Search results for: stylometric features.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1556

Search results for: stylometric features.

386 Geophysical Investigation of Abnormal Seepages in Goronyo Dam Sokoto, North Western Nigeria Using Self-Potential Method

Authors: A. I. Augie, M. Saleh, A. A. Gado

Abstract:

In this research, Self-Potential (SP) method was employed to locate anomalous electrical conductivity located in Goronyo area and also to determine the condition of the embankment of the dam. SP data were plotted against distance along with the profile and spacing of electrode using surfer software (version 12). High and low zones of SP values were identified along the right and left abutments of the dam reservoir. The regions with high SP values were described to be high tendency of fluid flow associate with wet sandy soil. These zones have the SP values ranging from 200 mV and above. High SP values were due to the high moisture content that may lead to the seepage of water leaking through this zone. The zones with high SP values occupied Profiles S1, S2, S3, S4 and S5 indicating the presence of potential seepage paths within the subsurface of the embankment. These regions of seepage were identified as weak zones and potential pathways through which water could be lost from the dam reservoir. The SP values for the regions range from 250 m to 400 m (S1), 306 m to 400 m (S2), 192 m to 400 m (S3), 48 m to 200 m (S4) and 7 m to 170 m (S5) with their corresponding maximum depths of 30 m, 28 m, 28 m, 30 m and 26 m respectively. However, zones of low SP values in the overburden were observed which shows the presence of intact regions, which may be due to the compactness and dryness around the dam. The weak zones were considered as geological features (such as fractures, joints, and faults) that have undermined the integrity of the dam structure, which has led to the abnormal seepage.

Keywords: Self-potential, subsurface, seepage, condition and dam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
385 Network Based Intrusion Detection and Prevention Systems in IP-Level Security Protocols

Authors: R. Kabila

Abstract:

IPsec has now become a standard information security technology throughout the Internet society. It provides a well-defined architecture that takes into account confidentiality, authentication, integrity, secure key exchange and protection mechanism against replay attack also. For the connectionless security services on packet basis, IETF IPsec Working Group has standardized two extension headers (AH&ESP), key exchange and authentication protocols. It is also working on lightweight key exchange protocol and MIB's for security management. IPsec technology has been implemented on various platforms in IPv4 and IPv6, gradually replacing old application-specific security mechanisms. IPv4 and IPv6 are not directly compatible, so programs and systems designed to one standard can not communicate with those designed to the other. We propose the design and implementation of controlled Internet security system, which is IPsec-based Internet information security system in IPv4/IPv6 network and also we show the data of performance measurement. With the features like improved scalability and routing, security, ease-of-configuration, and higher performance of IPv6, the controlled Internet security system provides consistent security policy and integrated security management on IPsec-based Internet security system.

Keywords: IDS, IPS, IP-Sec, IPv6, IPv4, VPN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4547
384 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation

Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang

Abstract:

In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building. Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that no more than 7% prediction error of annual cooling/heating load will be caused by the geometric simplification for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which means this method is applicable for building performance simulation.

Keywords: building energy model, simulation, geometric simplification, design, regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
383 Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems

Authors: Robert H¨ottger, Lukas Krawczyk, Burkhard Igel

Abstract:

This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Furthermore, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.

Keywords: Partitioning, mapping, distributed systems, scheduling, embedded multicore systems, model-based, system analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3297
382 A New Design of Temperature-Controlled Chamber for OLED Panels

Authors: Hsin-Hung Chang, Jin-Lung Guan, Ming-Ta Yang

Abstract:

This paper presents an inexpensive and effective temperature-controlled chamber for temperature environment tests of Organic Light Emitting Diode (OLED) panels. The proposed chamber is a compact warmer and cooler with an exact temperature control system. In the temperature-controlled space of the chamber, thermoelectric modules (TEMs) are utilized to cool or to heat OLED panels, novel fixtures are designed to flexibly clamp the OLED panels of different size, and special connectors for wiring between the OLED panels and the test instrument are supplied. The proposed chamber has the following features. (1) The TEMs are solid semi-conductive devices, so they operate without noise and without pollution. (2) The volume of the temperature-controlled space of the chamber about 160mm*160mm*120mm, so the chamber are compact and easy to move. (3) The range of the controlled temperatures is from -10 oC to +80 oC, and the precision is ?0.5 oC. (4) The test instrument can conveniently and easily measure the OLED panels via the novel fixtures and special connectors. In addition to a constant temperature being maintained in the chamber, a temperature shock experiments can run for a long time. Therefore, the chamber will be convenient and useful for temperature environment tests of OLED panels.

