Search results for: Parkinson's disease.
388 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.
Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620387 Assessing the Physiological, Psychological Stressors and Coping Strategies among Hemodialysis Patients in the Kingdom of Saudi Arabia
Authors: A. Seham A. Elgamal, Reham H. Saleh
Abstract:
Chronic kidney disease became a global health problem worldwide. Therefore, in order to maintain a patient’s life and improve the survival rate, hemodialysis is essential to replace the function of their kidneys. However, those patients may complain about multiple physical and psychological stressors due to the nature of the disease and the need for frequent hemodialysis sessions. So, those patients use various strategies to cope with the stressors related to their disease and the treatment procedures. Cross-sectional, descriptive study was carried out to achieve the aim of the study. A convenient sample including all adult patients was recruited for this study. Hemodialysis Stressors Scale (HSS) and Jalowiec Coping Scale (JCS) were used to investigate the stressors and coping strategies of 89 hemodialysis patients, at a governmental hospital (King Khalid Hospital-Jeddah). Results of the study revealed that 50.7% experienced physiological stressors and 38% experienced psychosocial stressors. Also, optimistic, fatalistic, and supportive coping strategies were the most common coping strategies used by the patients with mean scores (2.88 + 0.75, 2.87 + 0.75, and 1.82 + 0.71), respectively. In conclusion, being familiar with the types of stressors and the effective coping strategies of hemodialysis patients and their families are important in order to enhance their adaptation with chronic kidney diseases.Keywords: Coping strategies, hemodialysis, physiological stressors, psychological stressors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119386 Attitude and Knowledge of Primary Health Care Physicians and Local Inhabitants about Leishmaniasis and Sandfly in West Alexandria
Authors: Randa M. Ali, Naguiba F. Loutfy, Osama M. Awad
Abstract:
Leishmaniasis is the collective name for a number of diseases caused by protozoan flagellates of the genus Leishmania, which is transmitted by Phlebotomine sandfly, the disease has diverse clinical manifestations and found in many areas of the world, particularly in Africa, Latin America, South and Central Asia, the Mediterranean basin and the Middle East. This study was done to assess primary health care physicians’ knowledge (PHP) and attitude about leishmaniasis and to assess awareness of local inhabitants about the disease and its vector in four areas in west Alexandria, Egypt. It is a cross sectional survey that was conducted in four PHC units in west Alexandria. All physicians currently working in these units during the study period were invited to participate in the study; only 20 PHP completed the questionnaire. 60 local inhabitants were selected randomly from the four areas of the study, 15 from each area; Data was collected through two different specially designed questionnaires. Results showed that 11 (55%) percent of the physicians had satisfactory knowledge; they answered more than 9 (60%) questions out of a total 14 questions about leishmaniasis and sandfly. On the other hand when attitude of the primary health care physicians about leishmaniasis was measured, results showed that 17 (85%) had good attitude and 3 (15%) had poor attitude. The second questionnaire showed that the awareness of local inhabitants about leishmaniasis and sandfly as a vector of the disease is poor and needs to be corrected. (90%) of the interviewed inhabitants had not heard about leishmaniasis, Only 3 (5%) of them said they know sandfly and its role in transmission of leishmaniasis. Thus we conclude that knowledge and attitudes of physicians are acceptable. However, there is, room for improvement and could be done through formal training courses and distribution of guidelines. In addition to raising the awareness of primary health care physicians about the importance of early detection and notification of cases of leishmaniasis, health education for raising awareness of the public regarding the vector and the disease is necessary because related studies have demonstrated that for inhabitants to take enough protective measures against the vector, they should perceive that it is responsible for causing a disease.Keywords: Attitude, knowledge, PHP, leishmaniasis, sandfly, local inhabitants, inside and outside housing conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935385 Importance of Mobile Technology in Successful Adoption and Sustainability of a Chronic Disease Support System
Authors: Reza Ariaeinejad, Norm Archer
Abstract:
Self-management is becoming a new emphasis for healthcare systems around the world. But there are many different problems with adoption of new health-related intervention systems. The situation is even more complicated for chronically ill patients with disabilities, illiteracy, and impairment in judgment in addition to their conditions, or having multiple co-morbidities. Providing online decision support to manage patient health and to provide better support for chronically ill patients is a new way of dealing with chronic disease management. In this study, the importance of mobile technology through an m-Health system that supports self-management interventions including the care provider, family and social support, education and training, decision support, recreation, and ongoing patient motivation to promote adherence and sustainability of the intervention are discussed. A proposed theoretical model for adoption and sustainability of system use is developed, based on UTAUT2 and IS Continuance of Use models, both of which have been pre-validated through longitudinal studies. The objective of this paper is to show the importance of using mobile technology in adoption and sustainability of use of an m-Health system which will result in commercially sustainable self-management support for chronically ill patients.
