Search results for: Markov Decision Process (MDP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6492

Search results for: Markov Decision Process (MDP)

6402 Topological Properties of an Exponential Random Geometric Graph Process

Authors: Yilun Shang

Abstract:

In this paper we consider a one-dimensional random geometric graph process with the inter-nodal gaps evolving according to an exponential AR(1) process. The transition probability matrix and stationary distribution are derived for the Markov chains concerning connectivity and the number of components. We analyze the algorithm for hitting time regarding disconnectivity. In addition to dynamical properties, we also study topological properties for static snapshots. We obtain the degree distributions as well as asymptotic precise bounds and strong law of large numbers for connectivity threshold distance and the largest nearest neighbor distance amongst others. Both exact results and limit theorems are provided in this paper.

Keywords: random geometric graph, autoregressive process, degree, connectivity, Markovian, wireless network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
6401 Value–based Group Decision on Support Bridge Selection

Authors: Christiono Utomo, Arazi Idrus

Abstract:

Value-based group decision is very complicated since many parties involved. There are different concern caused by differing preferences, experiences, and background. Therefore, a support system is required to enable each stakeholder to evaluate and rank the solution alternatives before engaging into negotiation with the other stakeholders. The support system is based on combination between value-based analysis, multi criteria group decision making based on satisfying options, and negotiation process based on coalition formation. This paper presents the group decision and negotiation on the selection of suitable material for a support bridge structure involving three decision makers, who are an estate manager, a project manager, and an engineer. There are three alternative solutions for the material of the support bridge structure, which are (a1) steel structure, (a2) reinforced concrete structure and (a3) wooden structure.

Keywords: Value-based, group decision, negotiation support, construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
6400 Decision Framework for Cross-Border Railway Infrastructure Projects

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki

Abstract:

Transport infrastructure assets are key components of the national asset portfolio. The decision to invest in a new infrastructure in transports could take from a few years to some decades. This is mainly because of the need to reserve and spent many capitals, the long payback period, the number of the stakeholders involved in decision process and –many times- the investment and business risks are high. Therefore, the decision assessment framework is an essential challenge linked with the key decision factors meet the stakeholder expectations highlighting project trade-offs, financial risks, business uncertainties and market limitations. This paper examines the decision process for new transport infrastructure projects in cross border regions, where a wide range of stakeholders with different expectation is involved. According to a consequences analysis systemic approach, the relationship of transport infrastructure development, economic system development and stakeholder expectation is analyzed. Adopting the on system of system methodological approach, the decision making framework, variables, inputs and outputs are defined, highlighting the key shareholder’s role and expectations. The application provides the methodology outputs presenting the proposed decision framework for a strategic railway project in north Greece deals with the upgrade of the existing railway corridor connecting Greece, Turkey and Bulgaria.

Keywords: System of system approach, decision making, cross-border, infrastructure project.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
6399 Regional Aircraft Selection Using Preference Analysis for Reference Ideal Solution (PARIS)

Authors: C. Ardil

Abstract:

The paper presents a multiple criteria decision making analysis process to determine the most suitable regional aircraft type according to a set of evaluation criteria. The main purpose of this study is to use different decision making methods to determine the most suitable regional aircraft for aviation operators. In this context, the nine regional aircraft types were analyzed using multiple criteria decision making analysis methods. Preference analysis for reference ideal solution (PARIS) was used in regional aircraft selection process. The findings of the proposed model show that the ranking results of the multiple criteria decision making models are consistent with each other, and the proposed method is efficient, and the results are valid. Finally, the Embraer E195-E2 model regional aircraft is chosen as the most suitable aircraft type.

Keywords: aircraft, regional aircraft selection, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449
6398 Hidden Markov Model for the Simulation Study of Neural States and Intentionality

Authors: R. B. Mishra

Abstract:

Hidden Markov Model (HMM) has been used in prediction and determination of states that generate different neural activations as well as mental working conditions. This paper addresses two applications of HMM; one to determine the optimal sequence of states for two neural states: Active (AC) and Inactive (IA) for the three emission (observations) which are for No Working (NW), Waiting (WT) and Working (W) conditions of human beings. Another is for the determination of optimal sequence of intentionality i.e. Believe (B), Desire (D), and Intention (I) as the states and three observational sequences: NW, WT and W. The computational results are encouraging and useful.