Keywords: Thermoelectric module, Temperature environment test, OLED, chamber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
381 Development of Regression Equation for Surface Finish and Analysis of Surface Integrity in EDM

Authors: Md. Ashikur Rahman Khan, M. M. Rahman

Abstract:

Electrical discharge machining (EDM) is a relatively modern machining process having distinct advantages over other machining processes and can machine Ti-alloys effectively. The present study emphasizes the features of the development of regression equation based on response surface methodology (RSM) for correlating the interactive and higher-order influences of machining parameters on surface finish of Titanium alloy Ti-6Al-4V. The process parameters selected in this study are discharge current, pulse on time, pulse off time and servo voltage. Machining has been accomplished using negative polarity of Graphite electrode. Analysis of variance is employed to ascertain the adequacy of the developed regression model. Experiments based on central composite of response surface method are carried out. Scanning electron microscopy (SEM) analysis was performed to investigate the surface topography of the EDMed job. The results evidence that the proposed regression equation can predict the surface roughness effectively. The lower ampere and short pulse on time yield better surface finish.

Keywords: Graphite electrode, regression model, response surface methodology, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548
380 Computational Simulation of Turbulence Heat Transfer in Multiple Rectangular Ducts

Authors: Azli Abd. Razak, Yusli Yaakob, Mohd Nazir Ramli

Abstract:

This study comprehensively simulate the use of k-ε model for predicting flow and heat transfer with measured flow field data in a stationary duct with elucidates on the detailed physics encountered in the fully developed flow region, and the sharp 180° bend region. Among the major flow features predicted with accuracy are flow transition at the entrance of the duct, the distribution of mean and turbulent quantities in the developing, fully developed, and sharp 180° bend, the development of secondary flows in the duct cross-section and the sharp 180° bend, and heat transfer augmentation. Turbulence intensities in the sharp 180° bend are found to reach high values and local heat transfer comparisons show that the heat transfer augmentation shifts towards the wall and along the duct. Therefore, understanding of the unsteady heat transfer in sharp 180° bends is important. The design and simulation are related to concept of fluid mechanics, heat transfer and thermodynamics. Simulation study has been conducted on the response of turbulent flow in a rectangular duct in order to evaluate the heat transfer rate along the small scale multiple rectangular duct

Keywords: Heat transfer, turbulence, rectangular duct, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
379 Person Identification by Using AR Model for EEG Signals

Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi

Abstract:

A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.

Keywords: Person Identification, Autoregressive Model, EEG, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
378 Improved Automated Classification of Alcoholics and Non-alcoholics

Authors: Ramaswamy Palaniappan

Abstract:

In this paper, several improvements are proposed to previous work of automated classification of alcoholics and nonalcoholics. In the previous paper, multiplayer-perceptron neural network classifying energy of gamma band Visual Evoked Potential (VEP) signals gave the best classification performance using 800 VEP signals from 10 alcoholics and 10 non-alcoholics. Here, the dataset is extended to include 3560 VEP signals from 102 subjects: 62 alcoholics and 40 non-alcoholics. Three modifications are introduced to improve the classification performance: i) increasing the gamma band spectral range by increasing the pass-band width of the used filter ii) the use of Multiple Signal Classification algorithm to obtain the power of the dominant frequency in gamma band VEP signals as features and iii) the use of the simple but effective knearest neighbour classifier. To validate that these two modifications do give improved performance, a 10-fold cross validation classification (CVC) scheme is used. Repeat experiments of the previously used methodology for the extended dataset are performed here and improvement from 94.49% to 98.71% in maximum averaged CVC accuracy is obtained using the modifications. This latest results show that VEP based classification of alcoholics is worth exploring further for system development.

