Search results for: Shear strength parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5106

Search results for: Shear strength parameters

3936 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model

Authors: N. Jinesh, K. Shankar

Abstract:

This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.

Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
3935 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor

Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar

Abstract:

Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.

Keywords: Hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756
3934 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: Mineralogical structure, Pozzolanic reactivity, quartz, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
3933 Numerical Investigation on Performance of Expanded Polystyrene Geofoam Block in Protecting Buried Lifeline Structures

Authors: M. Abdollahi, S. N. Moghaddas Tafreshi

Abstract:

Expanded polystyrene (EPS) geofoam is often used in below ground applications in geotechnical engineering. A most recent configuration system implemented in roadways to protect lifelines such as buried pipes, electrical cables and culvert systems could be consisted of two EPS geofoam blocks, “posts” placed on each side of the structure, an EPS block capping, “beam” put atop two posts, and soil cover on the beam. In this configuration, a rectangular void space will be built atop the lifeline. EPS blocks will stand all the imposed vertical forces due to their strength and deformability, thus the lifeline will experience no vertical stress. The present paper describes the results of a numerical study on the post and beam configuration subjected to the static loading. Three-dimensional finite element analysis using ABAQUS software is carried out to investigate the effect of different parameters such as beam thickness, soil thickness over the beam, post height to width ratio, EPS density, and free span between two posts, on the stress distribution and the deflection of the beam. The results show favorable performance of EPS geofoam for protecting sensitive infrastructures.

Keywords: Beam, EPS block, numerical analysis, post, stress distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
3932 Synthesis of TiO2 Nanoparticles by Sol-Gel and Sonochemical Combination

Authors: Sabriye Piskin, Sibel Kasap, Muge Sari Yilmaz

Abstract:

Nanocrystalline TiO2 particles were successfully synthesized via sol-gel and sonochemical combination using titanium tetraisopropoxide as a precursor at lower temperature for a short time. The effect of the reaction parameters (hydrolysis media, acid media, and reaction temperatures) on the synthesis of TiO2 particles were investigated in the present study. Characterizations of synthesized samples were prepared by X-ray diffraction (XRD) analysis. It was shown that the reaction parameters played a significant role in the synthesis of TiO2 particles.

Keywords: Crystalline TiO2, sonochemical mechanism, sol-gel reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
3931 Methods for Manufacture of Corrugated Wire Mesh Laminates

Authors: Jeongho Choi, Krishna Shankar, Alan Fien, Andrew Neely

Abstract:

Corrugated wire mesh laminates (CWML) are a class of engineered open cell structures that have potential for applications in many areas including aerospace and biomedical engineering. Two different methods of fabricating corrugated wire mesh laminates from stainless steel, one using a high temperature Lithobraze alloy and the other using a low temperature Eutectic solder for joining the corrugated wire meshes are described herein. Their implementation is demonstrated by manufacturing CWML samples of 304 and 316 stainless steel (SST). It is seen that due to the facility of employing wire meshes of different densities and wire diameters, it is possible to create CWML laminates with a wide range of effective densities. The fabricated laminates are tested under uniaxial compression. The variation of the compressive yield strength with relative density of the CWML is compared to the theory developed by Gibson and Ashby for open cell structures [22]. It is shown that the compressive strength of the corrugated wire mesh laminates can be described using the same equations by using an appropriate value for the linear coefficient in the Gibson-Ashby model.

Keywords: cellular solids, corrugation, foam, open-cell, metal mesh, laminate, stainless steel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
3930 Investigation of Slope Stability in Gravel Soils in Unsaturated State

Authors: Seyyed Abolhasan Naeini, Ehsan Azini

Abstract:

In this paper, we consider the stability of a slope of 10 meters in silty gravel soils with modeling in the Geostudio Software.  we intend to use the parameters of the volumetric water content and suction dependent permeability and provides relationships and graphs using the parameters obtained from gradation tests and Atterberg’s limits. Also, different conditions of the soil will be investigated, including: checking the factor of safety and deformation rates and pore water pressure in drained, non-drained and unsaturated conditions, as well as the effect of reducing the water level on other parameters. For this purpose, it is assumed that the groundwater level is at a depth of 2 meters from the ground.  Then, with decreasing water level, the safety factor of slope stability was investigated and it was observed that with decreasing water level, the safety factor increased.