Keywords: BDI, HMM, neural activation, optimal states, working conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870
6397 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique

Authors: Hyun-Woo Cho

Abstract:

The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.

Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
6396 A CUSUM Control Chart to Monitor Wafer Quality

Authors: Sheng-Shu Cheng, Fong-Jung Yu

Abstract:

C-control chart assumes that process nonconformities follow a Poisson distribution. In actuality, however, this Poisson distribution does not always occur. A process control for semiconductor based on a Poisson distribution always underestimates the true average amount of nonconformities and the process variance. Quality is described more accurately if a compound Poisson process is used for process control at this time. A cumulative sum (CUSUM) control chart is much better than a C control chart when a small shift will be detected. This study calculates one-sided CUSUM ARLs using a Markov chain approach to construct a CUSUM control chart with an underlying Poisson-Gamma compound distribution for the failure mechanism. Moreover, an actual data set from a wafer plant is used to demonstrate the operation of the proposed model. The results show that a CUSUM control chart realizes significantly better performance than EWMA.

Keywords: Nonconformities, Compound Poisson distribution, CUSUM control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
6395 Evaluation of Algorithms for Sequential Decision in Biosonar Target Classification

Authors: Turgay Temel, John Hallam

Abstract:

A sequential decision problem, based on the task ofidentifying the species of trees given acoustic echo data collectedfrom them, is considered with well-known stochastic classifiers,including single and mixture Gaussian models. Echoes are processedwith a preprocessing stage based on a model of mammalian cochlearfiltering, using a new discrete low-pass filter characteristic. Stoppingtime performance of the sequential decision process is evaluated andcompared. It is observed that the new low pass filter processingresults in faster sequential decisions.

Keywords: Classification, neuro-spike coding, parametricmodel, Gaussian mixture with EM algorithm, sequential decision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
6394 Standard Fuzzy Sets for Aircraft Selection using Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This study uses two-dimensional standard fuzzy sets to enhance multiple criteria decision-making analysis for passenger aircraft selection, allowing decision-makers to express judgments with uncertain and vague information. Using two-dimensional fuzzy numbers, three decision makers evaluated three aircraft alternatives according to seven decision criteria. A validity analysis based on two-dimensional standard fuzzy weighted geometric (SFWG) and two-dimensional standard fuzzy weighted average (SFGA) operators is conducted to test the proposed approach's robustness and effectiveness in the fuzzy multiple criteria decision making (MCDM) evaluation process. 

Keywords: Standard fuzzy sets (SFSs), aircraft selection, multiple criteria decision making, intuitionistic fuzzy sets (IFSs), SFWG, SFGA, MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 395
6393 Multi-Criteria Decision Analysis in Planning of Asbestos-Containing Waste Management

Authors: E. Bruno, F. Lacarbonara, M. C. Placentino, D. Gramegna

Abstract:

Environmental decision making, particularly about hazardous waste management, is inherently exposed to a high potential conflict, principally because of the trade-off between sociopolitical, environmental, health and economic factors. The need to plan complex contexts has led to an increasing request for decision analytic techniques as support for the decision process. In this work, alternative systems of asbestos-containing waste management (ACW) in Puglia (Southern Italy) were explored by a multi-criteria decision analysis. In particular, through Analytic Hierarchy Process five alternatives management have been compared and ranked according to their performance and efficiency, taking into account environmental, health and socio-economic aspects. A separated valuation has been performed for different temporal scale. For short period results showed a narrow deviation between the disposal alternatives “mono-material landfill in public quarry" and “dedicate cells in existing landfill", with the best performance of the first one. While for long period “treatment plant to eliminate hazard from asbestos-containing waste" was prevalent, although high energy demand required to achieve the change of crystalline structure. A comparison with results from a participative approach in valuation process might be considered as future development of method application to ACW management.