Keywords: Alcoholic, Multilayer-perceptron, Nearest neighbour, Gamma band, MUSIC, Visual evoked potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
377 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words, classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
376 A New Face Detection Technique using 2D DCT and Self Organizing Feature Map

Authors: Abdallah S. Abdallah, A. Lynn Abbott, Mohamad Abou El-Nasr

Abstract:

This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the two-dimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised SOM training session is used to cluster feature vectors into groups, and to assign “face" or “non-face" labels to those clusters. Evaluation was performed using a new image database of 286 images, containing 1027 faces. After training, our detection technique achieved a detection rate of 77.94% during subsequent tests, with a false positive rate of 5.14%. To our knowledge, the proposed technique is the first to combine DCT-based feature extraction with a SOM for detecting human faces within color images. It is also one of a few attempts to combine a feature-invariant approach, such as color-based skin segmentation, together with appearance-based face detection. The main advantage of the new technique is its low computational requirements, in terms of both processing speed and memory utilization.

Keywords: Face detection, skin color segmentation, self-organizingmap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
375 Feature Extractions of EMG Signals during a Constant Workload Pedaling Exercise

Authors: Bing-Wen Chen, Alvin W. Y. Su, Yu-Lin Wang

Abstract:

Electromyography (EMG) is one of the important indicators during exercise, as it is closely related to the level of muscle activations. This work quantifies the muscle conditions of the lower limbs in a constant workload exercise. Surface EMG signals of the vastus laterals (VL), vastus medialis (VM), rectus femoris (RF), gastrocnemius medianus (GM), gastrocnemius lateral (GL) and Soleus (SOL) were recorded from fourteen healthy males. The EMG signals were segmented in two phases: activation segment (AS) and relaxation segment (RS). Period entropy (PE), peak count (PC), zero crossing (ZC), wave length (WL), mean power frequency (MPF), median frequency (MDF) and root mean square (RMS) are calculated to provide the quantitative information of the measured EMG segments. The outcomes reveal that the PE, PC, ZC and RMS have significantly changed (p<.001); WL presents moderately changed (p<.01); MPF and MDF show no changed (p>.05) during exercise. The results also suggest that the RS is also preferred for performance evaluation, while the results of the extracted features in AS are usually affected directly by the amplitudes. It is further found that the VL exhibits the most significant changes within six muscles during pedaling exercise. The proposed work could be applied to quantify the stamina analysis and to predict the instant muscle status in athletes.

Keywords: EMG, feature extraction, muscle status, pedaling exercise, relaxation segment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
374 Design and Simulation of CCM Boost Converter for Power Factor Correction Using Variable Duty Cycle Control

Authors: M. Nirmala

Abstract:

Power quality in terms of power factor, THD and precisely regulated output voltage are the major key factors for efficient operation of power electronic converters. This paper presents an easy and effective active wave shaping control scheme for the pulsed input current drawn by the uncontrolled diode bridge rectifier thereby achieving power factor nearer to unity and also satisfying the THD specifications. It also regulates the output DC-bus voltage. CCM boost power factor correction with constant frequency operation features smaller inductor current ripple resulting in low RMS currents on inductor and switch thus leading to low electromagnetic interference. The objective of this work is to develop an active PFC control circuit using CCM boost converter implementing variable duty cycle control. The proposed scheme eliminates inductor current sensing requirements yet offering good performance and satisfactory results for maintaining the power quality. Simulation results have been presented which covers load changes also.

Keywords: CCM Boost converter, Power factor Correction, Total harmonic distortion, Variable Duty Cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7511
373 A Mesh Free Moving Node Method To Analyze Flow Through Spirals of Orbiting Scroll Pump

Authors: I.Banerjee, A.K.Mahendra, T.K.Bera, B.G.Chandresh

Abstract:

The scroll pump belongs to the category of positive displacement pump can be used for continuous pumping of gases at low pressure apart from general vacuum application. The shape of volume occupied by the gas moves and deforms continuously as the spiral orbits. To capture flow features in such domain where mesh deformation varies with time in a complicated manner, mesh less solver was found to be very useful. Least Squares Kinetic Upwind Method (LSKUM) is a kinetic theory based mesh free Euler solver working on arbitrary distribution of points. Here upwind is enforced in molecular level based on kinetic flux vector splitting scheme (KFVS). In the present study we extended the LSKUM to moving node viscous flow application. This new code LSKUM-NS-MN for moving node viscous flow is validated for standard airfoil pitching test case. Simulation performed for flow through scroll pump using LSKUM-NS-MN code agrees well with the experimental pumping speed data.