Keywords: M-health, e-health, self-management, disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837384 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values
Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi
Abstract:
A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.
Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961383 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.
Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600382 A Decision Support System Based on Leprosy Scales
Authors: Dennys Robson Girardi, Hugo Bulegon, Claudia Maria Moro Barra
Abstract:
Leprosy is an infectious disease caused by Mycobacterium Leprae, this disease, generally, compromises the neural fibers, leading to the development of disability. Disabilities are changes that limit daily activities or social life of a normal individual. When comes to leprosy, the study of disability considered the functional limitation (physical disabilities), the limitation of activity and social participation, which are measured respectively by the scales: EHF, SALSA and PARTICIPATION SCALE. The objective of this work is to propose an on-line monitoring of leprosy patients, which is based on information scales EHF, SALSA and PARTICIPATION SCALE. It is expected that the proposed system is applied in monitoring the patient during treatment and after healing therapy of the disease. The correlations that the system is between the scales create a variety of information, presented the state of the patient and full of changes or reductions in disability. The system provides reports with information from each of the scales and the relationships that exist between them. This way, health professionals, with access to patient information, can intervene with techniques for the Prevention of Disability. Through the automated scale, the system shows the level of the patient and allows the patient, or the responsible, to take a preventive measure. With an online system, it is possible take the assessments and monitor patients from anywhere.Keywords: Leprosy, Medical Informatics, Decision SupportSystem, Disability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051381 A Review of Pharmacological Prevention of Peri-and Post-Procedural Myocardial Injury after Percutaneous Coronary Intervention
Authors: Syed Dawood Md. Taimur, Md. Hasanur Rahman, Syeda Fahmida Afrin, Farzana Islam
Abstract:
The concept of myocardial injury, although first recognized from animal studies, is now recognized as a clinical phenomenon that may result in microvascular damage, no-reflow phenomenon, myocardial stunning, myocardial hibernation and ischemic preconditioning. The final consequence of this event is left ventricular (LV) systolic dysfunction leading to increased morbidity and mortality. The typical clinical case of reperfusion injury occurs in acute myocardial infarction (MI) with ST segment elevation in which an occlusion of a major epicardial coronary artery is followed by recanalization of the artery. This may occur spontaneously or by means of thrombolysis and/or by primary percutaneous coronary intervention (PCI) with efficient platelet inhibition by aspirin (acetylsalicylic acid), clopidogrel and glycoprotein IIb/IIIa inhibitors. In recent years, percutaneous coronary intervention (PCI) has become a well-established technique for the treatment of coronary artery disease. PCI improves symptoms in patients with coronary artery disease and it has been increasing safety of procedures. However, peri- and post-procedural myocardial injury, including angiographical slow coronary flow, microvascular embolization, and elevated levels of cardiac enzyme, such as creatine kinase and troponin-T and -I, has also been reported even in elective cases. Furthermore, myocardial reperfusion injury at the beginning of myocardial reperfusion, which causes tissue damage and cardiac dysfunction, may occur in cases of acute coronary syndrome. Because patients with myocardial injury is related to larger myocardial infarction and have a worse long-term prognosis than those without myocardial injury, it is important to prevent myocardial injury during and/or after PCI in patients with coronary artery disease. To date, many studies have demonstrated that adjunctive pharmacological treatment suppresses myocardial injury and increases coronary blood flow during PCI procedures. In this review, we highlight the usefulness of pharmacological treatment in combination with PCI in attenuating myocardial injury in patients with coronary artery disease.
