbon from South African Pine Tree (Pinus patula) Sawdust: Characterization and Comparative Phenol Adsorption

Authors: L. Mukosha, M. S. Onyango, A. Ochieng, H. Kasaini

Abstract:

The remediation of water resources pollution in developing countries requires the application of alternative sustainable cheaper and efficient end-of-pipe wastewater treatment technologies. The feasibility of use of South African cheap and abundant pine tree (Pinus patula) sawdust for development of lowcost AC of comparable quality to expensive commercial ACs in the abatement of water pollution was investigated. AC was developed at optimized two-stage N2-superheated steam activation conditions in a fixed bed reactor, and characterized for proximate and ultimate properties, N2-BET surface area, pore size distribution, SEM, pHPZC and FTIR. The sawdust pyrolysis activation energy was evaluated by TGA. Results indicated that the chars prepared at 800oC and 2hrs were suitable for development of better quality AC at 800oC and 47% burn-off having BET surface area (1086m2/g), micropore volume (0.26cm3/g), and mesopore volume (0.43cm3/g) comparable to expensive commercial ACs, and suitable for water contaminants removal. The developed AC showed basic surface functionality at pHPZC at 10.3, and a phenol adsorption capacity that was higher than that of commercial Norit (RO 0.8) AC. Thus, it is feasible to develop better quality low-cost AC from (Pinus patula) sawdust using twostage N2-steam activation in fixed-bed reactor.

Keywords: Activated carbon, phenol adsorption, sawdust integrated utilization, economical wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3473
1998 Continuous Text Translation Using Text Modeling in the Thetos System

Authors: Nina Suszczanska, Przemyslaw Szmal, Slawomir Kulikow

Abstract:

In the paper a method of modeling text for Polish is discussed. The method is aimed at transforming continuous input text into a text consisting of sentences in so called canonical form, whose characteristic is, among others, a complete structure as well as no anaphora or ellipses. The transformation is lossless as to the content of text being transformed. The modeling method has been worked out for the needs of the Thetos system, which translates Polish written texts into the Polish sign language. We believe that the method can be also used in various applications that deal with the natural language, e.g. in a text summary generator for Polish.

Keywords: anaphora, machine translation, NLP, sign language, text syntax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
1997 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling

Authors: Prof. Chokri SLIM

Abstract:

A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.

Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16690
1996 Symbolic Model Checking of Interactions in Sequence Diagrams with Combined Fragments by SMV

Authors: Yuka Kawakami, Tomoyuki Yokogawa, Hisashi Miyazaki, Sousuke Amasaki, Yoichiro Sato, Michiyoshi Hayase

Abstract:

In this paper, we proposed a method for detecting consistency violation between state machine diagrams and a sequence diagram defined in UML 2.0 using SMV. We extended a method expressing these diagrams defined in UML 1.0 with boolean formulas so that it can express a sequence diagram with combined fragments introduced in UML 2.0. This extension made it possible to represent three types of combined fragment: alternative, option and parallel. As a result of experiment, we confirmed that the proposed method could detect consistency violation correctly with SMV.

Keywords: UML, model checking, SMV, sequence diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
1995 The Coverage of the Object-Oriented Framework Application Class-Based Test Cases

Authors: Jehad Al Dallal, Paul Sorenson

Abstract:

An application framework provides a reusable design and implementation for a family of software systems. Frameworks are introduced to reduce the cost of a product line (i.e., family of products that share the common features). Software testing is a time consuming and costly ongoing activity during the application software development process. Generating reusable test cases for the framework applications at the framework development stage, and providing and using the test cases to test part of the framework application whenever the framework is used reduces the application development time and cost considerably. Framework Interface Classes (FICs) are classes introduced by the framework hooks to be implemented at the application development stage. They can have reusable test cases generated at the framework development stage and provided with the framework to test the implementations of the FICs at the application development stage. In this paper, we conduct a case study using thirteen applications developed using three frameworks; one domain oriented and two application oriented. The results show that, in general, the percentage of the number of FICs in the applications developed using domain frameworks is, on average, greater than the percentage of the number of FICs in the applications developed using application frameworks. Consequently, the reduction of the application unit testing time using the reusable test cases generated for domain frameworks is, in general, greater than the reduction of the application unit testing time using the reusable test cases generated for application frameworks.

Keywords: FICs, object-oriented framework, object-orientedframework application, software testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
1994 Building Relationship Network for Machine Analysis from Wear Debris Measurements

Authors: Qurban A Memon, Mohammad S. Laghari

Abstract:

Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear debris analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self-organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear debris. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.