Keywords: Least Squares, Moving node, Pitching, Spirals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
372 Method of Intelligent Fault Diagnosis of Preload Loss for Single Nut Ball Screws through the Sensed Vibration Signals

Authors: Yi-Cheng Huang, Yan-Chen Shin

Abstract:

This paper proposes method of diagnosing ball screw preload loss through the Hilbert-Huang Transform (HHT) and Multiscale entropy (MSE) process. The proposed method can diagnose ball screw preload loss through vibration signals when the machine tool is in operation. Maximum dynamic preload of 2 %, 4 %, and 6 % ball screws were predesigned, manufactured, and tested experimentally. Signal patterns are discussed and revealed using Empirical Mode Decomposition(EMD)with the Hilbert Spectrum. Different preload features are extracted and discriminated using HHT. The irregularity development of a ball screw with preload loss is determined and abstracted using MSE based on complexity perception. Experiment results show that the proposed method can predict the status of ball screw preload loss. Smart sensing for the health of the ball screw is also possible based on a comparative evaluation of MSE by the signal processing and pattern matching of EMD/HHT. This diagnosis method realizes the purposes of prognostic effectiveness on knowing the preload loss and utilizing convenience.

Keywords: Empirical Mode Decomposition, Hilbert-Huang Transform, Multi-scale Entropy, Preload Loss, Single-nut Ball Screw

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2847
371 Embedded Hardware and Software Design of Omnidirectional Autonomous Robotic Platform Suitable for Advanced Driver Assistance Systems Testing with Focus on Modularity and Safety

Authors: Ondřej Lufinka, Jan Kadeřábek, Juraj Prstek, Jiří Skála, Kamil Kosturik

Abstract:

This paper deals with the problem of using Autonomous Robotic Platforms (ARP) for the ADAS (Advanced Driver Assistance Systems) testing in automotive. There are different possibilities of the testing already in development and lately, the ARP are beginning to be used more and more widely. ARP discussed in this paper explores the hardware and software design possibilities related to the field of embedded systems. The paper focuses in its chapters on the introduction of the problem in general, then it describes the proposed prototype concept and its principles from the embedded HW and SW point of view. It talks about the key features that can be used for the innovation of these platforms (e.g., modularity, omnidirectional movement, common and non-traditional sensors used for localization, synchronization of more platforms and cars together or safety mechanisms). In the end, the future possible development of the project is discussed as well.

Keywords: ADAS Systems, autonomous robotic platform, embedded systems, hardware, localization, modularity, multiple robots synchronization, omnidirectional movement, safety mechanisms, software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
370 WiPoD Wireless Positioning System based on 802.11 WLAN Infrastructure

Authors: Haluk Gümüskaya, Hüseyin Hakkoymaz

Abstract:

This paper describes WiPoD (Wireless Position Detector) which is a pure software based location determination and tracking (positioning) system. It uses empirical signal strength measurements from different wireless access points for mobile user positioning. It is designed to determine the location of users having 802.11 enabled mobile devices in an 802.11 WLAN infrastructure and track them in real time. WiPoD is the first main module in our LBS (Location Based Services) framework. We tested K-Nearest Neighbor and Triangulation algorithms to estimate the position of a mobile user. We also give the analysis results of these algorithms for real time operations. In this paper, we propose a supportable, i.e. understandable, maintainable, scalable and portable wireless positioning system architecture for an LBS framework. The WiPoD software has a multithreaded structure and was designed and implemented with paying attention to supportability features and real-time constraints and using object oriented design principles. We also describe the real-time software design issues of a wireless positioning system which will be part of an LBS framework.

Keywords: Indoor location determination and tracking, positioning in Wireless LAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
369 Study on Geometric Design of Nay Pyi Taw-Mandalay Expressway and Possible Improvements; Sagarinn-Myinsain Portion

Authors: War War Myint

Abstract:

Geometric design is an important part of planning process design for physical highway to fill up basic function of roads, to give good traffic service. It is found that most of the road safety problems occur at the horizontal curves and complex-compound curves. In this paper, review on Sagarinn-Myinsain Portion of Nay Pyi Taw - Mandalay highway has been conducted in aspect of geometric design induced road safety condition. Horizontal alignment of geometric features and curve details are reviewed based on (AASHTO) standard and revised by Autodesk Land Desktop Software. Moreover, 85th Percentile Operation Speeds (V85) with driver confidence on horizontal curves is evaluated in order to obtain the range of highway safety factor (FS). The length of the selected highway portion is 13.65 miles and 8 lanes. The results of this study can be used to investigate the possible hazardous locations in advance and to revise how design radius and super elevation should be for better road safety performance for the selected portion. Moreover, the relationship between highway safety and highway geometry characteristics can also be known.