Keywords: Coronary artery disease, Percutaneous coronary intervention, Myocardial injury, Pharmacology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336380 Role of Pro-Inflammatory and Regulatory Cytokines in Pathogenesis of Graves’ Disease in Association with Autoantibody Thyroid and Regulatory FoxP3 T-Cells
Authors: Dwitya Elvira, Eryati Darwin
Abstract:
Background: Graves’ disease (GD) is an autoimmune thyroid disease. Imbalance of Th1/Th2 cells and T-regulatory (Treg)/Th17 cells was thought to play pivotal role in the pathogenesis of GD. Treg FoxP3 produced TGF-β to maintain regulatory function, and Th17 cells produced IL-17 as cytokines that were thought in mediating several autoimmune diseases. The aim of this study is to assess the role of IL-17 and TGF-β in the pathogenesis of GD and to investigate its correlation with Thyroid Stimulating Hormone Receptor Antibody (TRAb) and Treg FoxP3 expression. Method: 30 GD patients and 27 age and sex-matched controls were enrolled in this study. Diagnosis of GD was based on clinical and biochemical of GD. Serum IL-17, TGF-β, TRAb, and FoxP3 were measured by enzyme-linked immunosorbent assay (ELISA). Data were analyzed by using SPSS 21.0 (SPSS Inc.). Spearman rank correlation test was used for assessment of correlation. The statistical significance was accepted as P<0.05. Result: There was no significant correlation between IL-17 and TGF-β serum with expression of FoxP3 level in GD, but there was significant correlation between TGF-β and TRAb serum level (P<0.05). Serum levels of IL-17 and TGF-β were found to be elevated in patient group compared to control, where mean values of IL-17 were 14.43±2.15 pg/mL and TGF-β were 10.44±3.19 pg/mL in patients group; and in control group, level of IL-17 were 7.1±1.45 pg/mL and TGF-β were 4.95±1.35 pg/mL. Conclusion: Serum Il-17 and TGF-β were elevated in GD patients that reflect the role of inflammatory and regulatory cytokines activation in pathogenesis of GD. There was significant correlation between TGF-β and TRAb, revealing that Treg cytokines may play a role in pathogenesis of GD.
Keywords: IL-17, TGF-β, FoxP3, Graves’ disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061379 Mutation Analysis of the ATP7B Gene in 43 Vietnamese Wilson’s Disease Patients
Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le, Chi V. Phan
Abstract:
Wilson’s disease (WD) is an autosomal recessive disorder of the copper metabolism, which is caused by a mutation in the copper-transporting P-type ATPase (ATP7B). The mechanism of this disease is the failure of hepatic excretion of copper to bile, and leads to copper deposits in the liver and other organs. The ATP7B gene is located on the long arm of chromosome 13 (13q14.3). This study aimed to investigate the gene mutation in the Vietnamese patients with WD, and make a presymptomatic diagnosis for their familial members. Forty-three WD patients and their 65 siblings were identified as having ATP7B gene mutations. Genomic DNA was extracted from peripheral blood samples; 21 exons and exon-intron boundaries of the ATP7B gene were analyzed by direct sequencing. We recognized four mutations ([R723=; H724Tfs*34], V1042Cfs*79, D1027H, and IVS6+3A>G) in the sum of 20 detectable mutations, accounting for 87.2% of the total. Mutation S105* was determined to have a high rate (32.6%) in this study. The hotspot regions of ATP7B were found at exons 2, 16, and 8, and intron 14, in 39.6 %, 11.6 %, 9.3%, and 7 % of patients, respectively. Among nine homozygote/compound heterozygote siblings of the patients with WD, three individuals were determined as asymptomatic by screening mutations of the probands. They would begin treatment after diagnosis. In conclusion, 20 different mutations were detected in 43 WD patients. Of this number, four novel mutations were explored, including [R723=; H724Tfs*34], V1042Cfs*79, D1027H, and IVS6+3A>G. The mutation S105* is the most prevalent and has been considered as a biomarker that can be used in a rapid detection assay for diagnosis of WD patients. Exons 2, 8, and 16, and intron 14 should be screened initially for WD patients in Vietnam. Based on risk profile for WD, genetic testing for presymptomatic patients is also useful in diagnosis and treatment.Keywords: ATP7B gene, mutation detection, presymptomatic diagnosis, Vietnamese Wilson’s disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711378 Identification of Disease Causing DNA Motifs in Human DNA Using Clustering Approach
Authors: G. Tamilpavai, C. Vishnuppriya
Abstract:
Studying DNA (deoxyribonucleic acid) sequence is useful in biological processes and it is applied in the fields such as diagnostic and forensic research. DNA is the hereditary information in human and almost all other organisms. It is passed to their generations. Earlier stage detection of defective DNA sequence may lead to many developments in the field of Bioinformatics. Nowadays various tedious techniques are used to identify defective DNA. The proposed work is to analyze and identify the cancer-causing DNA motif in a given sequence. Initially the human DNA sequence is separated as k-mers using k-mer separation rule. The separated k-mers are clustered using Self Organizing Map (SOM). Using Levenshtein distance measure, cancer associated DNA motif is identified from the k-mer clusters. Experimental results of this work indicate the presence or absence of cancer causing DNA motif. If the cancer associated DNA motif is found in DNA, it is declared as the cancer disease causing DNA sequence. Otherwise the input human DNA is declared as normal sequence. Finally, elapsed time is calculated for finding the presence of cancer causing DNA motif using clustering formation. It is compared with normal process of finding cancer causing DNA motif. Locating cancer associated motif is easier in cluster formation process than the other one. The proposed work will be an initiative aid for finding genetic disease related research.
Keywords: Bioinformatics, cancer motif, DNA, k-mers, Levenshtein distance, SOM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397377 In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease
Authors: K. Biswas, U. H. Armin, S. M. J. Prodhan, J. A. Prithul, S. Sarker, F. Afrin
Abstract:
Alzheimer’s disease (AD) (a progressive neurodegenerative disorder) is mostly predominant cause of dementia in the elderly. Prolonging the function of acetylcholine by inhibiting both acetylcholinesterase and butyrylcholinesterase is most effective treatment therapy of AD. Traditionally Pterocarpus santalinus L. is widely known for its medicinal use. In this study, in vitro acetylcholinesterase inhibitory activity was investigated and methanolic extract of the plant showed significant activity. To confirm this activity (in vivo), learning and memory enhancing effects were tested in mice. For the test, memory impairment was induced by scopolamine (cholinergic muscarinic receptor antagonist). Anti-amnesic effect of the extract was investigated by the passive avoidance task in mice. The study also includes brain acetylcholinesterase activity. Results proved that scopolamine induced cognitive dysfunction was significantly decreased by administration of the extract solution, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that bark extract of Pterocarpus santalinus can be better option for further studies on AD via their acetylcholinesterase inhibitory actions.
Keywords: Pterocarpus santalinus, cholinesterase inhibitor, passive avoidance, Alzheimer’s disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830376 Design and Simulation of Heartbeat Measurement System Using Arduino Microcontroller in Proteus
Authors: Muhibul H. Bhuyan, Mafujul Hasan
Abstract:
If a person can monitor his/her heart rate regularly then he/she can detect heart disease early and thus he/she can enjoy longer life span. Therefore, this disease should be taken seriously. Hence, many health care devices and monitoring systems are being designed to keep track of the heart disease. This work reports a design and simulation processes of an Arduino microcontroller based heart rate measurement and monitoring system in Proteus environment. Clipping sensors were utilized to sense the heart rate of an individual from the finger tips. It is a digital device and uses mainly infrared (IR) transmitter (mainly IR LED) and receiver (mainly IR photo-transistor or IR photo-detector). When the heart pumps the blood and circulates it among the blood vessels of the body, the changed blood pressure is detected by the transmitter and then reflected back to the receiver accordingly. The reflected signals are then processed inside the microcontroller through a software written assembly language and appropriate heart rate (HR) is determined by it in beats per minute (bpm) from the detected signal for a duration of 10 seconds and display the same in bpm on the LCD screen in digital format. The designed system was simulated on several persons with varying ages, for example, infants, adult persons and active athletes. Simulation results were found very satisfactory.