Keywords: Slope stability analysis, factor of safety, matric suction, unsaturated silty gravel soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
3929 The Role of Ionic Strength and Mineral Size to Zeta Potential for the Adhesion of P. putida to Mineral Surfaces

Authors: M. Z. Fathiah, R. G. Edyvean

Abstract:

Electrostatic interaction energy (ΔEEDL) is a part of the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, which, together with van der Waals (ΔEVDW) and acid base (ΔEAB) interaction energies, has been extensively used to investigate the initial adhesion of bacteria to surfaces. Electrostatic or electrical double layer interaction energy is considerably affected by surface potential; however it cannot be determined experimentally and is usually replaced by zeta (ζ) potential via electrophoretic mobility. This paper focusses on the effect of ionic concentration as a function of pH and the effect of mineral grain size on ζ potential. It was found that both ionic strength and mineral grain size play a major role in determining the value of ζ potential for the adhesion of P. putida to hematite and quartz surfaces. Higher ζ potential values lead to higher electrostatic interaction energies and eventually to higher total XDLVO interaction energy resulting in bacterial repulsion.

Keywords: XDLVO, Electrostatic interaction energy, zeta potential, P. putida, mineral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2605
3928 Performance Evaluation of Karanja Oil Based Biodiesel Engine Using Modified Genetic Algorithm

Authors: G. Bhushan, S. Dhingra, K. K. Dubey

Abstract:

This paper presents the evaluation of performance (BSFC and BTE), combustion (Pmax) and emission (CO, NOx, HC and smoke opacity) parameters of karanja biodiesel in a single cylinder, four stroke, direct injection diesel engine by considering significant engine input parameters (blending ratio, compression ratio and load torque). Multi-objective optimization of performance, combustion and emission parameters is also carried out in a karanja biodiesel engine using hybrid RSM-NSGA-II technique. The pareto optimum solutions are predicted by running the hybrid RSM-NSGA-II technique. Each pareto optimal solution is having its own importance. Confirmation tests are also conducted at randomly selected few pareto solutions to check the authenticity of the results.

Keywords: Karanja biodiesel, single cylinder direct injection diesel engine, response surface methodology, central composite rotatable design, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
3927 GSM Based Automated Embedded System for Monitoring and Controlling of Smart Grid

Authors: Amit Sachan

Abstract:

The purpose of this paper is to acquire the remote electrical parameters like Voltage, Current, and Frequency from Smart grid and send these real time values over GSM network using GSM Modem/phone along with temperature at power station. This project is also designed to protect the electrical circuitry by operating an Electromagnetic Relay. The Relay can be used to operate a Circuit Breaker to switch off the main electrical supply. User can send commands in the form of SMS messages to read the remote electrical parameters. This system also can automatically send the real time electrical parameters periodically (based on time settings) in the form of SMS. This system also send SMS alerts whenever the Circuit Breaker trips or whenever the Voltage or Current exceeds the predefined limits.

Keywords: GSM Modem, Initialization of ADC module of microcontroller, PIC-C compiler for Embedded C programming, PIC kit 2 programmer for dumping code into Micro controller, Express SCH for Circuit design, Proteus for hardware simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9480
3926 Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

Authors: T. D. Gunneswara Rao, Mudimby Andal

Abstract:

Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, as partial replacement to fine aggregates and as admixture. Addition of fly ash to the concrete in any one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India major number of thermal power plants is producing low calcium fly ash. Hence in the present investigation low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. More over the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2 and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces, beyond 30% replacement of cement by fly ash demanded more water content for constant workability.

