Search results for: Associative Classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1139

Search results for: Associative Classification

1049 Ensemble Learning with Decision Tree for Remote Sensing Classification

Authors: Mahesh Pal

Abstract:

In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in the field of land cover classification is focused on improving classification accuracy. This study compares the performance of four ensemble approaches (boosting, bagging, DECORATE and random subspace) with a univariate decision tree as base classifier. Two training datasets, one without ant noise and other with 20 percent noise was used to judge the performance of different ensemble approaches. Results with noise free data set suggest an improvement of about 4% in classification accuracy with all ensemble approaches in comparison to the results provided by univariate decision tree classifier. Highest classification accuracy of 87.43% was achieved by boosted decision tree. A comparison of results with noisy data set suggests that bagging, DECORATE and random subspace approaches works well with this data whereas the performance of boosted decision tree degrades and a classification accuracy of 79.7% is achieved which is even lower than that is achieved (i.e. 80.02%) by using unboosted decision tree classifier.

Keywords: Ensemble learning, decision tree, remote sensingclassification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
1048 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

Authors: Omer Nebil Yaveroglu, Tolga Can

Abstract:

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%

Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
1047 A New Method for Image Classification Based on Multi-level Neural Networks

Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed

Abstract:

In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.

Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
1046 Wood Species Recognition System

Authors: Bremananth R, Nithya B, Saipriya R

Abstract:

The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing techniques, feature extraction and by correlating the features of those wood species for their classification. Texture classification is a problem that has been studied and tested using different methods due to its valuable usage in various pattern recognition problems, such as wood recognition, rock classification. The most popular technique used for the textural classification is Gray-level Co-occurrence Matrices (GLCM). The features from the enhanced images are thus extracted using the GLCM is correlated, which determines the classification between the various wood species. The result thus obtained shows a high rate of recognition accuracy proving that the techniques used in suitable to be implemented for commercial purposes.

Keywords: Correlation, Grey Level Co-Occurrence Matrix, ProbabilityDensity Function, Wood Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
1045 The Performance of Predictive Classification Using Empirical Bayes

Authors: N. Deetae, S. Sukparungsee, Y. Areepong, K. Jampachaisri

Abstract:

This research is aimed to compare the percentages of correct classification of Empirical Bayes method (EB) to Classical method when data are constructed as near normal, short-tailed and long-tailed symmetric, short-tailed and long-tailed asymmetric. The study is performed using conjugate prior, normal distribution with known mean and unknown variance. The estimated hyper-parameters obtained from EB method are replaced in the posterior predictive probability and used to predict new observations. Data are generated, consisting of training set and test set with the sample sizes 100, 200 and 500 for the binary classification. The results showed that EB method exhibited an improved performance over Classical method in all situations under study.

Keywords: Classification, Empirical Bayes, Posterior predictive probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
1044 Gene Expression Signature for Classification of Metastasis Positive and Negative Oral Cancer in Homosapiens

Authors: A. Shukla, A. Tarsauliya, R. Tiwari, S. Sharma

Abstract:

Cancer classification to their corresponding cohorts has been key area of research in bioinformatics aiming better prognosis of the disease. High dimensionality of gene data has been makes it a complex task and requires significance data identification technique in order to reducing the dimensionality and identification of significant information. In this paper, we have proposed a novel approach for classification of oral cancer into metastasis positive and negative patients. We have used significance analysis of microarrays (SAM) for identifying significant genes which constitutes gene signature. 3 different gene signatures were identified using SAM from 3 different combination of training datasets and their classification accuracy was calculated on corresponding testing datasets using k-Nearest Neighbour (kNN), Fuzzy C-Means Clustering (FCM), Support Vector Machine (SVM) and Backpropagation Neural Network (BPNN). A final gene signature of only 9 genes was obtained from above 3 individual gene signatures. 9 gene signature-s classification capability was compared using same classifiers on same testing datasets. Results obtained from experimentation shows that 9 gene signature classified all samples in testing dataset accurately while individual genes could not classify all accurately.

Keywords: Cancer, Gene Signature, SAM, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
1043 The Labeled Classification and its Application

Authors: M. Nemissi, H. Seridi, H. Akdag

Abstract:

This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.

Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
1042 Application of Functional Network to Solving Classification Problems

Authors: Yong-Quan Zhou, Deng-Xu He, Zheng Nong

Abstract:

In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems.