Keywords: Heart rate measurement, design, simulation, Proteus, Arduino Uno microcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813375 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer Aljohani
Abstract:
The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.
Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 387374 Swine Flu Transmission Model in Risk and Non-Risk Human Population
Authors: P. Pongsumpun
Abstract:
The Swine flu outbreak in humans is due to a new strain of influenza A virus subtype H1N1 that derives in part from human influenza, avian influenza, and two separated strains of swine influenza. It can be transmitted from human to human. A mathematical model for the transmission of Swine flu is developed in which the human populations are divided into two classes, the risk and non-risk human classes. Each class is separated into susceptible, exposed, infectious, quarantine and recovered sub-classes. In this paper, we formulate the dynamical model of Swine flu transmission and the repetitive contacts between the people are also considered. We analyze the behavior for the transmission of this disease. The Threshold condition of this disease is found and numerical results are shown to confirm our theoretical predictions.Keywords: Mathematical model, Steady state, Swine flu, threshold condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316373 Apolipoprotein E Gene Polymorphism and Its Association with Cardiovascular Heart Disease Risk Factors in Type 2 Diabetes Mellitus
Authors: Amani Ashari, Julia Omar, Arif Hashim, Shahrul Hamid
Abstract:
Apolipoprotein E (APOE) gene polymorphism has influence on serum lipids which relates to cardiovascular risk. The purpose of this study was to determine the frequency distribution of APOE alleles among Malaysian Type 2 Diabetes Mellitus (DM) patients with and without coronary artery disease (CAD) and their association with serum lipid profiles. A total of 115 patients were recruited in which 78 patients had Type 2 DM without CAD and 37 patients had Type 2 DM with CAD. The APOE polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The APOE ɛ3 allele was the most common one in both groups. There was no significant association between the APOE genotypes and the CAD status in Type 2 DM using Pearson χ2 test. Further analysis indicated there were no significant differences in all lipid parameters between E2, E3 and E4 subgroups in both groups. The study showed that the E4 allele carriers of Type 2 DM with CAD patients had higher LDL-C level and lower HDL-C level compared to the other allele carriers. However, analyses showed these levels were not statistically different. The study also showed that the Type 2 DM with CAD group with E2 allele had higher triglyceride (TG). In conclusion, further study with larger sample size is needed to confirm role of E4 as a marker of CAD among Type 2 DM patients in Malaysian population.
Keywords: Apolipoprotein E, diabetes mellitus, cardiovascular disease, lipids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265372 Integration of FMEA and Human Factor in the Food Chain Risk Assessment
Authors: Mohsen Shirani, Micaela Demichela
Abstract:
During the last decades, a number of food crises such as Bovine Spongiform Encephalopathy (BSE), Mad-Cow disease, Dioxin in chicken food, Food-and-Mouth Disease (FMD), have certainly inflected the reliability of the food industry. Consequently, the trend in applying different scientific methods of risk assessment in food safety has obtained more attentions in the academic and practice. However, lack of practical approach considering entire food supply chain is tangible in the academic literature. In this regard, this paper aims to apply risk assessment tool (FMEA) with integration of Human Factor along the entire supply chain of food production and test the method in a case study of Diary production, and analyze its results.Keywords: Food Risk Assessment, FMEA, Human Factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3088371 Feature Subset Selection approach based on Maximizing Margin of Support Vector Classifier
Authors: Khin May Win, Nan Sai Moon Kham
Abstract:
Identification of cancer genes that might anticipate the clinical behaviors from different types of cancer disease is challenging due to the huge number of genes and small number of patients samples. The new method is being proposed based on supervised learning of classification like support vector machines (SVMs).A new solution is described by the introduction of the Maximized Margin (MM) in the subset criterion, which permits to get near the least generalization error rate. In class prediction problem, gene selection is essential to improve the accuracy and to identify genes for cancer disease. The performance of the new method was evaluated with real-world data experiment. It can give the better accuracy for classification.Keywords: Microarray data, feature selection, recursive featureelimination, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545370 Establishing Econometric Modeling Equations for Lumpy Skin Disease Outbreaks in the Nile Delta of Egypt under Current Climate Conditions
