Search results for: Emotions in tweets emotion detection in text
2099 Dynamic Decompression for Text Files
Authors: Ananth Kamath, Ankit Kant, Aravind Srivatsa, Harisha J.A
Abstract:
Compression algorithms reduce the redundancy in data representation to decrease the storage required for that data. Lossless compression researchers have developed highly sophisticated approaches, such as Huffman encoding, arithmetic encoding, the Lempel-Ziv (LZ) family, Dynamic Markov Compression (DMC), Prediction by Partial Matching (PPM), and Burrows-Wheeler Transform (BWT) based algorithms. Decompression is also required to retrieve the original data by lossless means. A compression scheme for text files coupled with the principle of dynamic decompression, which decompresses only the section of the compressed text file required by the user instead of decompressing the entire text file. Dynamic decompressed files offer better disk space utilization due to higher compression ratios compared to most of the currently available text file formats.Keywords: Compression, Dynamic Decompression, Text file format, Portable Document Format, Compression Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17632098 The Development of Positive Emotion Regulation Strategies Scale for Children and Adolescents
Authors: Jia-Ru Li, Ching-Wen Lin
Abstract:
The study was designed to develop a measurement of the positive emotion regulation questionnaire (PERQ) that assesses positive emotion regulation strategies through self-report. The 14 items developed for the surveying instrument of the study were based upon literatures regarding elements of positive regulation strategies. 319 elementary students (age ranging from 12 to14) were recruited among three public elementary schools to survey on their use of positive emotion regulation strategies. Of 319 subjects, 20 invalid questionnaire s yielded a response rate of 92%. The data collected wasanalyzed through methods such as item analysis, factor analysis, and structural equation models. In reference to the results from item analysis, the formal survey instrument was reduced to 11 items. A principal axis factor analysis with varimax was performed on responses, resulting in a 2-factor equation (savoring strategy and neutralizing strategy), which accounted for 55.5% of the total variance. Then, the two-factor structure of scale was also identified by structural equation models. Finally, the reliability coefficients of the two factors were Cronbach-s α .92 and .74. Gender difference was only found in savoring strategy. In conclusion, the positive emotion regulation strategies questionnaire offers a brief, internally consistent, and valid self-report measure for understanding the emotional regulation strategies of children that may be useful to researchers and applied professionals.Keywords: Emotional regulation, emotional regulation strategies, scale, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19912097 Journals Subheadlines Text Extraction Using Wavelet Thresholding and New Projection Profile
Authors: Davod Zaravi, Habib Rostami, Alireza Malahzaheh, S. S. Mortazavi
Abstract:
In this paper a new robust and efficient algorithm to automatic text extraction from colored book and journal cover sheets is proposed. First, we perform wavelet transform. Next for edge detecting from detail wavelet coefficient, we use dynamic threshold. By blurring approximate coefficients with alternative heuristic thresholding, achieve effective edge,. Afterward, with ROI technique get binary image. Finally text boxes would be extracted with new projection profile.
Keywords: Text extraction, colored cover sheet, wavelet threshold, region of interest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16532096 Efficient Signal Detection Using QRD-M Based On Channel Condition in MIMO-OFDM System
Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song
Abstract:
In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better tradeoff between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.
Keywords: MIMO-OFDM, QRD-M, Channel condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20222095 Moving Vehicles Detection Using Automatic Background Extraction
Authors: Saad M. Al-Garni, Adel A. Abdennour
Abstract:
Vehicle detection is the critical step for highway monitoring. In this paper we propose background subtraction and edge detection technique for vehicle detection. This technique uses the advantages of both approaches. The practical applications approved the effectiveness of this method. This method consists of two procedures: First, automatic background extraction procedure, in which the background is extracted automatically from the successive frames; Second vehicles detection procedure, which depend on edge detection and background subtraction. Experimental results show the effective application of this algorithm. Vehicles detection rate was higher than 91%.