Keywords: Functional network, neural network, XOR problem, classification, numerical analysis method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
1041 A Kernel Based Rejection Method for Supervised Classification

Authors: Abdenour Bounsiar, Edith Grall, Pierre Beauseroy

Abstract:

In this paper we are interested in classification problems with a performance constraint on error probability. In such problems if the constraint cannot be satisfied, then a rejection option is introduced. For binary labelled classification, a number of SVM based methods with rejection option have been proposed over the past few years. All of these methods use two thresholds on the SVM output. However, in previous works, we have shown on synthetic data that using thresholds on the output of the optimal SVM may lead to poor results for classification tasks with performance constraint. In this paper a new method for supervised classification with rejection option is proposed. It consists in two different classifiers jointly optimized to minimize the rejection probability subject to a given constraint on error rate. This method uses a new kernel based linear learning machine that we have recently presented. This learning machine is characterized by its simplicity and high training speed which makes the simultaneous optimization of the two classifiers computationally reasonable. The proposed classification method with rejection option is compared to a SVM based rejection method proposed in recent literature. Experiments show the superiority of the proposed method.

Keywords: rejection, Chow's rule, error-reject tradeoff, SupportVector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
1040 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words, classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
1039 Cardiac Disorder Classification Based On Extreme Learning Machine

Authors: Chul Kwak, Oh-Wook Kwon

Abstract:

In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.

Keywords: Heart sound classification, extreme learning machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
1038 Investigation of Wave Atom Sub-Bands via Breast Cancer Classification

Authors: Nebi Gedik, Ayten Atasoy

Abstract:

This paper investigates successful sub-bands of wave atom transform via classification of mammograms, when the coefficients of sub-bands are used as features. A computer-aided diagnosis system is constructed by using wave atom transform, support vector machine and k-nearest neighbor classifiers. Two-class classification is studied in detail using two data sets, separately. The successful sub-bands are determined according to the accuracy rates, coefficient numbers, and sensitivity rates.

Keywords: Breast cancer, wave atom transform, SVM, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
1037 Using Data Mining Technique for Scholarship Disbursement

Authors: J. K. Alhassan, S. A. Lawal

Abstract:

This work is on decision tree-based classification for the disbursement of scholarship. Tree-based data mining classification technique is used in other to determine the generic rule to be used to disburse the scholarship. The system based on the defined rules from the tree is able to determine the class (status) to which an applicant shall belong whether Granted or Not Granted. The applicants that fall to the class of granted denote a successful acquirement of scholarship while those in not granted class are unsuccessful in the scheme. An algorithm that can be used to classify the applicants based on the rules from tree-based classification was also developed. The tree-based classification is adopted because of its efficiency, effectiveness, and easy to comprehend features. The system was tested with the data of National Information Technology Development Agency (NITDA) Abuja, a Parastatal of Federal Ministry of Communication Technology that is mandated to develop and regulate information technology in Nigeria. The system was found working according to the specification. It is therefore recommended for all scholarship disbursement organizations.

Keywords: Decision tree, classification, data mining, scholarship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
1036 A Constrained Clustering Algorithm for the Classification of Industrial Ores

Authors: Luciano Nieddu, Giuseppe Manfredi

Abstract:

In this paper a Pattern Recognition algorithm based on a constrained version of the k-means clustering algorithm will be presented. The proposed algorithm is a non parametric supervised statistical pattern recognition algorithm, i.e. it works under very mild assumptions on the dataset. The performance of the algorithm will be tested, togheter with a feature extraction technique that captures the information on the closed two-dimensional contour of an image, on images of industrial mineral ores.

Keywords: K-means, Industrial ores classification, Invariant Features, Supervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
1035 Variational EM Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we propose the variational EM inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multiclass. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.

Keywords: Bayesian rule, Gaussian process classification model with multiclass, Gaussian process prior, human action classification, laplace approximation, variational EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
1034 Auto Classification for Search Intelligence

Authors: Lilac A. E. Al-Safadi

Abstract:

This paper proposes an auto-classification algorithm of Web pages using Data mining techniques. We consider the problem of discovering association rules between terms in a set of Web pages belonging to a category in a search engine database, and present an auto-classification algorithm for solving this problem that are fundamentally based on Apriori algorithm. The proposed technique has two phases. The first phase is a training phase where human experts determines the categories of different Web pages, and the supervised Data mining algorithm will combine these categories with appropriate weighted index terms according to the highest supported rules among the most frequent words. The second phase is the categorization phase where a web crawler will crawl through the World Wide Web to build a database categorized according to the result of the data mining approach. This database contains URLs and their categories.