Keywords: Cementing Efficiency, Compressive Strength, Low Calcium Fly Ash, Workability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
3925 Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

Authors: M. Saidi, F. Ait-Medjber, B. Safi, M. Samar

Abstract:

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of polycarboxylate superplasticizer on the workability of these and their action deflocculating of the recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0 /5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Keywords: Demolition wastes, recycled coarse aggregate, concrete, workability, mechanical strength, porosity/water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3388
3924 Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate

Authors: C. Lanzerstorfer, M. Hinterberger

Abstract:

The iron content of the ore used is crucial for the productivity and coke consumption rate in blast furnace pig iron production. Therefore, most iron ore deposits are processed in beneficiation plants to increase the iron content and remove impurities. In several comminution stages, the particle size of the ore is reduced to ensure that the iron oxides are physically liberated from the gangue. Subsequently, physical separation processes are applied to concentrate the iron ore. The fine-grained ore concentrates produced need to be transported, stored, and processed. For smooth operation of these processes, the flow properties of the material are crucial. The flowability of powders depends on several properties of the material: grain size, grain size distribution, grain shape, and moisture content of the material. The flowability of powders can be measured using ring shear testers. In this study, the influence of the moisture content on the flowability for the Krivoy Rog magnetite iron ore concentrate was investigated. Dry iron ore concentrate was mixed with varying amounts of water to produce samples with a moisture content in the range of 0.2 to 12.2%. The flowability of the samples was investigated using a Schulze ring shear tester. At all measured values of the normal stress (1.0 kPa – 20 kPa), the flowability decreased significantly from dry ore to a moisture content of approximately 3-5%. At higher moisture contents, the flowability was nearly constant, while at the maximum moisture content the flowability improved for high values of the normal stress only. The results also showed an improving flowability with increasing consolidation stress for all moisture content levels investigated. The wall friction angle of the dust with carbon steel (S235JR), and an ultra-high molecule low-pressure polyethylene (Robalon) was also investigated. The wall friction angle increased significantly from dry ore to a moisture content of approximately 3%. For higher moisture content levels, the wall friction angles were nearly constant. Generally, the wall friction angle was approximately 4° lower at the higher wall normal stress.

Keywords: Iron ore concentrate, flowability, moisture content, wall friction angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
3923 Numerical Optimization within Vector of Parameters Estimation in Volatility Models

Authors: J. Arneric, A. Rozga

Abstract:

In this paper usefulness of quasi-Newton iteration procedure in parameters estimation of the conditional variance equation within BHHH algorithm is presented. Analytical solution of maximization of the likelihood function using first and second derivatives is too complex when the variance is time-varying. The advantage of BHHH algorithm in comparison to the other optimization algorithms is that requires no third derivatives with assured convergence. To simplify optimization procedure BHHH algorithm uses the approximation of the matrix of second derivatives according to information identity. However, parameters estimation in a/symmetric GARCH(1,1) model assuming normal distribution of returns is not that simple, i.e. it is difficult to solve it analytically. Maximum of the likelihood function can be founded by iteration procedure until no further increase can be found. Because the solutions of the numerical optimization are very sensitive to the initial values, GARCH(1,1) model starting parameters are defined. The number of iterations can be reduced using starting values close to the global maximum. Optimization procedure will be illustrated in framework of modeling volatility on daily basis of the most liquid stocks on Croatian capital market: Podravka stocks (food industry), Petrokemija stocks (fertilizer industry) and Ericsson Nikola Tesla stocks (information-s-communications industry).

Keywords: Heteroscedasticity, Log-likelihood Maximization, Quasi-Newton iteration procedure, Volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650
3922 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval

Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema

Abstract:

The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.

Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
3921 Evaluation of a PSO Approach for Optimum Design of a First-Order Controllers for TCP/AQM Systems

Authors: Sana Testouri, Karim Saadaoui, Mohamed Benrejeb

Abstract:

This paper presents a Particle Swarm Optimization (PSO) method for determining the optimal parameters of a first-order controller for TCP/AQM system. The model TCP/AQM is described by a second-order system with time delay. First, the analytical approach, based on the D-decomposition method and Lemma of Kharitonov, is used to determine the stabilizing regions of a firstorder controller. Second, the optimal parameters of the controller are obtained by the PSO algorithm. Finally, the proposed method is implemented in the Network Simulator NS-2 and compared with the PI controller.