Keywords: Image processing, Automatic background extraction, Moving vehicle detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24282094 Facial Expression Phoenix (FePh): An Annotated Sequenced Dataset for Facial and Emotion-Specified Expressions in Sign Language
Authors: Marie Alaghband, Niloofar Yousefi, Ivan Garibay
Abstract:
Facial expressions are important parts of both gesture and sign language recognition systems. Despite the recent advances in both fields, annotated facial expression datasets in the context of sign language are still scarce resources. In this manuscript, we introduce an annotated sequenced facial expression dataset in the context of sign language, comprising over 3000 facial images extracted from the daily news and weather forecast of the public tv-station PHOENIX. Unlike the majority of currently existing facial expression datasets, FePh provides sequenced semi-blurry facial images with different head poses, orientations, and movements. In addition, in the majority of images, identities are mouthing the words, which makes the data more challenging. To annotate this dataset we consider primary, secondary, and tertiary dyads of seven basic emotions of "sad", "surprise", "fear", "angry", "neutral", "disgust", and "happy". We also considered the "None" class if the image’s facial expression could not be described by any of the aforementioned emotions. Although we provide FePh as a facial expression dataset of signers in sign language, it has a wider application in gesture recognition and Human Computer Interaction (HCI) systems.Keywords: Annotated Facial Expression Dataset, Sign Language Recognition, Gesture Recognition, Sequenced Facial Expression Dataset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7242093 Text-Mining Approach for Evaluation of Affective Management Practices
Authors: Masaaki Saito, Qin Tang, Hiroyuki Umemuro
Abstract:
The purpose of this paper is to propose a text mining approach to evaluate companies- practices on affective management. Affective management argues that it is critical to take stakeholders- affects into consideration during decision-making process, along with the traditional numerical and rational indices. CSR reports published by companies were collected as source information. Indices were proposed based on the frequency and collocation of words relevant to affective management concept using text mining approach to analyze the text information of CSR reports. In addition, the relationships between the results obtained using proposed indices and traditional indicators of business performance were investigated using correlation analysis. Those correlations were also compared between manufacturing and non-manufacturing companies. The results of this study revealed the possibility to evaluate affective management practices of companies based on publicly available text documents.Keywords: Affective management, Affect, Stakeholder, Text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18452092 Meta-Classification using SVM Classifiers for Text Documents
Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. In this paper, we investigated three approaches to build a meta-classifier in order to increase the classification accuracy. The basic idea is to learn a metaclassifier to optimally select the best component classifier for each data point. The experimental results show that combining classifiers can significantly improve the accuracy of classification and that our meta-classification strategy gives better results than each individual classifier. For 7083 Reuters text documents we obtained a classification accuracies up to 92.04%.Keywords: Meta-classification, Learning with Kernels, Support Vector Machine, and Performance Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16162091 A Content Vector Model for Text Classification
Authors: Eric Jiang
Abstract:
As a popular rank-reduced vector space approach, Latent Semantic Indexing (LSI) has been used in information retrieval and other applications. In this paper, an LSI-based content vector model for text classification is presented, which constructs multiple augmented category LSI spaces and classifies text by their content. The model integrates the class discriminative information from the training data and is equipped with several pertinent feature selection and text classification algorithms. The proposed classifier has been applied to email classification and its experiments on a benchmark spam testing corpus (PU1) have shown that the approach represents a competitive alternative to other email classifiers based on the well-known SVM and naïve Bayes algorithms.Keywords: Feature Selection, Latent Semantic Indexing, Text Classification, Vector Space Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18852090 Detection and Classification of Power Quality Disturbances Using S-Transform and Wavelet Algorithm
Authors: Mohamed E. Salem Abozaed
Abstract:
Detection and classification of power quality (PQ) disturbances is an important consideration to electrical utilities and many industrial customers so that diagnosis and mitigation of such disturbance can be implemented quickly. S-transform algorithm and continuous wavelet transforms (CWT) are time-frequency algorithms, and both of them are powerful in detection and classification of PQ disturbances. This paper presents detection and classification of PQ disturbances using S-transform and CWT algorithms. The results of detection and classification, provides that S-transform is more accurate in detection and classification for most PQ disturbance than CWT algorithm, where as CWT algorithm more powerful in detection in some disturbances like notchingKeywords: CWT, Disturbances classification, Disturbances detection, Power quality, S-transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26002089 Narrative and Expository Text Reading Comprehension by Fourth Grade Spanish-Speaking Children
Authors: Mariela V. De Mier, Veronica S. Sanchez Abchi, Ana M. Borzone
Abstract:
This work aims to explore the factors that have an incidence in reading comprehension process, with different type of texts. In a recent study with 2nd, 3rd and 4th grade children, it was observed that reading comprehension of narrative texts was better than comprehension of expository texts. Nevertheless it seems that not only the type of text but also other textual factors would account for comprehension depending on the cognitive processing demands posed by the text. In order to explore this assumption, three narrative and three expository texts were elaborated with different degree of complexity. A group of 40 fourth grade Spanish-speaking children took part in the study. Children were asked to read the texts and answer orally three literal and three inferential questions for each text. The quantitative and qualitative analysis of children responses showed that children had difficulties in both, narrative and expository texts. The problem was to answer those questions that involved establishing complex relationships among information units that were present in the text or that should be activated from children’s previous knowledge to make an inference. Considering the data analysis, it could be concluded that there is some interaction between the type of text and the cognitive processing load of a specific text.
Keywords: comprehension, textual factors, type of text, processing demands.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14092088 Fault Detection via Stability Analysis for the Hybrid Control Unit of HEVs
Authors: Kyogun Chang, Yoon Bok Lee
Abstract:
Fault detection determines faultexistence and detecting time. This paper discusses two layered fault detection methods to enhance the reliability and safety. Two layered fault detection methods consist of fault detection methods of component level controllers and system level controllers. Component level controllers detect faults by using limit checking, model-based detection, and data-driven detection and system level controllers execute detection by stability analysis which can detect unknown changes. System level controllers compare detection results via stability with fault signals from lower level controllers. This paper addresses fault detection methods via stability and suggests fault detection criteria in nonlinear systems. The fault detection method applies tothe hybrid control unit of a military hybrid electric vehicleso that the hybrid control unit can detect faults of the traction motor.Keywords: Two Layered Fault Detection, Stability Analysis, Fault-Tolerant Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17112087 A Study on the Circumstances Affecting Elementary School Students in Their Familyand School Lives and Their Consequential Emotions
Authors: Osman Samancı, Ramazan Kaya
Abstract:
The purpose of this study is to determine the circumstances affecting elementary school students in their family and school lives and what kind of emotions children may feel because of these circumstances. The study was carried out according to the survey model. Four Turkish elementary schools provided 123 fourth grade students for participation in the study. The study-s data were collected by using worksheets for the activity titled “Important Days in Our Lives", which was part of the Elementary School Social Sciences Course 4th Grade Education Program. Data analysis was carried out according to the content analysis technique used in qualitative research. The study detected that circumstances of their family and school lives caused children to feel emotions such as happiness, sadness, anger, fear and jealousy. The circumstances and the emotions caused by these circumstances were analyzed according to gender and interpreted by presenting them with their frequencies.Keywords: Elementary school students, emotional development, family and school, social development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13892086 A Talking Head System for Korean Text
Authors: Sang-Wan Kim, Hoon Lee, Kyung-Ho Choi, Soon-Young Park
Abstract:
A talking head system (THS) is presented to animate the face of a speaking 3D avatar in such a way that it realistically pronounces the given Korean text. The proposed system consists of SAPI compliant text-to-speech (TTS) engine and MPEG-4 compliant face animation generator. The input to the THS is a unicode text that is to be spoken with synchronized lip shape. The TTS engine generates a phoneme sequence with their duration and audio data. The TTS applies the coarticulation rules to the phoneme sequence and sends a mouth animation sequence to the face modeler. The proposed THS can make more natural lip sync and facial expression by using the face animation generator than those using the conventional visemes only. The experimental results show that our system has great potential for the implementation of talking head for Korean text.Keywords: Talking head, Lip sync, TTS, MPEG4.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14922085 Efficient STAKCERT KDD Processes in Worm Detection