Keywords: Multi-criteria decision analysis, Hazardous wastemanagement, Asbestos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
6392 Decision Analysis Module for Excel

Authors: Radomir Perzina, Jaroslav Ramik

Abstract:

The Analytic Hierarchy Process is frequently used approach for solving decision making problems. There exists wide range of software programs utilizing that approach. Their main disadvantage is that they are relatively expensive and missing intermediate calculations. This work introduces a Microsoft Excel add-in called DAME – Decision Analysis Module for Excel. Comparing to other computer programs DAME is free, can work with scenarios or multiple decision makers and displays intermediate calculations. Users can structure their decision models into three levels – scenarios/users, criteria and variants. Items on all levels can be evaluated either by weights or pair-wise comparisons. There are provided three different methods for the evaluation of the weights of criteria, the variants as well as the scenarios – Saaty’s Method, Geometric Mean Method and Fuller’s Triangle Method. Multiplicative and additive syntheses are supported. The proposed software package is demonstrated on couple of illustrating examples of real life decision problems.

Keywords: Analytic hierarchy process, multi-criteria decision making, pair-wise comparisons, Microsoft Excel, Scenarios.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3404
6391 Predicting Protein Function using Decision Tree

Authors: Manpreet Singh, Parminder Kaur Wadhwa, Surinder Kaur

Abstract:

The drug discovery process starts with protein identification because proteins are responsible for many functions required for maintenance of life. Protein identification further needs determination of protein function. Proposed method develops a classifier for human protein function prediction. The model uses decision tree for classification process. The protein function is predicted on the basis of matched sequence derived features per each protein function. The research work includes the development of a tool which determines sequence derived features by analyzing different parameters. The other sequence derived features are determined using various web based tools.

Keywords: Sequence Derived Features, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
6390 Aircraft Selection Process Using Preference Analysis for Reference Ideal Solution (PARIS)

Authors: C. Ardil

Abstract:

Multiple criteria decision making analysis (MCDMA) methods are applied to many real - life problems in different fields of engineering science and technology. The "preference analysis for reference ideal solution (PARIS)" method is proposed for an efficient MCDMA evaluation of decision problems. The multiple criteria aircraft evaluation approach is based on the integrated the mean weight, entropy weight, PARIS, and TOPSIS method, which eliminates the subjective importance weight assignment process. The evaluation criteria were identified from an extensive literature review of aircraft selection process. The aim of this study is to propose an efficient methodology for handling the aircraft selection process in which the proposed method solves effectively the MCDMA problem. A numerical example is presented to demonstrate the applicability and validity of the proposed MCDMA approach. 

Keywords: aircraft selection, aircraft, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS, VIKOR, ELECTRE, PROMETHEE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536
6389 Modeling Approach to the Specific Tactical Activities

Authors: Ivana Mokrá

Abstract:

The contribution deals with current or potential approaches to the modeling and optimization of tactical activities. This issue takes on importance in recent times, particularly with the increasing trend of digitized battlefield, the development of C4ISR systems and intention to streamline the command and control process at the lowest levels of command. From fundamental and philosophically point of view, this new approaches seek to significantly upgrade and enhance the decision-making process of the tactical commanders.

Keywords: Computer decision support, C4ISTAR, ISR, DSS, OTU

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
6388 Hand Written Digit Recognition by Multiple Classifier Fusion based on Decision Templates Approach

Authors: Reza Ebrahimpour, Samaneh Hamedi

Abstract:

Classifier fusion may generate more accurate classification than each of the basic classifiers. Fusion is often based on fixed combination rules like the product, average etc. This paper presents decision templates as classifier fusion method for the recognition of the handwritten English and Farsi numerals (1-9). The process involves extracting a feature vector on well-known image databases. The extracted feature vector is fed to multiple classifier fusion. A set of experiments were conducted to compare decision templates (DTs) with some combination rules. Results from decision templates conclude 97.99% and 97.28% for Farsi and English handwritten digits.

Keywords: Decision templates, multi-layer perceptron, characteristics Loci, principle component analysis (PCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
6387 Hybrid Markov Game Controller Design Algorithms for Nonlinear Systems

Authors: R. Sharma, M. Gopal

Abstract:

Markov games can be effectively used to design controllers for nonlinear systems. The paper presents two novel controller design algorithms by incorporating ideas from gametheory literature that address safety and consistency issues of the 'learned' control strategy. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. We generate an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed approaches aim to achieve 'safe-consistent' and 'safe-universally consistent' controller behavior by hybridizing 'min-max', 'fictitious play' and 'cautious fictitious play' approaches drawn from game theory. We empirically evaluate the approaches on a simulated Inverted Pendulum swing-up task and compare its performance against standard Q learning.

