Search results for: kinetic study
12929 Role of Fish Hepatic Aldehyde Oxidase in Oxidative in vitro Metabolism of Phenanthridine Heterocyclic Aromatic Compound
Authors: Khaled S. Al Salhen
Abstract:
Aldehyde oxidase is molybdo-flavoenzyme involved in the oxidation of hundreds of endogenous and exogenous and N-heterocyclic compounds and environmental pollutants. Uncharged N-heterocyclic aromatic compounds such phenanthridine are commonly distributed pollutants in soil, air, sediments, surface water and groundwater, and in animal and plant tissues. Phenanthridine as uncharged N-heterocyclic aromatic compound was incubated with partially purified aldehyde oxidase from rainbow trout fish liver. Reversed-phase HLPC method was used to separate the oxidation products from phenanthridine and the metabolite was identified. The 6(5H)-phenanthridinone was identified the major metabolite by partially purified aldehyde oxidase from fish liver. Kinetic constant for the oxidation reactions were determined spectrophotometrically and showed that this substrate has a good affinity (Km = 78 ± 7.6µM) for hepatic aldehyde oxidase, will be a significant pathway. This study confirms that partially purified aldehyde oxidase from fish liver is indeed the enzyme responsible for the in vitro production 6(5H)-phenanthridinone metabolite as it is a major metabolite by mammalian aldehyde oxidase, coupled with a relatively high oxidation rate (0.77± 0.03 nmol/min/mg protein). In addition, the kinetic parameters of hepatic fish aldehyde oxidase towards the phenanthridine substrate indicate that in vitro biotransformation by hepatic fish aldehyde oxidase will be a significant pathway. This study confirms that partially purified aldehyde oxidase from fish liver is indeed the enzyme responsible for the in vitro production 6(5H)-phenanthridinone metabolite as it is a major metabolite by mammalian aldehyde oxidase.
Keywords: Aldehyde oxidase, Fish, Phenanthridine, Specificity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228012928 CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity
Authors: A. Khaleel, S. Gao
Abstract:
Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k-ε models such as standard, RNG and Realizable k-ε model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown good ability of this method in predicting more detailed flow structures in the cavity.Keywords: Mixed convection, Lid-driven cavity, Turbulent flow, RANS model, URANS model, Large eddy simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227412927 Tumble Flow Analysis in an Unfired Engine Using Particle Image Velocimetry
Authors: B. Murali Krishna, J. M. Mallikarjuna
Abstract:
This paper deals with the experimental investigations of the in-cylinder tumble flows in an unfired internal combustion engine with a flat piston at the engine speeds ranging from 400 to 1000 rev/min., and also with the dome and dome-cavity pistons at an engine speed of 1000 rev/min., using particle image velocimetry. From the two-dimensional in-cylinder flow measurements, tumble flow analysis is carried out in the combustion space on a vertical plane passing through cylinder axis. To analyze the tumble flows, ensemble average velocity vectors are used and to characterize it, tumble ratio is estimated. From the results, generally, we have found that tumble ratio varies mainly with crank angle position. Also, at the end of compression stroke, average turbulent kinetic energy is more at higher engine speeds. We have also found that, at 330 crank angle position, flat piston shows an improvement of about 85 and 23% in tumble ratio, and about 24 and 2.5% in average turbulent kinetic energy compared to dome and dome-cavity pistons respectivelyKeywords: In-cylinder flow, Dome piston, Cavity, Tumble, PIV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228112926 Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin
Authors: A. A. Hekmatzadeh, A. Karimi-Jashani, N. Talebbeydokhti
Abstract:
The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.Keywords: External mass transfer, pore volume diffusion, surface diffusion, mass action law isotherm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224012925 Removal of Malachite Green from Aqueous Solution using Hydrilla verticillata -Optimization, Equilibrium and Kinetic Studies
Authors: R. Rajeshkannan, M. Rajasimman, N. Rajamohan
Abstract:
In this study, the sorption of Malachite green (MG) on Hydrilla verticillata biomass, a submerged aquatic plant, was investigated in a batch system. The effects of operating parameters such as temperature, adsorbent dosage, contact time, adsorbent size, and agitation speed on the sorption of Malachite green were analyzed using response surface methodology (RSM). The proposed quadratic model for central composite design (CCD) fitted very well to the experimental data that it could be used to navigate the design space according to ANOVA results. The optimum sorption conditions were determined as temperature - 43.5oC, adsorbent dosage - 0.26g, contact time - 200min, adsorbent size - 0.205mm (65mesh), and agitation speed - 230rpm. The Langmuir and Freundlich isotherm models were applied to the equilibrium data. The maximum monolayer coverage capacity of Hydrilla verticillata biomass for MG was found to be 91.97 mg/g at an initial pH 8.0 indicating that the optimum sorption initial pH. The external and intra particle diffusion models were also applied to sorption data of Hydrilla verticillata biomass with MG, and it was found that both the external diffusion as well as intra particle diffusion contributes to the actual sorption process. The pseudo-second order kinetic model described the MG sorption process with a good fitting.