Keywords: Geometric design; horizontal alignment; superelevation; 85th percentile operation speed (V85), safety factor (FS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
368 Definition and Core Components of the Role-Partner Allocation Problem in Collaborative Networks

Authors: J. Andrade-Garda, A. Anguera, J. Ares-Casal, M. Hidalgo-Lorenzo, J.-A. Lara, D. Lizcano, S. Suárez-Garaboa

Abstract:

In the current constantly changing economic context, collaborative networks allow partners to undertake projects that would not be possible if attempted by them individually. These projects usually involve the performance of a group of tasks (named roles) that have to be distributed among the partners. Thus, an allocation/matching problem arises that will be referred to as Role-Partner Allocation problem. In real life this situation is addressed by negotiation between partners in order to reach ad hoc agreements. Besides taking a long time and being hard work, both historical evidence and economic analysis show that such approach is not recommended. Instead, the allocation process should be automated by means of a centralized matching scheme. However, as a preliminary step to start the search for such a matching mechanism (or even the development of a new one), the problem and its core components must be specified. To this end, this paper establishes (i) the definition of the problem and its constraints, (ii) the key features of the involved elements (i.e., roles and partners); and (iii) how to create preference lists both for roles and partners. Only this way it will be possible to conduct subsequent methodological research on the solution method.     

Keywords: Collaborative network, matching, partner, preference list, role.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
367 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: Algorithm recommendation, meta-learning, bioinformatics, hierarchical classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
366 Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case

Authors: Elif Derya UBEYLI, Inan GULER

Abstract:

A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.

Keywords: Chaotic signal, Electroencephalogram (EEG) signals, Feature extraction/selection, Lyapunov exponents

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2513
365 The Effects of Visual Elements and Cognitive Styles on Students Learning in Hypermedia Environment

Authors: Rishi Ruttun

Abstract:

One of the major features of hypermedia learning is its non-linear structure, allowing learners, the opportunity of flexible navigation to accommodate their own needs. Nevertheless, such flexibility can also cause problems such as insufficient navigation and disorientation for some learners, especially those with Field Dependent cognitive styles. As a result students learning performance can be deteriorated and in turn, they can have negative attitudes with hypermedia learning systems. It was suggested that visual elements can be used to compensate dilemmas. However, it is unclear whether these visual elements improve their learning or whether problems still exist. The aim of this study is to investigate the effect of students cognitive styles and visual elements on students learning performance and attitudes in hypermedia learning environment. Cognitive Style Analysis (CSA), Learning outcome in terms of pre and post-test, practical task, and Attitude Questionnaire (AQ) were administered to a sample of 60 university students. The findings revealed that FD students preformed equally to those of FI. Also, FD students experienced more disorientation in the hypermedia learning system where they depend a lot on the visual elements for navigation and orientation purposes. Furthermore, they had more positive attitudes towards the visual elements which escape them from experiencing navigation and disorientation dilemmas. In contrast, FI students were more comfortable, did not get disturbed or did not need some of the visual elements in the hypermedia learning system.

Keywords: Hypermedia learning, cognitive styles, visual elements, support, learning performance, attitudes and perceptions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
364 Alignment of a Combined Groin for Flow through a Straight Open Channel

Authors: M. Alauddin, M. A. Ullah, M. Alom, M. N. Islam

Abstract:

The rivers in Bangladesh are highly unstable having loose boundaries, mild slope of water surface and bed, irregular siltation of huge sediment coming from upstream, among others. The groins are installed in the river bank to deflect the flowing water away from the vulnerable zones. The conventional groins are found to be unstable and ineffective. The combined groin having both impermeable and permeable components in the same structure improves the flow field to function better over others. The main goal of this study is to analyze the hydraulic characteristics induced by the combined groins of different alignments by using a 2D numerical model, iRIC Nays2DH. In this numerical simulation, the K-ε model for turbulence and Cubic Interpolation Pseudo-particle (CIP) method for advective terms are utilized. A particular flow condition is applied in the channel for all sets of groins with different alignments. The simulation results reveal that the combined groins alter the flow patterns considerably, with no significant recirculation of flow in the groin field. The effect of different alignments of groins is found somewhat different. Based on hydraulic features caused by the groins, the combined groin that aligns the permeable component towards slightly downstream performs better over others.