Keywords: Relationship Network, Relationship Measurement, Self-organizing Clusters, Wear Debris Analysis, Kohonen Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
1993 Hybrid Heat Pump for Micro Heat Network

Authors: J. M. Counsell, Y. Khalid, M. J. Stewart

Abstract:

Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat.  For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system.  This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.

Keywords: Gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated& sustainable electric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
1992 Steady-State Performance of a New Model for UPFC Applied to Multi-Machines System with Nonlinear Load

Authors: S.Ali Al-Mawsawi

Abstract:

In this paper, a new developed construction model of the UPFC is proposed. The construction of this model consists of one shunt compensation block and two series compensation blocks. In this case, the UPFC with the new construction model will be investigated when it is installed in multi-machine systems with nonlinear load model. In addition, the steady–state performance of the new model operating as impedance compensation will be presented and compared with that obtained from the system without compensation.

Keywords: UPFC, PWM, Nonlinear load, Multi-Machines system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
1991 Ranking - Convex Risk Minimization

Authors: Wojciech Rejchel

Abstract:

The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.

Keywords: Convex loss function, empirical risk minimization, empirical process, U-process, boosting, euclidean family.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
1990 Quantitative Analysis of PCA, ICA, LDA and SVM in Face Recognition

Authors: Liton Jude Rozario, Mohammad Reduanul Haque, Md. Ziarul Islam, Mohammad Shorif Uddin

Abstract:

Face recognition is a technique to automatically identify or verify individuals. It receives great attention in identification, authentication, security and many more applications. Diverse methods had been proposed for this purpose and also a lot of comparative studies were performed. However, researchers could not reach unified conclusion. In this paper, we are reporting an extensive quantitative accuracy analysis of four most widely used face recognition algorithms: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) using AT&T, Sheffield and Bangladeshi people face databases under diverse situations such as illumination, alignment and pose variations.

Keywords: PCA, ICA, LDA, SVM, face recognition, noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2437
1989 Wear and Mechanical Properties of Nodular Iron Modified with Copper

Authors: J. Ramos, V. Gil, A. F. Torres

Abstract:

In this research (using induction furnace process) nodular iron with three different percentages of copper (residual, 0.5% and 1,2%) was obtained. Chemical analysis was performed by mass spectrometry and microstructures were characterized by Optical Microscopy (ASTM E3) and Scanning Electron Microscopy (SEM). The study of mechanical behavior was carried out in a mechanical test machine (ASTM E8) and a Pin on disk tribometer (ASTM G99) was used to assess wear resistance. It is observed that the dissolution of copper in crystal lattice increases the pearlite structure improving the wear and hardness behavior, but producing a contrary effect on the energy absorption.

Keywords: Ferritic and perlite structure, mechanical properties, nodular iron, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
1988 Optimization of Structure of Section-Based Automated Lines

Authors: R. Usubamatov, M. Z. Abdulmuin

Abstract:

Automated production lines with so called 'hard structures' are widely used in manufacturing. Designers segmented these lines into sections by placing a buffer between the series of machine tools to increase productivity. In real production condition the capacity of a buffer system is limited and real production line can compensate only some part of the productivity losses of an automated line. The productivity of such production lines cannot be readily determined. This paper presents mathematical approach to solving the structure of section-based automated production lines by criterion of maximum productivity.

Keywords: optimization production line, productivity, sections

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
1987 A Novel Fuzzy-Neural Based Medical Diagnosis System

Authors: S. Moein, S. A. Monadjemi, P. Moallem

Abstract:

In this paper, application of artificial neural networks in typical disease diagnosis has been investigated. The real procedure of medical diagnosis which usually is employed by physicians was analyzed and converted to a machine implementable format. Then after selecting some symptoms of eight different diseases, a data set contains the information of a few hundreds cases was configured and applied to a MLP neural network. The results of the experiments and also the advantages of using a fuzzy approach were discussed as well. Outcomes suggest the role of effective symptoms selection and the advantages of data fuzzificaton on a neural networks-based automatic medical diagnosis system.

Keywords: Artificial Neural Networks, Fuzzy Logic, MedicalDiagnosis, Symptoms, Fuzzification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
1986 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
1985 Classification Influence Index and its Application for k-Nearest Neighbor Classifier

Authors: Sejong Oh

Abstract:

Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.

Keywords: accuracy, classification, dataset, data preprocessing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
1984 An Efficient Feature Extraction Algorithm for the Recognition of Handwritten Arabic Digits

Authors: Ahmad T. Al-Taani

Abstract:

In this paper, an efficient structural approach for recognizing on-line handwritten digits is proposed. After reading the digit from the user, the slope is estimated and normalized for adjacent nodes. Based on the changing of signs of the slope values, the primitives are identified and extracted. The names of these primitives are represented by strings, and then a finite state machine, which contains the grammars of the digits, is traced to identify the digit. Finally, if there is any ambiguity, it will be resolved. Experiments showed that this technique is flexible and can achieve high recognition accuracy for the shapes of the digits represented in this work.