Keywords: Fictitious Play, Cautious Fictitious Play, InvertedPendulum, Controller, Markov Games, Mobile Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
6386 Environmental Decision Making Model for Assessing On-Site Performances of Building Subcontractors

Authors: Buket Metin

Abstract:

Buildings cause a variety of loads on the environment due to activities performed at each stage of the building life cycle. Construction is the first stage that affects both the natural and built environments at different steps of the process, which can be defined as transportation of materials within the construction site, formation and preparation of materials on-site and the application of materials to realize the building subsystems. All of these steps require the use of technology, which varies based on the facilities that contractors and subcontractors have. Hence, environmental consequences of the construction process should be tackled by focusing on construction technology options used in every step of the process. This paper presents an environmental decision-making model for assessing on-site performances of subcontractors based on the construction technology options which they can supply. First, construction technologies, which constitute information, tools and methods, are classified. Then, environmental performance criteria are set forth related to resource consumption, ecosystem quality, and human health issues. Finally, the model is developed based on the relationships between the construction technology components and the environmental performance criteria. The Fuzzy Analytical Hierarchy Process (FAHP) method is used for weighting the environmental performance criteria according to environmental priorities of decision-maker(s), while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking on-site environmental performances of subcontractors using quantitative data related to the construction technology components. Thus, the model aims to provide an insight to decision-maker(s) about the environmental consequences of the construction process and to provide an opportunity to improve the overall environmental performance of construction sites.

Keywords: Construction process, construction technology, decision making, environmental performance, subcontractors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1172
6385 Speech Coding and Recognition

Authors: M. Satya Sai Ram, P. Siddaiah, M. Madhavi Latha

Abstract:

This paper investigates the performance of a speech recognizer in an interactive voice response system for various coded speech signals, coded by using a vector quantization technique namely Multi Switched Split Vector Quantization Technique. The process of recognizing the coded output can be used in Voice banking application. The recognition technique used for the recognition of the coded speech signals is the Hidden Markov Model technique. The spectral distortion performance, computational complexity, and memory requirements of Multi Switched Split Vector Quantization Technique and the performance of the speech recognizer at various bit rates have been computed. From results it is found that the speech recognizer is showing better performance at 24 bits/frame and it is found that the percentage of recognition is being varied from 100% to 93.33% for various bit rates.

Keywords: Linear predictive coding, Speech Recognition, Voice banking, Multi Switched Split Vector Quantization, Hidden Markov Model, Linear Predictive Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
6384 Fuzzy Multi-Criteria Framework for Supporting Biofuels Policy Making

Authors: Jadwiga R. Ziolkowska

Abstract:

In this paper, a fuzzy algorithm and a fuzzy multicriteria decision framework are developed and used for a practical question of optimizing biofuels policy making. The methodological framework shows how to incorporate fuzzy set theory in a decision process of finding a sustainable biofuels policy among several policy options. Fuzzy set theory is used here as a tool to deal with uncertainties of decision environment, vagueness and ambiguities of policy objectives, subjectivities of human assessments and imprecise and incomplete information about the evaluated policy instruments.

Keywords: Fuzzy set theory, multi-criteria decision-makingsupport, uncertainties, policy making, biofuels

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
6383 An Estimating Parameter of the Mean in Normal Distribution by Maximum Likelihood, Bayes, and Markov Chain Monte Carlo Methods

Authors: Autcha Araveeporn

Abstract:

This paper is to compare the parameter estimation of the mean in normal distribution by Maximum Likelihood (ML), Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML estimator is estimated by the average of data, the Bayes method is considered from the prior distribution to estimate Bayes estimator, and MCMC estimator is approximated by Gibbs sampling from posterior distribution. These methods are also to estimate a parameter then the hypothesis testing is used to check a robustness of the estimators. Data are simulated from normal distribution with the true parameter of mean 2, and variance 4, 9, and 16 when the sample sizes is set as 10, 20, 30, and 50. From the results, it can be seen that the estimation of MLE, and MCMC are perceivably different from the true parameter when the sample size is 10 and 20 with variance 16. Furthermore, the Bayes estimator is estimated from the prior distribution when mean is 1, and variance is 12 which showed the significant difference in mean with variance 9 at the sample size 10 and 20.