Keywords: Response surface methodology, Hydrilla verticillata, malachite green, adsorption, central composite design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199012924 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force
Authors: L. Parisi
Abstract:
In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.
Keywords: Kinemic gait data, Neural networks, Hip joint implant, Hip arthroplasty, Rehabilitation Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179812923 Impact Temperature in Splat and Splat-Substrate Interface in HVOF Thermal Spraying
Authors: M. Jalali Azizpour, D. Sajedipour, H. Mohammadi Majd, M.R. Tahmasbi Birgani, M.Rabiae
Abstract:
An explicit axisymmetrical FE methodology is developed here to study the particle temperature arising in WC-Co particle on an AISI 1045 steel substrate. Parameters of constitutive Johnson-cook model were used for simulation. The results show that particle velocity and kinetic energy have important role in temperature arising of particles.Keywords: FEM, HVOF, Interfacial Temperature, Splat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188712922 Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate
Authors: Abhishek Soni, A. Kumaraswamy, M. S. Mahesh
Abstract:
Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.Keywords: AISI 4340 steel, ballistic impact simulation, bullet penetration, non-linear FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126412921 Towards the Design of a GIS-Linked Agent-Based Model for the Lake Chad Basin Region: Challenges and Opportunities
Authors: Stephen Akuma, Isaac Terngu Adom, Evelyn Doofan Akuma
Abstract:
Generation after generation of humans has experienced conflicts leading to needless deaths. Usually, it begins as a minor argument that occasionally escalates into a full-fledged conflict. There has been a lingering crisis in the Lake Chad Basin (LCB) of Africa for over a decade leading to bloodshed that has claimed thousands of lives. The terrorist group, Boko Haram has claimed responsibility for these deaths. Efforts have been made by the governments in the LCB region to end the crisis through kinetic approaches, but the conflict persists. In this work, we explored non-kinetic methods used by social scientists in resolving conflicts, with a focus on computational approaches due to the increasing processing power of the computer. Firstly, we reviewed the innovative computational methods available for researchers working on conflict, violence, and peace. Secondly, we described how an Agent-Based Model (ABM) can be linked with a Geographic Information System (GIS) to model the LCB. Finally, this research discusses the challenges and opportunities in constructing a Geographic Information System linked Agent-Based Model of the LCB region.
Keywords: Agent-based modelling, conflict, Geographical Information Systems, Lake Chad Basin, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14312920 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation
Authors: Nguyen Thu Huong, Nguyen Quang Bau
Abstract:
The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values.Keywords: Hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187212919 Kinetic Theory Based CFD Modeling of Particulate Flows in Horizontal Pipes
Authors: Pandaba Patro, Brundaban Patro
Abstract:
The numerical simulation of fully developed gas–solid flow in a horizontal pipe is done using the eulerian-eulerian approach, also known as two fluids modeling as both phases are treated as continuum and inter-penetrating continua. The solid phase stresses are modeled using kinetic theory of granular flow (KTGF). The computed results for velocity profiles and pressure drop are compared with the experimental data. We observe that the convection and diffusion terms in the granular temperature cannot be neglected in gas solid flow simulation along a horizontal pipe. The particle-wall collision and lift also play important role in eulerian modeling. We also investigated the effect of flow parameters like gas velocity, particle properties and particle loading on pressure drop prediction in different pipe diameters. Pressure drop increases with gas velocity and particle loading. The gas velocity has the same effect ((proportional toU2 ) as single phase flow on pressure drop prediction. With respect to particle diameter, pressure drop first increases, reaches a peak and then decreases. The peak is a strong function of pipe bore.