Keywords: Combined groin, alignment, hydraulic characteristics, numerical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413
363 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling

Authors: K. Soldatova, Y. Galerkin

Abstract:

A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.

Keywords: Centrifugal compressor stage, centrifugal compressor, loading factor, gas dynamic performance curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
362 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis

Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache

Abstract:

This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.

Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55
361 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier

Authors: Atanu K Samanta, Asim Ali Khan

Abstract:

Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.

Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
360 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
359 Aspect-Level Sentiment Analysis with Multi-Channel and Graph Convolutional Networks

Authors: Jiajun Wang, Xiaoge Li

Abstract:

The purpose of the aspect-level sentiment analysis task is to identify the sentiment polarity of aspects in a sentence. Currently, most methods mainly focus on using neural networks and attention mechanisms to model the relationship between aspects and context, but they ignore the dependence of words in different ranges in the sentence, resulting in deviation when assigning relationship weight to other words other than aspect words. To solve these problems, we propose an aspect-level sentiment analysis model that combines a multi-channel convolutional network and graph convolutional network (GCN). Firstly, the context and the degree of association between words are characterized by Long Short-Term Memory (LSTM) and self-attention mechanism. Besides, a multi-channel convolutional network is used to extract the features of words in different ranges. Finally, a convolutional graph network is used to associate the node information of the dependency tree structure. We conduct experiments on four benchmark datasets. The experimental results are compared with those of other models, which shows that our model is better and more effective.

Keywords: Aspect-level sentiment analysis, attention, multi-channel convolution network, graph convolution network, dependency tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516
358 Data Integrity: Challenges in Health Information Systems in South Africa

Authors: T. Thulare, M. Herselman, A. Botha

Abstract:

Poor system use, including inappropriate design of health information systems, causes difficulties in communication with patients and increased time spent by healthcare professionals in recording the necessary health information for medical records. System features like pop-up reminders, complex menus, and poor user interfaces can make medical records far more time consuming than paper cards as well as affect decision-making processes. Although errors associated with health information and their real and likely effect on the quality of care and patient safety have been documented for many years, more research is needed to measure the occurrence of these errors and determine the causes to implement solutions. Therefore, the purpose of this paper is to identify data integrity challenges in hospital information systems through a scoping review and based on the results provide recommendations on how to manage these. Only 34 papers were found to be most suitable out of 297 publications initially identified in the field. The results indicated that human and computerized systems are the most common challenges associated with data integrity and factors such as policy, environment, health workforce, and lack of awareness attribute to these challenges but if measures are taken the data integrity challenges can be managed.

Keywords: Data integrity, data integrity challenges, hospital information systems, South Africa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
357 Web Page Watermarking: XML files using Synonyms and Acronyms

Authors: Nighat Mir, Sayed Afaq Hussain

Abstract:

Advent enhancements in the field of computing have increased massive use of web based electronic documents. Current Copyright protection laws are inadequate to prove the ownership for electronic documents and do not provide strong features against copying and manipulating information from the web. This has opened many channels for securing information and significant evolutions have been made in the area of information security. Digital Watermarking has developed into a very dynamic area of research and has addressed challenging issues for digital content. Watermarking can be visible (logos or signatures) and invisible (encoding and decoding). Many visible watermarking techniques have been studied for text documents but there are very few for web based text. XML files are used to trade information on the internet and contain important information. In this paper, two invisible watermarking techniques using Synonyms and Acronyms are proposed for XML files to prove the intellectual ownership and to achieve the security. Analysis is made for different attacks and amount of capacity to be embedded in the XML file is also noticed. A comparative analysis for capacity is also made for both methods. The system has been implemented using C# language and all tests are made practically to get the results.

Keywords: Watermarking, Extensible Markup Language (XML), Synonyms, Acronyms, Copyright protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285