Authors: Madihah Mohd Saudi, Andrea J Cullen, Mike E Woodward
Abstract:
This paper presents a new STAKCERT KDD processes for worm detection. The enhancement introduced in the data-preprocessing resulted in the formation of a new STAKCERT model for worm detection. In this paper we explained in detail how all the processes involved in the STAKCERT KDD processes are applied within the STAKCERT model for worm detection. Based on the experiment conducted, the STAKCERT model yielded a 98.13% accuracy rate for worm detection by integrating the STAKCERT KDD processes.Keywords: data mining, incident response, KDD processes, security metrics and worm detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16552084 The Emotional Life of Patients with Chronic Diseases: A Framework for Health Promotion Strategies
Authors: Leslie Beale
Abstract:
Being a patient with a chronic disease is both a physical and emotional experience. The ability to recognize a patient’s emotional health is an important part of a health care provider’s skills. For the purposes of this paper, emotional health is viewed as the way that we feel, and the way that our feelings affect us. Understanding the patient’s emotional health leads to improved provider-patient relationships and health outcomes. For example, when a patient first hears his or her diagnosis from a provider, they might find it difficult to cope with their emotions. Struggling to cope with emotions interferes with the patient’s ability to read, understand, and act on health information and services. As a result, the patient becomes more frustrated and confused, creating barriers to accessing healthcare services. These barriers are challenging for both the patient and their healthcare providers. There are five basic emotions that are part of who we are and are always with us: fear, anger, sadness, joy, and compassion. Living with a chronic disease however can cause a patient to experience and express these emotions in new and unique ways. Within the provider-patient relationship, there needs to be an understanding that each patient experiences these five emotions and, experiences them at different times. In response to this need, the paper highlights a health promotion framework for patients with chronic disease. This framework emphasizes the emotional health of patients.
Keywords: Health promotion, emotional health, patients with chronic disease, patient-centered care.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11452083 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory
Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan
Abstract:
Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.Keywords: Data fusion, Dempster-Shafer theory, data mining, event detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17992082 The Morphology of Sri Lankan Text Messages
Authors: Chamindi Dilkushi Senaratne
Abstract:
Communicating via a text or an SMS (Short Message Service) has become an integral part of our daily lives. With the increase in the use of mobile phones, text messaging has become a genre by itself worth researching and studying. It is undoubtedly a major phenomenon revealing language change. This paper attempts to describe the morphological processes of text language of urban bilinguals in Sri Lanka. It will be a typological study based on 500 English text messages collected from urban bilinguals residing in Colombo. The messages are selected by categorizing the deviant forms of language use apparent in text messages. These stylistic deviations are a deliberate skilled performance by the users of the language possessing an in-depth knowledge of linguistic systems to create new words and thereby convey their linguistic identity and individual and group solidarity via the message. The findings of the study solidifies arguments that the manipulation of language in text messages is both creative and appropriate. In addition, code mixing theories will be used to identify how existing morphological processes are adapted by bilingual users in Sri Lanka when texting. The study will reveal processes such as omission, initialism, insertion and alternation in addition to other identified linguistic features in text language. The corpus reveals the most common morphological processes used by Sri Lankan urban bilinguals when sending texts.Keywords: Bilingual, deviations, morphology, texts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19782081 Research on Hybrid Neural Network in Intrusion Detection System
Authors: Jianhua Wang, Yan Yu
Abstract:
This paper presents an intrusion detection system of hybrid neural network model based on RBF and Elman. It is used for anomaly detection and misuse detection. This model has the memory function .It can detect discrete and related aggressive behavior effectively. RBF network is a real-time pattern classifier, and Elman network achieves the memory ability for former event. Based on the hybrid model intrusion detection system uses DARPA data set to do test evaluation. It uses ROC curve to display the test result intuitively. After the experiment it proves this hybrid model intrusion detection system can effectively improve the detection rate, and reduce the rate of false alarm and fail.