Keywords: CFD, Eulerian modeling, gas solid flow, KTGF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317512918 Hall Coefficient in the Presence of Strong Electromagnetic Waves Caused by Confined Electrons and Phonons in a Rectangular Quantum Wire
Authors: Nguyen Quang Bau, Nguyen Thu Huong, Dang Thi Thanh Thuy
Abstract:
The analytic expression for the Hall Coefficient (HC) caused by the confined electrons in the presence of a strong electromagnetic wave (EMW) including the effect of phonon confinement in rectangular quantum wires (RQWs) is calculated by using the quantum kinetic equation for electrons in the case of electron - optical phonon scattering. It is because the expression of the HC for the confined phonon case contains indexes m, m’ which are specific to the phonon confinement. The expression in a RQW is different from that for the case of unconfined phonons in a RQW or in 2D. The results are numerically calculated and discussed for a GaAs/GaAsAl RQW. The numerical results show that HC in a RQW can have both negative and positive values. This is different from the case of the absence of EMW and the case presence of EMW including the effect of phonon unconfinement in a RQW. These results are also compared with those in the case of unconfined phonons in a RQW and confined phonons in a quantum well. The conductivity in the case of confined phonon has more resonance peaks compared with that in case of unconfined phonons in a RQW. This new property is the same in quantum well. All results are compared with the case of unconfined phonons to see differences.Keywords: Hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation, confined phonons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153312917 Removal of Basic Blue 3 from Aqueous Solution by Adsorption Onto Durio Ziberthinus
Authors: Siew-Teng
Abstract:
Durian husk (DH), a fruit waste, was studied for its ability to remove Basic blue 3 (BB3) from aqueous solutions. Batch kinetic studies were carried out to study the sorption characteristics under various experimental conditions. The optimum pH for the dye removal occurred in the pH range of 3-10. Sorption was found to be concentration and agitation dependent. The kinetics of dye sorption fitted a pseudo-second order rate expression. Both Langmuir and Freundlich models appeared to provide reasonable fittings for the sorption data of BB3 on durian husk. Maximum sorption capacity calculated from the Langmuir model is 49.50 mg g-1.
Keywords: Durian husk, Batch study, Sorption, Basic Blue 3
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127712916 A New Method for Extracting Ocean Wave Energy Utilizing the Wave Shoaling Phenomenon
Authors: Shafiq R. Qureshi, Syed Noman Danish, Muhammad Saeed Khalid
Abstract:
Fossil fuels are the major source to meet the world energy requirements but its rapidly diminishing rate and adverse effects on our ecological system are of major concern. Renewable energy utilization is the need of time to meet the future challenges. Ocean energy is the one of these promising energy resources. Threefourths of the earth-s surface is covered by the oceans. This enormous energy resource is contained in the oceans- waters, the air above the oceans, and the land beneath them. The renewable energy source of ocean mainly is contained in waves, ocean current and offshore solar energy. Very fewer efforts have been made to harness this reliable and predictable resource. Harnessing of ocean energy needs detail knowledge of underlying mathematical governing equation and their analysis. With the advent of extra ordinary computational resources it is now possible to predict the wave climatology in lab simulation. Several techniques have been developed mostly stem from numerical analysis of Navier Stokes equations. This paper presents a brief over view of such mathematical model and tools to understand and analyze the wave climatology. Models of 1st, 2nd and 3rd generations have been developed to estimate the wave characteristics to assess the power potential. A brief overview of available wave energy technologies is also given. A novel concept of on-shore wave energy extraction method is also presented at the end. The concept is based upon total energy conservation, where energy of wave is transferred to the flexible converter to increase its kinetic energy. Squeezing action by the external pressure on the converter body results in increase velocities at discharge section. High velocity head then can be used for energy storage or for direct utility of power generation. This converter utilizes the both potential and kinetic energy of the waves and designed for on-shore or near-shore application. Increased wave height at the shore due to shoaling effects increases the potential energy of the waves which is converted to renewable energy. This approach will result in economic wave energy converter due to near shore installation and more dense waves due to shoaling. Method will be more efficient because of tapping both potential and kinetic energy of the waves.Keywords: Energy Utilizing, Wave Shoaling Phenomenon
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 266912915 Semiconductor Supported Gold Nanoparticles for Photodegradation of Rhodamine B
Authors: Ahmad Alshammari, Abdulaziz Bagabas
Abstract:
Rhodamine B (RB) is a toxic dye used extensively in textile industry, which must be remediated before its drainage to environment. In the present study, supported gold nanoparticles on commercially available titania and zincite were successfully prepared and then their activity on the photodegradation of RB under UV A light irradiation were evaluated. The synthesized photocatalysts were characterized by ICP, BET, XRD, and TEM. Kinetic results showed that Au/TiO2 was an inferior photocatalyst to Au/ZnO. This observation could be attributed to the strong reflection of UV irradiation by gold nanoparticles over TiO2 support.