Authors: Abdelgawad, Salah El-Tahawy
Abstract:
This paper aimed to establish econometrical equation models for the Nile delta region in Egypt, which will represent a basement for future predictions of Lumpy skin disease outbreaks and its pathway in relation to climate change. Data of lumpy skin disease (LSD) outbreaks were collected from the cattle farms located in the provinces representing the Nile delta region during 1 January, 2015 to December, 2015. The obtained results indicated that there was a significant association between the degree of the LSD outbreaks and the investigated climate factors (temperature, wind speed, and humidity) and the outbreaks peaked during the months of June, July, and August and gradually decreased to the lowest rate in January, February, and December. The model obtained depicted that the increment of these climate factors were associated with evidently increment on LSD outbreaks on the Nile Delta of Egypt. The model validation process was done by the root mean square error (RMSE) and means bias (MB) which compared the number of LSD outbreaks expected with the number of observed outbreaks and estimated the confidence level of the model. The value of RMSE was 1.38% and MB was 99.50% confirming that this established model described the current association between the LSD outbreaks and the change on climate factors and also can be used as a base for predicting the of LSD outbreaks depending on the climatic change on the future.
Keywords: LSD, climate factors, econometric models, Nile Delta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966369 Transmission Model for Plasmodium Vivax Malaria: Conditions for Bifurcation
Authors: P. Pongsumpun, I.M. Tang
Abstract:
Plasmodium vivax malaria differs from P. falciparum malaria in that a person suffering from P. vivax infection can suffer relapses of the disease. This is due the parasite being able to remain dormant in the liver of the patients where it is able to re-infect the patient after a passage of time. During this stage, the patient is classified as being in the dormant class. The model to describe the transmission of P. vivax malaria consists of a human population divided into four classes, the susceptible, the infected, the dormant and the recovered. The effect of a time delay on the transmission of this disease is studied. The time delay is the period in which the P. vivax parasite develops inside the mosquito (vector) before the vector becomes infectious (i.e., pass on the infection). We analyze our model by using standard dynamic modeling method. Two stable equilibrium states, a disease free state E0 and an endemic state E1, are found to be possible. It is found that the E0 state is stable when a newly defined basic reproduction number G is less than one. If G is greater than one the endemic state E1 is stable. The conditions for the endemic equilibrium state E1 to be a stable spiral node are established. For realistic values of the parameters in the model, it is found that solutions in phase space are trajectories spiraling into the endemic state. It is shown that the limit cycle and chaotic behaviors can only be achieved with unrealistic parameter values.
Keywords: Equilibrium states, Hopf bifurcation, limit cyclebehavior, local stability, Plasmodium Vivax, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244368 Mathematical Model for the Transmission of P. Falciparum and P. Vivax Malaria along the Thai-Myanmar Border
Authors: Puntani Pongsumpun, I-Ming Tang
Abstract:
The most Malaria cases are occur along Thai-Mynmar border. Mathematical model for the transmission of Plasmodium falciparum and Plasmodium vivax malaria in a mixed population of Thais and migrant Burmese living along the Thai-Myanmar Border is studied. The population is separated into two groups, Thai and Burmese. Each population is divided into susceptible, infected, dormant and recovered subclasses. The loss of immunity by individuals in the infected class causes them to move back into the susceptible class. The person who is infected with Plasmodium vivax and is a member of the dormant class can relapse back into the infected class. A standard dynamical method is used to analyze the behaviors of the model. Two stable equilibrium states, a disease-free state and an epidemic state, are found to be possible in each population. A disease-free equilibrium state in the Thai population occurs when there are no infected Burmese entering the community. When infected Burmese enter the Thai community, an epidemic state can occur. It is found that the disease-free state is stable when the threshold number is less than one. The epidemic state is stable when a second threshold number is greater than one. Numerical simulations are used to confirm the results of our model.