Keywords: Digits Recognition, Pattern Recognition, FeatureExtraction, Structural Primitives, Document Processing, Handwritten Recognition, Primitives Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648
1983 Concurrent Approach to Data Parallel Model using Java

Authors: Bala Dhandayuthapani Veerasamy

Abstract:

Parallel programming models exist as an abstraction of hardware and memory architectures. There are several parallel programming models in commonly use; they are shared memory model, thread model, message passing model, data parallel model, hybrid model, Flynn-s models, embarrassingly parallel computations model, pipelined computations model. These models are not specific to a particular type of machine or memory architecture. This paper expresses the model program for concurrent approach to data parallel model through java programming.

Keywords: Concurrent, Data Parallel, JDK, Parallel, Thread

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
1982 Preliminary Roadway Alignment Design: A Spatial-Data Optimization Approach

Authors: Y. Abdelrazig, R. Moses

Abstract:

Roadway planning and design is a very complex process involving five key phases before a project is completed; planning, project development, final design, right-of-way, and construction. The planning phase for a new roadway transportation project is a very critical phase as it greatly affects all latter phases of the project. A location study is usually performed during the preliminary planning phase in a new roadway project. The objective of the location study is to develop alignment alternatives that are cost efficient considering land acquisition and construction costs. This paper describes a methodology to develop optimal preliminary roadway alignments utilizing spatial-data. Four optimization criteria are taken into consideration; roadway length, land cost, land slope, and environmental impacts. The basic concept of the methodology is to convert the proposed project area into a grid, which represents the search space for an optimal alignment. The aforementioned optimization criteria are represented in each of the grid’s cells. A spatial-data optimization technique is utilized to find the optimal alignment in the search space based on the four optimization criteria. Two case studies for new roadway projects in Duval County in the State of Florida are presented to illustrate the methodology. The optimization output alignments are compared to the proposed Florida Department of Transportation (FDOT) alignments. The comparison is based on right-of-way costs for the alignments. For both case studies, the right-of-way costs for the developed optimal alignments were found to be significantly lower than the FDOT alignments.

Keywords: Optimization, planning, roadway alignment, FDOT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
1981 Investigation of Physical Properties of Asphalt Binder Modified by Recycled Polyethylene and Ground Tire Rubber

Authors: Sajjad H. Kasanagh, Perviz Ahmedzade, Alexander Fainleib, Taylan Gunay

Abstract:

Modification of asphalt is a fundamental method around the world mainly on the purpose of providing more durable pavements which lead to diminish repairing cost during the lifetime of highways. Various polymers such as styrene-butadiene-styrene (SBS) and ethylene vinyl acetate (EVA) make up the greater parts of the all-over asphalt modifiers generally providing better physical properties of asphalt by decreasing temperature dependency which eventually diminishes permanent deformation on highways such as rutting. However, some waste and low-cost materials such as recycled plastics and ground rubber tire have been attempted to utilize in asphalt as modifier instead of manufactured polymer modifiers due to decreasing the eventual highway cost. On the other hand, the usage of recycled plastics has become a worldwide requirement and awareness in order to decrease the pollution made by waste plastics. Hence, finding an area in which recycling plastics could be utilized has been targeted by many research teams so as to reduce polymer manufacturing and plastic pollution. To this end, in this paper, thermoplastic dynamic vulcanizate (TDV) obtained from recycled post-consumer polyethylene and ground tire rubber (GTR) were used to provide an efficient modifier for asphalt which decreases the production cost as well and finally might provide an ecological solution by decreasing polymer disposal problems. TDV was synthesized by the chemists in the research group by means of the abovementioned components that are considered as compatible physical characteristic of asphalt materials. TDV modified asphalt samples having different rate of proportions of 3, 4, 5, 6, 7 wt.% TDV modifier were prepared. Conventional tests, such as penetration, softening point and roll thin film oven (RTFO) tests were performed to obtain fundamental physical and aging properties of the base and modified binders. The high temperature performance grade (PG) of binders was determined by Superpave tests conducted on original and aged binders. The multiple stress creep and recovery (MSCR) test which is relatively up-to-date method for classifying asphalts taking account of their elasticity abilities was carried out to evaluate PG plus grades of binders. The results obtained from performance grading, and MSCR tests were also evaluated together so as to make a comparison between the methods both aiming to determine rheological parameters of asphalt. The test results revealed that TDV modification leads to a decrease in penetration, an increase in softening point, which proves an increasing stiffness of asphalt. DSR results indicate an improvement in PG for modified binders compared to base asphalt. On the other hand, MSCR results that are compatible with DSR results also indicate an enhancement on rheological properties of asphalt. However, according to the results, the improvement is not as distinct as observed in DSR results since elastic properties are fundamental in MSCR. At the end of the testing program, it can be concluded that TDV can be used as modifier which provides better rheological properties for asphalt and might diminish plastic waste pollution since the material is 100% recycled.