Keywords: Supported AuNPs, Semiconductor photocatalyst, Photodegradation, Rhodamine B.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228112914 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM
Authors: Teerapon Pirom, Ura Pancharoen
Abstract:
Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.Keywords: Aliquat336, amoxicillin, HFSLM, kinetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169912913 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye
Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari
Abstract:
Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.
Keywords: Chitosan, clay, dye adsorption, hydrogels nanocomposites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101112912 Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam
Authors: Juan C. Domínguez, Belén Del Saz-Orozco, María V. Alonso, Mercedes Oliet, Francisco Rodríguez
Abstract:
In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for the phenolic foam; 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin reinforcement; and 82.1, 106.9, and 124.4 kJ.mol-1 for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1 for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (<1x10-5), proving that is a suitable model to study the kinetics of thermal degradation of the foams and the reinforcement.Keywords: Kinetics, lignin, phenolic foam, thermal degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192212911 Adsorption of Copper by using Microwave Incinerated Rice Husk Ash (MIRHA)
Authors: N.A.Johan, S.R.M.Kutty, M. H. Isa, N.S.Muhamad, H.Hashim
Abstract:
Many non-conventional adsorbent have been studied as economic alternative to commercial activated carbon and mostly agricultural waste have been introduced such as rubber leaf powder and hazelnut shell. Microwave Incinerated Rice Husk Ash (MIRHA), produced from the rice husk is one of the low-cost materials that were used as adsorbent of heavy metal. The aim of this research was to study the feasibility of using MIRHA500 and MIRHA800 as adsorbent for the removal of Cu(II) metal ions from aqueous solutions by the batch studies. The adsorption of Cu(II) into MIRHA500 and MIRH800 favors Fruendlich isotherm and imply pseudo – kinetic second order which applied chemisorptionsKeywords: Copper (II) aqueous solution, batch study, MIRHA500, MIRHA800, Microwave Incinerated Rice Husk Ash(MIRHA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192012910 A Numerical Model Simulation for an Updraft Gasifier Using High Temperature Steam
Authors: T. M. Ismail, M. Abd El-Salam
Abstract:
A mathematical model study was carried out to investigate gasification of biomass fuels using high temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promise way in its capability and sensitivity for the parameter affects that influence the gasification process.