Keywords: RBF, Elman, anomaly detection, misuse detection, hybrid neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23272080 Growing Self Organising Map Based Exploratory Analysis of Text Data
Authors: Sumith Matharage, Damminda Alahakoon
Abstract:
Textual data plays an important role in the modern world. The possibilities of applying data mining techniques to uncover hidden information present in large volumes of text collections is immense. The Growing Self Organizing Map (GSOM) is a highly successful member of the Self Organising Map family and has been used as a clustering and visualisation tool across wide range of disciplines to discover hidden patterns present in the data. A comprehensive analysis of the GSOM’s capabilities as a text clustering and visualisation tool has so far not been published. These functionalities, namely map visualisation capabilities, automatic cluster identification and hierarchical clustering capabilities are presented in this paper and are further demonstrated with experiments on a benchmark text corpus.
Keywords: Text Clustering, Growing Self Organizing Map, Automatic Cluster Identification, Hierarchical Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19962079 Stochastic Resonance in Nonlinear Signal Detection
Authors: Youguo Wang, Lenan Wu
Abstract:
Stochastic resonance (SR) is a phenomenon whereby the signal transmission or signal processing through certain nonlinear systems can be improved by adding noise. This paper discusses SR in nonlinear signal detection by a simple test statistic, which can be computed from multiple noisy data in a binary decision problem based on a maximum a posteriori probability criterion. The performance of detection is assessed by the probability of detection error Per . When the input signal is subthreshold signal, we establish that benefit from noise can be gained for different noises and confirm further that the subthreshold SR exists in nonlinear signal detection. The efficacy of SR is significantly improved and the minimum of Per can dramatically approach to zero as the sample number increases. These results show the robustness of SR in signal detection and extend the applicability of SR in signal processing.Keywords: Probability of detection error, signal detection, stochastic resonance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15332078 Parallel Text Processing: Alignment of Indonesian to Javanese Language
Authors: Aji P. Wibawa, Andrew Nafalski, Neil Murray, Wayan F. Mahmudy
Abstract:
Parallel text alignment is proposed as a way of aligning bahasa Indonesia to words in Javanese. Since the one-to-one word translator does not have the facility to translate pragmatic aspects of Javanese, the parallel text alignment model described uses a phrase pair combination. The algorithm aligns the parallel text automatically from the beginning to the end of each sentence. Even though the results of the phrase pair combination outperform the previous algorithm, it is still inefficient. Recording all possible combinations consume more space in the database and time consuming. The original algorithm is modified by applying the edit distance coefficient to improve the data-storage efficiency. As a result, the data-storage consumption is 90% reduced as well as its learning period (42s).