Keywords: Asphalt, ground tire rubber, recycled polymer, thermoplastic dynamic vulcanized.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
1980 Battery Energy Storage System Economic Benefits Assessment on a Network Frequency Control

Authors: Kréhi Serge Agbli, Samuel Portebos, Michaël Salomon

Abstract:

Here a methodology is considered aiming at evaluating the economic benefit of the provision of a primary frequency control unit using a Battery Energy Storage System (BESS). In this methodology, two control types (basic and hysteresis) are implemented and the corresponding minimum energy storage system power allowing to maintain the frequency drop inside a given threshold under a given contingency is identified and compared using DigSilent’s PowerFactory software. Following this step, the corresponding energy storage capacity (in MWh) is calculated. As PowerFactory is dedicated to dynamic simulation for transient analysis, a first order model related to the IEEE 9 bus grid used for the analysis under PowerFactory is characterized and implemented on MATLAB-Simulink. Primary frequency control is simulated using the two control types over one-month grid's frequency deviation data on this Simulink model. This simulation results in the energy throughput both basic and hysteresis BESSs. It emerges that the 15 minutes operation band of the battery capacity allocated to frequency control is sufficient under the considered disturbances. A sensitivity analysis on the width of the control deadband is then performed for the two control types. The deadband width variation leads to an identical sizing with the hysteresis control showing a better frequency control at the cost of a higher delivered throughput compared to the basic control. An economic analysis comparing the cost of the sized BESS to the potential revenues is then performed.

Keywords: Battery Energy Storage System, electrical network frequency stability, frequency control unit, PowerFactory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
1979 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.

Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602
1978 PSS and SVC Controller Design by Chaos and PSO Algorithms to Enhancing the Power System Stability

Authors: Saeed jalilzadeh, Mohammad Reza Safari Tirtashi, Mohsen Sadeghi

Abstract:

this paper focuses on designing of PSS and SVC controller based on chaos and PSO algorithms to improve the stability of power system. Single machine infinite bus (SMIB) system with SVC located at the terminal of generator has been considered to evaluate the proposed controllers where both SVC and PSS have the same controller. The coefficients of PSS and SVC controller have been optimized by chaos and PSO algorithms. Finally the system with proposed controllers has been simulated for the special disturbance in input power of generator, and then the dynamic responses of generator have been presented. The simulation results showed that the system composed with recommended controller has outstanding operation in fast damping of oscillations of power system.

Keywords: PSS, CHAOS, PSO, Stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
1977 Tool Path Generation and Manufacturing Process for Blades of a Compressor Rotor

Authors: C. Tung, P.-L. Tso

Abstract:

This paper presents a complete procedure for tool path planning and blade machining in 5-axis manufacturing. The actual cutting contact and cutter locations can be determined by lead and tilt angles. The tool path generation is implemented by piecewise curved approximation and chordal deviation detection. An application about drive surface method promotes flexibility of tool control and stability of machine motion. A real manufacturing process is proposed to separate the operation into three regions with five stages and to modify the local tool orientation with an interactive algorithm.

Keywords: 5-axis machining, tool orientation, lead and tilt angles, tool path generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
1976 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: Mining Big Data, Big Data, Machine learning, Data Streams, Telecommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2486
1975 A Design of Supply Chain Management System with Flexible Planning Capability

Authors: Chia-Hui Huang, Han-Ying Kao

Abstract:

In production planning (PP) periods with excess capacity and growing demand, the manufacturers have two options to use the excess capacity. First, it could do more changeovers and thus reduce lot sizes, inventories, and inventory costs. Second, it could produce in excess of demand in the period and build additional inventory that can be used to satisfy future demand increments, thus delaying the purchase of the next machine that is required to meet the growth in demand. In this study we propose an enhanced supply chain planning model with flexible planning capability. In addition, a 3D supply chain planning system is illustrated.

Keywords: Supply chain, capacity expansion, inventory management, planning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
1974 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection

Authors: Taiwo. M. Akinmuyisitan, John Cosmas

Abstract:

This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.

Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 318