Keywords: Computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282612909 Feasibility Study of the Quadcopter Propeller Vibrations for the Energy Production
Authors: Nneka Osuchukwu, Leonid Shpanin
Abstract:
The concept of converting the kinetic energy of quadcopter propellers into electrical energy is considered in this contribution following the feasibility study of the propeller vibrations, theoretical energy conversion, and simulation techniques. Analysis of the propeller vibration performance is presented via graphical representation of calculated and simulated parameters, in order to demonstrate the possibility of recovering the harvested energy from the propeller vibrations of the quadcopter while the quadcopter is in operation. Consideration of using piezoelectric materials in such concept, converting the mechanical energy of the propeller into the electrical energy, is given. Photographic evidence of the propeller in operation is presented and discussed together with experimental results to validate the theoretical concept.Keywords: Unmanned aerial vehicle, energy harvesting, piezoelectric material, propeller vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168612908 Bridging the Mental Gap between Convolution Approach and Compartmental Modeling in Functional Imaging: Typical Embedding of an Open Two-Compartment Model into the Systems Theory Approach of Indicator Dilution Theory
Authors: Gesine Hellwig
Abstract:
Functional imaging procedures for the non-invasive assessment of tissue microcirculation are highly requested, but require a mathematical approach describing the trans- and intercapillary passage of tracer particles. Up to now, two theoretical, for the moment different concepts have been established for tracer kinetic modeling of contrast agent transport in tissues: pharmacokinetic compartment models, which are usually written as coupled differential equations, and the indicator dilution theory, which can be generalized in accordance with the theory of lineartime- invariant (LTI) systems by using a convolution approach. Based on mathematical considerations, it can be shown that also in the case of an open two-compartment model well-known from functional imaging, the concentration-time course in tissue is given by a convolution, which allows a separation of the arterial input function from a system function being the impulse response function, summarizing the available information on tissue microcirculation. Due to this reason, it is possible to integrate the open two-compartment model into the system-theoretic concept of indicator dilution theory (IDT) and thus results known from IDT remain valid for the compartment approach. According to the long number of applications of compartmental analysis, even for a more general context similar solutions of the so-called forward problem can already be found in the extensively available appropriate literature of the seventies and early eighties. Nevertheless, to this day, within the field of biomedical imaging – not from the mathematical point of view – there seems to be a trench between both approaches, which the author would like to get over by exemplary analysis of the well-known model.
Keywords: Functional imaging, Tracer kinetic modeling, LTIsystem, Indicator dilution theory / convolution approach, Two-Compartment model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141812907 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior
Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami
Abstract:
The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.
Keywords: Ni–P coating, electrochemical impedance spectroscopy, heat treatment, cyclic voltammetry, potentiodynamic polarization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124812906 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor
Authors: Barenten Suciu
Abstract:
In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.
Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135212905 Interface Location in Single Phase Stirred Tanks
Authors: I. Mahdavi, R. Janamiri, A. Sinkakarimi, M. Safdari, M. H. Sedaghat, A. Zamani, A. Hoseini, M. Karimi
Abstract:
In this work, study the location of interface in a stirred vessel with Rushton impeller by computational fluid dynamic was presented. To modeling rotating the impeller, sliding mesh (SM) technique was used and standard k-ε model was selected for turbulence closure. Mean tangential, radial and axial velocities and also turbulent kinetic energy (k) and turbulent dissipation rate (ε) in various points of tank was investigated. Results show sensitivity of system to location of interface and radius of 7 to 10cm for interface in the vessel with existence characteristics cause to increase the accuracy of simulation.
Keywords: CFD, Interface, Rushton impeller, Turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172512904 CFD Investigation of Interface Location in Stirred Tanks with a Concave Impeller
Authors: P. Parvasi, R. Janamiri, A. Sinkakarimi, I. Mahdavi, M. Safdari, M. H. Sedaghat, A. Hosseini, M. Karimi
Abstract:
In this work study the location of interface in a stirred vessel with a Concave impeller by computational fluid dynamic was presented. To modeling rotating the impeller, sliding mesh (SM) technique was used and standard k-ε model was selected for turbulence closure. Mean tangential, radial and axial velocities and also turbulent kinetic energy (k) and turbulent dissipation rate (ε) in various points of tank was investigated. Results show sensitivity of system to location of interface and radius of 7 to 10cm for interface in the vessel with existence characteristics cause to increase the accuracy of simulation.