Keywords: Bayes method, Markov Chain Monte Carlo method, Maximum Likelihood method, normal distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
6382 Creativity and Innovation in a Military Unit of South America: Decision Making Process, Socio-Emotional Climate, Shared Flow and Leadership

Authors: S. da Costa, D. Páez, E. Martínez, A. Torres, M. Beramendi, D. Hermosilla, M. Muratori

Abstract:

This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.

Keywords: Creativity, innovation, military, organization, teams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
6381 Decision Tree-based Feature Ranking using Manhattan Hierarchical Cluster Criterion

Authors: Yasmin Mohd Yacob, Harsa A. Mat Sakim, Nor Ashidi Mat Isa

Abstract:

Feature selection study is gaining importance due to its contribution to save classification cost in terms of time and computation load. In search of essential features, one of the methods to search the features is via the decision tree. Decision tree act as an intermediate feature space inducer in order to choose essential features. In decision tree-based feature selection, some studies used decision tree as a feature ranker with a direct threshold measure, while others remain the decision tree but utilized pruning condition that act as a threshold mechanism to choose features. This paper proposed threshold measure using Manhattan Hierarchical Cluster distance to be utilized in feature ranking in order to choose relevant features as part of the feature selection process. The result is promising, and this method can be improved in the future by including test cases of a higher number of attributes.

Keywords: Feature ranking, decision tree, hierarchical cluster, Manhattan distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
6380 Aircraft Selection Process Using Reference Linear Combination in Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper introduces a new method for multiplecriteria decision making (MCDM) that avoids order reversal and ensures consistency in decision-making. The proposed method involves range targeting of benefit and cost criteria vectors for range normalization of the initial decision matrix. The Reference Linear Combination (RLC) is used to avoid the rank reversal problem. The preference order generated from the target score matrix does not require relative comparisons between alternatives but relies on a chosen reference solution point after transforming the original decision matrix into an MCDM problem by specifying the minimum and maximum bounds of each criterion. The efficiency and applicability of the proposed RLC method were demonstrated in the selection of commercial passenger aircraft. 

Keywords: Aircraft selection, reference linear combination (RLC), multiple criteria decision-making, MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 365
6379 Part of Speech Tagging Using Statistical Approach for Nepali Text

Authors: Archit Yajnik

Abstract:

Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed.

Keywords: Hidden Markov model, Viterbi algorithm, POS tagging, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
6378 Fusion Classifier for Open-Set Face Recognition with Pose Variations

Authors: Gee-Sern Jison Hsu

Abstract:

A fusion classifier composed of two modules, one made by a hidden Markov model (HMM) and the other by a support vector machine (SVM), is proposed to recognize faces with pose variations in open-set recognition settings. The HMM module captures the evolution of facial features across a subject-s face using the subject-s facial images only, without referencing to the faces of others. Because of the captured evolutionary process of facial features, the HMM module retains certain robustness against pose variations, yielding low false rejection rates (FRR) for recognizing faces across poses. This is, however, on the price of poor false acceptance rates (FAR) when recognizing other faces because it is built upon withinclass samples only. The SVM module in the proposed model is developed following a special design able to substantially diminish the FAR and further lower down the FRR. The proposed fusion classifier has been evaluated in performance using the CMU PIE database, and proven effective for open-set face recognition with pose variations. Experiments have also shown that it outperforms the face classifier made by HMM or SVM alone.

Keywords: Face recognition, open-set identification, hidden Markov model, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
6377 The Impact of the Knowledge-Sharing Factors on Improving Decision-Making at Sultan Qaboos University Libraries

Authors: Aseela Alhinaai, Suliman Abdullah, Adil Albusaidi

Abstract:

Knowledge has been considered an important asset in private and public organizations. It is utilized in the libraries sector to run different operations of technical services and administrative works. This study aims to identify the impact of the knowledge-sharing factors (technology, collaboration, management support) to improve decision-making at Sultan Qaboos University Libraries. This study conducted a quantitative method using a questionnaire instrument to measure the impact of technology, collaboration, and management support on knowledge sharing that lead to improved decision-making. The study population is the Sultan Qaboos University (SQU) libraries (Main Library, Medical Library, College of Economic and Political Science Library, and Art Library). The results showed that management support, collaboration, and technology use have a positive impact on the knowledge-sharing process, and knowledge sharing positively affects decision making process.