Keywords: Parallel text alignment, phrase pair combination, edit distance coefficient, Javanese-Indonesian language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24822077 Multisensor Agent Based Intrusion Detection
Authors: Richard A. Wasniowski
Abstract:
In this paper we propose a framework for multisensor intrusion detection called Fuzzy Agent-Based Intrusion Detection System. A unique feature of this model is that the agent uses data from multiple sensors and the fuzzy logic to process log files. Use of this feature reduces the overhead in a distributed intrusion detection system. We have developed an agent communication architecture that provides a prototype implementation. This paper discusses also the issues of combining intelligent agent technology with the intrusion detection domain.Keywords: Intrusion detection, fuzzy logic, agents, networksecurity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19192076 State of the Art: A Study on Fall Detection
Authors: Goh Yongli, Ooi Shih Yin, Pang Ying Han
Abstract:
Unintentional falls are rife throughout the ages and have been the common factor of serious or critical injuries especially for the elderly society. Fortunately, owing to the recent rapid advancement in technology, fall detection system is made possible, enabling detection of falling events for the elderly, monitoring the patient and consequently provides emergency support in the event of falling. This paper presents a review of 3 main categories of fall detection techniques, ranging from year 2005 to year 2010. This paper will be focusing on discussing the techniques alongside with summary and conclusion for them.Keywords: State of the art, fall detection, wearable devices, ambient analyser, motion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21512075 Performance Evaluation of an Online Text-Based Strategy Game
Authors: Nazleeni S. Haron, Mohd K. Zaime , Izzatdin A. Aziz, Mohd H. Hasan
Abstract:
Text-based game is supposed to be a low resource consumption application that delivers good performances when compared to graphical-intensive type of games. But, nowadays, some of the online text-based games are not offering performances that are acceptable to the users. Therefore, an online text-based game called Star_Quest has been developed in order to analyze its behavior under different performance measurements. Performance metrics such as throughput, scalability, response time and page loading time are captured to yield the performance of the game. The techniques in performing the load testing are also disclosed to exhibit the viability of our work. The comparative assessment between the results obtained and the accepted level of performances are conducted as to determine the performance level of the game. The study reveals that the developed game managed to meet all the performance objectives set forth.Keywords: Online text-based games, performance evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16092074 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease
Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg
Abstract:
Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.Keywords: Contrast analysis, early fire detection, video smoke detection, video surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15842073 Noise-Improved Signal Detection in Nonlinear Threshold Systems
Authors: Youguo Wang, Lenan Wu
Abstract:
We discuss the signal detection through nonlinear threshold systems. The detection performance is assessed by the probability of error Per . We establish that: (1) when the signal is complete suprathreshold, noise always degrades the signal detection both in the single threshold system and in the parallel array of threshold devices. (2) When the signal is a little subthreshold, noise degrades signal detection in the single threshold system. But in the parallel array, noise can improve signal detection, i.e., stochastic resonance (SR) exists in the array. (3) When the signal is predominant subthreshold, noise always can improve signal detection and SR always exists not only in the single threshold system but also in the parallel array. (4) Array can improve signal detection by raising the number of threshold devices. These results extend further the applicability of SR in signal detection.Keywords: Probability of error, signal detection, stochasticresonance, threshold system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14372072 Web Application to Profiling Scientific Institutions through Citation Mining
Authors: Hector D. Cortes, Jesus A. del Rio, Esther O. Garcia, Miguel Robles
Abstract:
Recently the use of data mining to scientific bibliographic data bases has been implemented to analyze the pathways of the knowledge or the core scientific relevances of a laureated novel or a country. This specific case of data mining has been named citation mining, and it is the integration of citation bibliometrics and text mining. In this paper we present an improved WEB implementation of statistical physics algorithms to perform the text mining component of citation mining. In particular we use an entropic like distance between the compression of text as an indicator of the similarity between them. Finally, we have included the recently proposed index h to characterize the scientific production. We have used this web implementation to identify users, applications and impact of the Mexican scientific institutions located in the State of Morelos.
Keywords: Citation Mining, Text Mining, Science Impact
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17562071 Suggestion for Malware Detection Agent Considering Network Environment
Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung
Abstract:
Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.
Keywords: Android malware detection, software-defined network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9262070 Interactive, Topic-Oriented Search Support by a Centroid-Based Text Categorisation
Authors: Mario Kubek, Herwig Unger
Abstract:
Centroid terms are single words that semantically and topically characterise text documents and so may serve as their very compact representation in automatic text processing. In the present paper, centroids are used to measure the relevance of text documents with respect to a given search query. Thus, a new graphbased paradigm for searching texts in large corpora is proposed and evaluated against keyword-based methods. The first, promising experimental results demonstrate the usefulness of the centroid-based search procedure. It is shown that especially the routing of search queries in interactive and decentralised search systems can be greatly improved by applying this approach. A detailed discussion on further fields of its application completes this contribution.Keywords: Search algorithm, centroid, query, keyword, cooccurrence, categorisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623