Keywords: Information Processing on the Web, Data Mining, Document Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
1033 Analysis of Relation between Unlabeled and Labeled Data to Self-Taught Learning Performance

Authors: Ekachai Phaisangittisagul, Rapeepol Chongprachawat

Abstract:

Obtaining labeled data in supervised learning is often difficult and expensive, and thus the trained learning algorithm tends to be overfitting due to small number of training data. As a result, some researchers have focused on using unlabeled data which may not necessary to follow the same generative distribution as the labeled data to construct a high-level feature for improving performance on supervised learning tasks. In this paper, we investigate the impact of the relationship between unlabeled and labeled data for classification performance. Specifically, we will apply difference unlabeled data which have different degrees of relation to the labeled data for handwritten digit classification task based on MNIST dataset. Our experimental results show that the higher the degree of relation between unlabeled and labeled data, the better the classification performance. Although the unlabeled data that is completely from different generative distribution to the labeled data provides the lowest classification performance, we still achieve high classification performance. This leads to expanding the applicability of the supervised learning algorithms using unsupervised learning.

Keywords: Autoencoder, high-level feature, MNIST dataset, selftaught learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
1032 Curvelet Transform Based Two Class Motor Imagery Classification

Authors: Nebi Gedik

Abstract:

One of the important parts of the brain-computer interface (BCI) studies is the classification of motor imagery (MI) obtained by electroencephalography (EEG). The major goal is to provide non-muscular communication and control via assistive technologies to people with severe motor disorders so that they can communicate with the outside world. In this study, an EEG signal classification approach based on multiscale and multi-resolution transform method is presented. The proposed approach is used to decompose the EEG signal containing motor image information (right- and left-hand movement imagery). The decomposition process is performed using curvelet transform which is a multiscale and multiresolution analysis method, and the transform output was evaluated as feature data. The obtained feature set is subjected to feature selection process to obtain the most effective ones using t-test methods. SVM and k-NN algorithms are assigned for classification.

Keywords: motor imagery, EEG, curvelet transform, SVM, k-NN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
1031 An Attribute-Centre Based Decision Tree Classification Algorithm

Authors: Gökhan Silahtaroğlu

Abstract:

Decision tree algorithms have very important place at classification model of data mining. In literature, algorithms use entropy concept or gini index to form the tree. The shape of the classes and their closeness to each other some of the factors that affect the performance of the algorithm. In this paper we introduce a new decision tree algorithm which employs data (attribute) folding method and variation of the class variables over the branches to be created. A comparative performance analysis has been held between the proposed algorithm and C4.5.

Keywords: Classification, decision tree, split, pruning, entropy, gini.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
1030 SVM Based Model as an Optimal Classifier for the Classification of Sonar Signals

Authors: Suresh S. Salankar, Balasaheb M. Patre

Abstract:

Research into the problem of classification of sonar signals has been taken up as a challenging task for the neural networks. This paper investigates the design of an optimal classifier using a Multi layer Perceptron Neural Network (MLP NN) and Support Vector Machines (SVM). Results obtained using sonar data sets suggest that SVM classifier perform well in comparison with well-known MLP NN classifier. An average classification accuracy of 91.974% is achieved with SVM classifier and 90.3609% with MLP NN classifier, on the test instances. The area under the Receiver Operating Characteristics (ROC) curve for the proposed SVM classifier on test data set is found as 0.981183, which is very close to unity and this clearly confirms the excellent quality of the proposed classifier. The SVM classifier employed in this paper is implemented using kernel Adatron algorithm is seen to be robust and relatively insensitive to the parameter initialization in comparison to MLP NN.

Keywords: Classification, MLP NN, backpropagation algorithm, SVM, Receiver Operating Characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
1029 Identification of Arousal and Relaxation by using SVM-Based Fusion of PPG Features

Authors: Chi Jung Kim, Mincheol Whang, Eui Chul Lee

Abstract:

In this paper, we propose a new method to distinguish between arousal and relaxation states by using multiple features acquired from a photoplethysmogram (PPG) and support vector machine (SVM). To induce arousal and relaxation states in subjects, 2 kinds of sound stimuli are used, and their corresponding biosignals are obtained using the PPG sensor. Two features–pulse to pulse interval (PPI) and pulse amplitude (PA)–are extracted from acquired PPG data, and a nonlinear classification between arousal and relaxation is performed using SVM. This methodology has several advantages when compared with previous similar studies. Firstly, we extracted 2 separate features from PPG, i.e., PPI and PA. Secondly, in order to improve the classification accuracy, SVM-based nonlinear classification was performed. Thirdly, to solve classification problems caused by generalized features of whole subjects, we defined each threshold according to individual features. Experimental results showed that the average classification accuracy was 74.67%. Also, the proposed method showed the better identification performance than the single feature based methods. From this result, we confirmed that arousal and relaxation can be classified using SVM and PPG features.