Keywords: Knowledge sharing, decision making, information technology, management support, corroboration, Sultan Qaboos University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158
6376 Efficient Design of Distribution Logistics by Using a Model-Based Decision Support System

Authors: J. Becker, R. Arnold

Abstract:

The design of distribution logistics has a decisive impact on a company's logistics costs and performance. Hence, such solutions make an essential contribution to corporate success. This article describes a decision support system for analyzing the potential of distribution logistics in terms of logistics costs and performance. In contrast to previous procedures of business process re-engineering (BPR), this method maps distribution logistics holistically under variable distribution structures. Combined with qualitative measures the decision support system will contribute to a more efficient design of distribution logistics.

Keywords: Decision support system distribution logistics, potential analyses, supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
6375 Markov Chain Based QoS Support for Wireless Body Area Network Communication in Health Monitoring Services

Authors: R. A. Isabel, E. Baburaj

Abstract:

Wireless Body Area Networks (WBANs) are essential for real-time health monitoring of patients and in diagnosing of many diseases. WBANs comprise many sensors to monitor a large range of ambient conditions. Quality of Service (QoS) is a key challenge in WBAN, because the different state information of the neighboring nodes has to be monitored in an accurate manner. However, energy consumption gets increased while predicting and maintaining the exact information in highly dynamic environments. In order to reduce energy consumption and end to end delay, Markov Chain Based Quality of Service Support (MC-QoSS) method is designed in the health monitoring services of WBAN communication. The energy consumption gets reduced by forming a Markov chain with high energy nodes in the sensor networks communication path. The low energy level sensor nodes are removed using transitional probability in order to reduce end to end delay. High energy nodes are formed in the chain structure of its corresponding path to enhance communication. After choosing the communication path through high energy nodes, the packets are sent to the sink node from the source node with a higher Packet Delivery Ratio. The simulation result shows that MC-QoSS method improves the packet delivery ratio and reduces energy consumption with minimum end to end delay, compared to existing methods.

Keywords: Wireless body area networks, quality of service, Markov chain, health monitoring services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
6374 Genetic Algorithm and Padé-Moment Matching for Model Order Reduction

Authors: Shilpi Lavania, Deepak Nagaria

Abstract:

A mixed method for model order reduction is presented in this paper. The denominator polynomial is derived by matching both Markov parameters and time moments, whereas numerator polynomial derivation and error minimization is done using Genetic Algorithm. The efficiency of the proposed method can be investigated in terms of closeness of the response of reduced order model with respect to that of higher order original model and a comparison of the integral square error as well.

Keywords: Model Order Reduction (MOR), control theory, Markov parameters, time moments, genetic algorithm, Single Input Single Output (SISO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3536
6373 Unmanned Combat Aircraft Selection using Fuzzy Proximity Measure Method in Multiple Criteria Group Decision Making

Authors: C. Ardil

Abstract:

The decision to select an unmanned combat aircraft is complicated since several options and conflicting criteria must be considered at simultaneously. When making multiple criteria decision, it is important to consider the selected evaluation criteria, including priceability, payloadability, stealthability, speedability , and survivability. The fundamental goal of the study is to select the best unmanned combat aircraft by taking these evaluation criteria into account. The optimal aircraft was chosen using the fuzzy proximity measure method, which enables decision-makers to designate preferences as standard fuzzy set numbers during the multiple criteria decision-making process. To assess the applicability of the proposed approach, a numerical example is provided. Finally, by comparing determined unmanned combat aircraft, the proposed method produced a successful application, and the best aircraft was selected.

Keywords: standard fuzzy sets (SFS), unmanned combat aircraft selection, multiple criteria decision making (MCDM), multiple criteria group decision making (MCGDM), proximity measure method (PMM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436