Keywords: AQM, first-order controller, time delay, stability, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
3920 Density, Strength, Thermal Conductivity and Leachate Characteristics of Light-Weight Fired Clay Bricks Incorporating Cigarette Butts

Authors: Aeslina Abdul Kadir, Abbas Mohajerani, Felicity Roddick, John Buckeridge

Abstract:

Several trillion cigarettes produced worldwide annually lead to many thousands of kilograms of toxic waste. Cigarette butts (CBs) accumulate in the environment due to the poor biodegradability of the cellulose acetate filters. This paper presents some of the results from a continuing study on recycling CBs into fired clay bricks. Physico-mechanical properties of fired clay bricks manufactured with different percentages of CBs are reported and discussed. The results show that the density of fired bricks was reduced by up to 30 %, depending on the percentage of CBs incorporated into the raw materials. Similarly, the compressive strength of bricks tested decreased according to the percentage of CBs included in the mix. The thermal conductivity performance of bricks was improved by 51 and 58 % for 5 and 10 % CBs content respectively. Leaching tests were carried out to investigate the levels of possible leachates of heavy metals from the manufactured clay-CB bricks. The results revealed trace amounts of heavy metals.

Keywords: Cigarette butts, Fired clay bricks, Light bricks, Recycling waste, Thermal conductivity, Leachates, Leaching test

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4918
3919 Direct and Indirect Somatic Embryogenesis from Petiole and Leaf Explants of Purple Fan Flower (Scaevola aemula R. Br. cv. 'Purple Fanfare')

Authors: Shyama Ranjani Weerakoon

Abstract:

Direct and indirect somatic embryogenesis (SE) from petiole and leaf explants of Scaevola aemula R. Br. cv. 'Purple Fanfare' was achieved. High frequency of somatic embryos was obtained directly from petiole and leaf explants using an inductive plant growth regulator signal thidiazuron (TDZ). Petiole explants were more responsive to SE than leaves. Plants derived from somatic embryos of petiole explants germinated more readily into plants. SE occurred more efficiently in half-strength Murashige and Skoog (MS) medium than in full-strength MS medium. Non-embryogenic callus induced by 2, 4-dichlorophenoxyacetic acid was used to investigate the feasibility of obtaining SE with TDZ as a secondary inductive plant growth regulator (PGR) signal. Non-embryogenic callus of S. aemula was able to convert into an “embryogenic competent mode" with PGR signal. Protocol developed for induction of direct and indirect somatic embryogenesis in S. aemula can improve the large scale propagation system of the plant in future.

Keywords: Petiole and leaf explants, Scaevola aemula, Somaticembryogenesis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
3918 Microstructural and In-Vitro Characterization of Glass-Reinforced Hydroxyapatite Composites

Authors: Uma Batra, Seema Kapoor

Abstract:

Commercial hydroxyapatite (HA) was reinforced by adding 2, 5, and 10 wt % of 28.5%CaO-28.5%P2O5-38%Na2 O- 5%CaF2 based glass and then sintered. Although HA shows good biocompatibility with the human body, its applications are limited to non load-bearing areas and coatings due to its poor mechanical properties. These mechanical properties can be improved substantially with addition of glass ceramics by sintering. In this study, the effects of sintering hydroxyapatite with above specified phosphate glass additions are quantified. Each composition was sintered over a range of temperatures. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phases of the composites. The density, microhardness, and compressive strength were measured using Archimedes Principle, Vickers Microhardness Tester (at 0.98 N), and Instron Universal Testing Machine (cross speed of 0.5 mm/min) respectively. These results were used to indicate which composition provided suitable material for use in hard tissue replacement. Composites containing 10 wt % glass additions formed dense HA/TCP (tricalcium phosphate) composite materials possessing good compressive strength and hardness than HA. In-vitro bioactivity was assessed by evaluating changes in pH and Ca2+ ion concentration of SBF-simulated body fluid on immersion of these composites in it for two weeks.

Keywords: Bioglass, Composite, Hydroxyapatite, Sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
3917 Energy Loss at Drops using Neuro Solutions

Authors: Farzin Salmasi

Abstract:

Energy dissipation in drops has been investigated by physical models. After determination of effective parameters on the phenomenon, three drops with different heights have been constructed from Plexiglas. They have been installed in two existing flumes in the hydraulic laboratory. Several runs of physical models have been undertaken to measured required parameters for determination of the energy dissipation. Results showed that the energy dissipation in drops depend on the drop height and discharge. Predicted relative energy dissipations varied from 10.0% to 94.3%. This work has also indicated that the energy loss at drop is mainly due to the mixing of the jet with the pool behind the jet that causes air bubble entrainment in the flow. Statistical model has been developed to predict the energy dissipation in vertical drops denotes nonlinear correlation between effective parameters. Further an artificial neural networks (ANNs) approach was used in this paper to develop an explicit procedure for calculating energy loss at drops using NeuroSolutions. Trained network was able to predict the response with R2 and RMSE 0.977 and 0.0085 respectively. The performance of ANN was found effective when compared to regression equations in predicting the energy loss.