Keywords: Basic reproduction number, Burmese, local stability, Plasmodium Vivax malaria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870367 Bifurcation and Stability Analysis of the Dynamics of Cholera Model with Controls
Authors: C. E. Madubueze, S. C. Madubueze, S. Ajama
Abstract:
Cholera is a disease that is predominately common in developing countries due to poor sanitation and overcrowding population. In this paper, a deterministic model for the dynamics of cholera is developed and control measures such as health educational message, therapeutic treatment, and vaccination are incorporated in the model. The effective reproduction number is computed in terms of the model parameters. The existence and stability of the equilibrium states, disease free and endemic equilibrium states are established and showed to be locally and globally asymptotically stable when R0 < 1 and R0 > 1 respectively. The existence of backward bifurcation of the model is investigated. Furthermore, numerical simulation of the model developed is carried out to show the impact of the control measures and the result indicates that combined control measures will help to reduce the spread of cholera in the population.Keywords: Backward bifurcation, cholera, equilibrium, dynamics, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2753366 Investigations of Protein Aggregation Using Sequence and Structure Based Features
Authors: M. Michael Gromiha, A. Mary Thangakani, Sandeep Kumar, D. Velmurugan
Abstract:
The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides.
Keywords: Aggregation prone regions, amyloids, thermophilic proteins, amino acid residues, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502365 Numerical Simulation of Restenosis in a Stented Coronary Artery
Authors: Weronika Kurowska-Nouyrigat, Jacek Szumbarski
Abstract:
Nowadays, cardiac disease is one of the most common cause of death. Each year almost one million of angioplasty interventions and stents implantations are made all over the world. Unfortunately, in 20-30% of cases neointimal proliferations leads to restenosis occurring within the following period of 3-6 months. Three major factors are believed to contribute mostly to the edge restenosis: (a) mechanical damage of the artery-s wall caused by the stent implantation, (b) interaction between the stent and the blood constituents and (c) endothelial growth stimulation by small (lower that 1.5 Pa) and oscillating wall shear stress. Assuming that this last actor is particularly important, a numerical model of restenosis basing on wall shear stress distribution in the stented artery was elaborated. A numerical simulations of the development of in-stent restenosis have been performed and realistic geometric patterns of a progressing lumen reduction have been obtainedKeywords: Coronary artery disease, coronary blood flow, instent restenosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666364 Common Carotid Artery Intima Media Thickness Segmentation Survey
Authors: L. Ashok Kumar, C. Nagarajan
Abstract:
The ultrasound imaging is very popular to diagnosis the disease because of its non-invasive nature. The ultrasound imaging slowly produces low quality images due to the presence of spackle noise and wave interferences. There are several algorithms to be proposed for the segmentation of ultrasound carotid artery images but it requires a certain limit of user interaction. The pixel in an image is highly correlated so the spatial information of surrounding pixels may be considered in the process of image segmentation which improves the results further. When data is highly correlated, one pixel may belong to more than one cluster with different degree of membership. There is an important step to computerize the evaluation of arterial disease severity using segmentation of carotid artery lumen in 2D and 3D ultrasonography and in finding vulnerable atherosclerotic plaques susceptible to rupture which can cause stroke.
Keywords: IMT measurement, Image Segmentation, common carotid artery, internal and external carotid arteries, ultrasound imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000363 Tuberculosis Modelling Using Bio-PEPA Approach
Authors: Dalila Hamami, Baghdad Atmani
Abstract:
Modelling is a widely used tool to facilitate the evaluation of disease management. The interest of epidemiological models lies in their ability to explore hypothetical scenarios and provide decision makers with evidence to anticipate the consequences of disease incursion and impact of intervention strategies.
All models are, by nature, simplification of more complex systems. Models that involve diseases can be classified into different categories depending on how they treat the variability, time, space, and structure of the population. Approaches may be different from simple deterministic mathematical models, to complex stochastic simulations spatially explicit.
Thus, epidemiological modelling is now a necessity for epidemiological investigations, surveillance, testing hypotheses and generating follow-up activities necessary to perform complete and appropriate analysis.
The state of the art presented in the following, allows us to position itself to the most appropriate approaches in the epidemiological study.