Keywords: CFD, Interface, Concave impeller, turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226112903 Composite Coatings of Piezoelectric Quartz Sensors Based on Viscous Sorbents and Casein Micelles
Authors: Anastasiia Shuba, Tatiana Kuchmenko, Umarkhanov Ruslan, Bogdanova Ekaterina
Abstract:
The development of new sensitive coatings for sensors is one of the key directions in the development of sensor technologies. Recently, there has been a trend towards the creation of multicomponent coatings for sensors, which make it possible to increase the sensitivity, and specificity, and improve the performance properties of sensors. When analyzing samples with a complex matrix of biological origin, the inclusion of micelles of bioactive substances (amino and nucleic acids, peptides, proteins) in the composition of the sensor coating can also increase useful analytical information. The purpose of this work is to evaluate the analytical characteristics of composite coatings of piezoelectric quartz sensors based on medium-molecular viscous sorbents with incorporated micellar casein concentrate during the sorption of vapors of volatile organic compounds. The sorption properties of the coatings were studied by piezoelectric quartz microbalance. Macromolecular compounds (dicyclohexyl-18-crown-6, triton X-100, lanolin, micellar casein concentrate) were used as sorbents. Highly volatile organic compounds of various classes (alcohols, acids, aldehydes, esters) and water were selected as test substances. It has been established that composite coatings of sensors with the inclusion of micellar casein are more stable and selective to vapors of highly volatile compounds than to water vapors. The method and technique of forming a composite coating using molecular viscous sorbents does not affect the kinetic features of VOC sorption. When casein micelles are used, the features of kinetic sorption depend on the matrix of the coating.
Keywords: Composite coating, piezoelectric quartz microbalance, sensor, volatile organic compounds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15012902 High-rate Wastewater Treatment by a Shaft-type Activated Sludge Reactor
Authors: Subrata Hait, Debabrata Mazumder
Abstract:
A shaft-type activated sludge reactor has been developed in order to study the feasibility of high-rate wastewater treatment. The reactor having volume of about 14.5 L was operated with the acclimated mixed activated sludge under batch and continuous mode using a synthetic wastewater as feed. The batch study was performed with varying chemical oxygen demand (COD) concentrations of 1000–3500 mg·L-1 for a batch period up to 9 h. The kinetic coefficients: Ks, k, Y and kd were obtained as 2040.2 mg·L-1 and 0.105 h-1, 0.878 and 0.0025 h-1 respectively from Monod-s approach. The continuous study showed a stable and steady state operation for a hydraulic retention time (HRT) of 8 h and influent COD of about 1000 mg·L-1. A maximum COD removal efficiency of about 80% was attained at a COD loading rate and food-tomicroorganism (F/M) ratio (COD basis) of 3.42 kg·m-3d-1 and 1.0 kg·kg-1d-1 respectively under a HRT of 8 h. The reactor was also found to handle COD loading rate and F/M ratio of 10.8 kg·m-3d-1 and 2.20 kg·kg-1d-1 respectively showing a COD removal efficiency of about 46%.Keywords: Activated sludge process, shaft-type reactor, highrate treatment, carbonaceous wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 365312901 Adsorption of Phenolic Compounds on Activated Carbon DSAC36-24
Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi, Dhananjay R. Mishra, Ammar Houas
Abstract:
Activated carbon DSAC36-24 iy is adsorbent materials, characterized by a specific surface area of 548.13 m²g⁻¹. Their manufacture uses the natural raw materials like the nucleus of dates. In this study the treatment is done in two stages: A chemical treatment by H3PO4 followed by a physical treatment under nitrogen for 1 hour then under stream of CO2 for 24 hours. A characterization of the various parameters was determined such as the measurement of the specific surface area, determination of pHPZC, bulk density, iodine value. The study of the adsorption of organic molecules (hydroquinone, paranitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol) indicates that the adsorption phenomena are essentially due to the van der Waals interaction. In the case of organic molecules carrying the polar substituents, the existence of hydrogen bonds is also proved by the donor-acceptor forces. The study of the pH effect was done with modeling by different models (Langmuir, Freundlich, Langmuir-Freundlich, Redlich-Peterson), a kinetic treatment is also followed by the application of Lagergren, Weber, Macky.
Keywords: DSAC36-24, organic molecule, adsoprtion ishoterms, adsorption kinetics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89412900 Modeling Aggregation of Insoluble Phase in Reactors
Authors: A. Brener, B. Ismailov, G. Berdalieva
Abstract:
In the paper we submit the modification of kinetic Smoluchowski equation for binary aggregation applying to systems with chemical reactions of first and second orders in which the main product is insoluble. The goal of this work is to create theoretical foundation and engineering procedures for calculating the chemical apparatuses in the conditions of joint course of chemical reactions and processes of aggregation of insoluble dispersed phases which are formed in working zones of the reactor.
Keywords: Binary aggregation, Clusters, Chemical reactions, Insoluble phases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481