Keywords: Air bubble, drop, energy loss, hydraulic jump, NeuroSolutions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
3916 Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP

Authors: Guillaume Mullier, Jean François Chatelain

Abstract:

Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300m/min cutting speed and 1140mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded KType thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature.

Keywords: Composites, Trimming, Thermal Damage, Surface Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
3915 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T

Authors: M. N. Islam, B. Boswell, Y. R. Ginting

Abstract:

The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.

Keywords: Circularity, diameter error, drilling canned cycle, Pareto ANOVA, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143
3914 Modelling, Simulation and Validation of Plastic Zone Size during Deformation of Mild Steel

Authors: S. O. Adeosun, E. I. Akpan, S. A. Balogun, O. O. Taiwo

Abstract:

A model to predict the plastic zone size for material under plane stress condition has been developed and verified experimentally. The developed model is a function of crack size, crack angle and material property (dislocation density). Simulation and validation results show that the model developed show good agreement with experimental results. Samples of low carbon steel (0.035%C) with included surface crack angles of 45o, 50o, 60o, 70o and 90o and crack depths of 2mm and 4mm were subjected to low strain rate between 0.48 x 10-3 s-1 – 2.38 x 10-3 s-1. The mechanical properties studied were ductility, tensile strength, modulus of elasticity, yield strength, yield strain, stress at fracture and fracture toughness. The experimental study shows that strain rate has no appreciable effect on the size of plastic zone while crack depth and crack angle plays an imperative role in determining the size of the plastic zone of mild steel materials.

Keywords: Applied stress, crack angle, crack size, material property, plastic zone size, strain rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
3913 A Study on the Condition Monitoring of Transmission Line by On-line Circuit Parameter Measurement

Authors: Il Dong Kim, Jin Rak Lee, Young Jun Ko, Young Taek Jin

Abstract:

An on-line condition monitoring method for transmission line is proposed using electrical circuit theory and IT technology in this paper. It is reasonable that the circuit parameters such as resistance (R), inductance (L), conductance (g) and capacitance (C) of a transmission line expose the electrical conditions and physical state of the line. Those parameters can be calculated from the linear equation composed of voltages and currents measured by synchro-phasor measurement technique at both end of the line. A set of linear voltage drop equations containing four terminal constants (A, B ,C ,D ) are mathematical models of the transmission line circuits. At least two sets of those linear equations are established from different operation condition of the line, they may mathematically yield those circuit parameters of the line. The conditions of line connectivity including state of connecting parts or contacting parts of the switching device may be monitored by resistance variations during operation. The insulation conditions of the line can be monitored by conductance (g) and capacitance(C) measurements. Together with other condition monitoring devices such as partial discharge, sensors and visual sensing device etc.,they may give useful information to monitor out any incipient symptoms of faults. The prototype of hardware system has been developed and tested through laboratory level simulated transmission lines. The test has shown enough evident to put the proposed method to practical uses.

Keywords: Transmission Line, Condition Monitoring, Circuit Parameters, Synchro- phasor Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3198
3912 Utilization of Demolished Concrete Waste for New Construction

Authors: Asif Husain, Majid Matouq Assas

Abstract:

In recent years demolished concrete waste handling and management is the new primary challenging issue faced by the countries all over the world. It is very challenging and hectic problem that has to be tackled in an indigenous manner, it is desirable to completely recycle demolished concrete waste in order to protect natural resources and reduce environmental pollution. In this research paper an experimental study is carried out to investigate the feasibility and recycling of demolished waste concrete for new construction. The present investigation to be focused on recycling demolished waste materials in order to reduce construction cost and resolving housing problems faced by the low income communities of the world. The crushed demolished concrete wastes is segregated by sieving to obtain required sizes of aggregate, several tests were conducted to determine the aggregate properties before recycling it into new concrete. This research shows that the recycled aggregate that are obtained from site make good quality concrete. The compressive strength test results of partial replacement and full recycled aggregate concrete and are found to be higher than the compressive strength of normal concrete with new aggregate.