Keywords: Bio-PEPA, Cellular automata, Epidemiological modelling, multi agent system, ordinary differential equations, PEPA, Process Algebra, Tuberculosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161362 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms
Authors: Nebi Gedik
Abstract:
One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).
Keywords: Wave atom transform, statistical features, multi-resolution representation, mammogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883361 Effect of Fatty Acids in Feed on Levels of Antibody Titers and CD4 and CD8 T-Lymphocyte against Newcastle Disease Virus of Vaccinated Broiler Chicken
Authors: Alaa A. Shamaun Al-Abboodi, Yunis A. A. Bapeer
Abstract:
400 one-day-old male broiler chicks (Ross-308) randomly divided to 2 main groups, 1st main group (GA) was feeding basal diet with medium chain fatty acid (MCFA) at rate of 0.15% and divided to four subgroups, 3 subgroups vaccinated with different routes with Newcastle Disease Virus (NDV) and non-vaccinated group. The 2nd main group (GB) feeding basal diet without MCFA and divided the same as 1st main group. The parameters used in this study included: ND antibody titers at 1, 10, 21, 28, 35 and 42 days of age and values of CD4 and CD8 at 1, 20, 30 and 42 days of age. This experiment detected increase in ND antibodies titers in (G1, G2, G3) groups were fed on basal diet MCFA comparing to groups were fed without adding MCFA (G5, G6, G7) and control groups (G4, G8). The results of cellular immune response (CD4 and CD8) T-cells in broiler chicks indicated that there was obviously significant relationship between dietary Fatty Acid (FA) versus the diet without FA on the level of CD4 parameter, for the entire experimental period. The effect of different ages was statistically significant in creating different values of CD4 level, whereas the CD4 level decreases markedly with age. However, analyzing the data of different vaccination methods, oculonasal method of vaccination led to the highest value of CD4 compared with the oral, S/C and control groups. There were statistical differences in CD8 values due to supplementation of FA versus the basal diet and due to the effect of different age periods. As for the age effect, the CD8 value at 20 days of age was significantly higher than at 42 and 30 days.
Keywords: Broiler, CD4 and CD8, fatty acids, Newcastle disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764360 Application of Extruded Maize Flour in Gluten-free Bread Formulations
Authors: Laila Ozola, Evita Straumite, Ruta Galoburda, Dace Klava
Abstract:
Celiac disease is an immune-mediated disease, triggered in genetically susceptible individuals by ingested gluten from wheat, rye, barley and other closely related cereal grains. The only effective treatment is a strict gluten free diet for life. Latvian producers do not offer gluten-free products. In this research, use of extruded maize flour was tested for substituting rice, maize or buckwheat flour in gluten-free bread formulations at different ratios. Also the influence of extruded maize flour on the quality parameters of gluten-free bread was investigated. The aim of research was to study the influence of extruded maize flour on gluten-free bread quality. Addition of extruded maize flour affect gluten-free bread crumb color, structure of crumb, weight loss and dry off of bread.
Keywords: extruded maize flour, gluten-free bread, quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175359 Predictors of Non-Alcoholic Fatty Liver Disease in Egyptian Obese Adolescents
Authors: Moushira Zaki, Wafaa Ezzat, Yasser Elhosary, Omnia Saleh
Abstract:
Nonalcoholic fatty liver disease (NAFLD) has increased in conjunction with obesity. The accuracy of risk factors for detecting NAFLD in obese adolescents has not undergone a formal evaluation. The aim of this study was to evaluate predictors of NAFLD among Egyptian female obese adolescents. The study included 162 obese female adolescents. All were subjected to anthropometry, biochemical analysis and abdominal ultrasongraphic assessment. Metabolic syndrome (MS) was diagnosed according to the IDF criteria. Significant association between presence of MS and NAFLD was observed. Obese adolescents with NAFLD had significantly higher levels of ALT, triglycerides, fasting glucose, insulin, blood pressure and HOMA-IR, whereas decreased HDL-C levels as compared with obese cases without NAFLD. Receiver– operating characteristic (ROC) curve analysis shows that ALT is a sensitive predictor for NAFLD, confirming that ALT can be used as a marker of NAFLD.
Keywords: Adolescents, Egyptians, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417