Keywords: Demolished, concrete waste, recycle, new concrete, fresh coarse aggregate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5842
3911 Influence of Temperature Variations on Calibrated Cameras

Authors: Peter Podbreznik, Božidar Potocnik

Abstract:

The camera parameters are changed due to temperature variations, which directly influence calibrated cameras accuracy. Robustness of calibration methods were measured and their accuracy was tested. An error ratio due to camera parameters change with respect to total error originated during calibration process was determined. It pointed out that influence of temperature variations decrease by increasing distance of observed objects from cameras.

Keywords: camera calibration, perspective projection matrix, epipolar geometry, temperature variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
3910 Application of Generalized Autoregressive Score Model to Stock Returns

Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke

Abstract:

The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.

Keywords: Generalized autoregressive score model, stock returns, time-varying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
3909 Optimization of Material Removal Rate in Electrical Discharge Machining Using Fuzzy Logic

Authors: Amit Kohli, Aashim Wadhwa, Tapan Virmani, Ujjwal Jain

Abstract:

The objective of present work is to stimulate the machining of material by electrical discharge machining (EDM) to give effect of input parameters like discharge current (Ip), pulse on time (Ton), pulse off time (Toff) which can bring about changes in the output parameter, i.e. material removal rate. Experimental data was gathered from die sinking EDM process using copper electrode and Medium Carbon Steel (AISI 1040) as work-piece. The rules of membership function (MF) and the degree of closeness to the optimum value of the MMR are within the upper and lower range of the process parameters. It was found that proposed fuzzy model is in close agreement with the experimental results. By Intelligent, model based design and control of EDM process parameters in this study will help to enable dramatically decreased product and process development cycle times.

Keywords: Electrical discharge Machining (EDM), Fuzzy Logic, Material removal rate (MRR), Membership functions (MF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749
3908 Design of Gain Scheduled Fuzzy PID Controller

Authors: Leehter Yao, Chin-Chin Lin

Abstract:

An adaptive fuzzy PID controller with gain scheduling is proposed in this paper. The structure of the proposed gain scheduled fuzzy PID (GS_FPID) controller consists of both fuzzy PI-like controller and fuzzy PD-like controller. Both of fuzzy PI-like and PD-like controllers are weighted through adaptive gain scheduling, which are also determined by fuzzy logic inference. A modified genetic algorithm called accumulated genetic algorithm is designed to learn the parameters of fuzzy inference system. In order to learn the number of fuzzy rules required for the TSK model, the fuzzy rules are learned in an accumulated way. In other words, the parameters learned in the previous rules are accumulated and updated along with the parameters in the current rule. It will be shown that the proposed GS_FPID controllers learned by the accumulated GA perform well for not only the regular linear systems but also the higher order and time-delayed systems.

Keywords: Gain scheduling, fuzzy PID controller, adaptive control, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4061
3907 Wicking and Evaporation of Liquids in Knitted Fabrics: Analytic Solution of Capillary Rise Restrained by Gravity and Evaporation

Authors: N. S. Achour, M. Hamdaoui, S. Ben Nasrallah

Abstract:

Wicking and evaporation of water in porous knitted fabrics is investigated by combining experimental and analytical approaches: The standard wicking model from Lucas and Washburn is enhanced to account for evaporation and gravity effects. The goal is to model the effect of gravity and evaporation on wicking using simple analytical expressions and investigate the influence of fabrics geometrical parameters, such as porosity and thickness on evaporation impact on maximum reachable height values. The results show that fabric properties have a significant influence on evaporation effect. In this paper, an experimental study of determining water kinetics from different knitted fabrics were gravimetrically investigated permitting the measure of the mass and the height of liquid rising in fabrics in various atmospheric conditions. From these measurements, characteristic pore parameters (capillary radius and permeability) can be determined.

Keywords: Evaporation, experimental study, geometrical parameters, model, porous knitted fabrics, wicking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079