Keywords: Support Vector Machine, PPG, Emotion Recognition, Arousal, Relaxation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
1028 Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection

Authors: Ehsan Amid, Sina Rezaei Aghdam, Hamidreza Amindavar

Abstract:

Steel surface defect detection is essentially one of pattern recognition problems. Support Vector Machines (SVMs) are known as one of the most proper classifiers in this application. In this paper, we introduce a more accurate classification method by using SVMs as our final classifier of the inspection system. In this scheme, multiclass classification task is performed based on the "one-againstone" method and different kernels are utilized for each pair of the classes in multiclass classification of the different defects. In the proposed system, a decision tree is employed in the first stage for two-class classification of the steel surfaces to "defect" and "non-defect", in order to decrease the time complexity. Based on the experimental results, generated from over one thousand images, the proposed multiclass classification scheme is more accurate than the conventional methods and the overall system yields a sufficient performance which can meet the requirements in steel manufacturing.

Keywords: Steel Surface Defect Detection, Support Vector Machines, Kernel Methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
1027 Investigation of the Possibility to Prepare Supervised Classification Map of Gully Erosion by RS and GIS

Authors: Ali Mohammadi Torkashvand, Hamid Reza Alipour

Abstract:

This study investigates the possibility providing gully erosion map by the supervised classification of satellite images (ETM+) in two mountainous and plain land types. These land types were the part of Varamin plain, Tehran province, and Roodbar subbasin, Guilan province, as plain and mountain land types, respectively. The position of 652 and 124 ground control points were recorded by GPS respectively in mountain and plain land types. Soil gully erosion, land uses or plant covers were investigated in these points. Regarding ground control points and auxiliary points, training points of gully erosion and other surface features were introduced to software (Ilwis 3.3 Academic). The supervised classified map of gully erosion was prepared by maximum likelihood method and then, overall accuracy of this map was computed. Results showed that the possibility supervised classification of gully erosion isn-t possible, although it need more studies for results generalization to other mountainous regions. Also, with increasing land uses and other surface features in plain physiography, it decreases the classification of accuracy.

Keywords: Supervised classification, Gully erosion, Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
1026 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images

Authors: F. Duarte

Abstract:

The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the acquisition of the sample images ended being very unreliable.

Keywords: Segmentation, classification, color space, skin tone, Fitzpatrick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24
1025 Indonesian News Classification using Support Vector Machine

Authors: Dewi Y. Liliana, Agung Hardianto, M. Ridok

Abstract:

Digital news with a variety topics is abundant on the internet. The problem is to classify news based on its appropriate category to facilitate user to find relevant news rapidly. Classifier engine is used to split any news automatically into the respective category. This research employs Support Vector Machine (SVM) to classify Indonesian news. SVM is a robust method to classify binary classes. The core processing of SVM is in the formation of an optimum separating plane to separate the different classes. For multiclass problem, a mechanism called one against one is used to combine the binary classification result. Documents were taken from the Indonesian digital news site, www.kompas.com. The experiment showed a promising result with the accuracy rate of 85%. This system is feasible to be implemented on Indonesian news classification.

Keywords: classification, Indonesian news, text processing, support vector machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3489
1024 Hybrid Color-Texture Space for Image Classification

Authors: Hassan El Maia, Ahmed Hammouch, Driss Aboutajdine

Abstract:

This work presents an approach for the construction of a hybrid color-texture space by using mutual information. Feature extraction is done by the Laws filter with SVM (Support Vectors Machine) as a classifier. The classification is applied on the VisTex database and a SPOT HRV (XS) image representing two forest areas in the region of Rabat in Morocco. The result of classification obtained in the hybrid space is compared with the one obtained in the RGB color space.

Keywords: Color, texture, laws filter, mutual information, SVM, hybrid space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
1023 Balancing Neural Trees to Improve Classification Performance

Authors: Asha Rani, Christian Micheloni, Gian Luca Foresti

Abstract:

In this paper, a neural tree (NT) classifier having a simple perceptron at each node is considered. A new concept for making a balanced tree is applied in the learning algorithm of the tree. At each node, if the perceptron classification is not accurate and unbalanced, then it is replaced by a new perceptron. This separates the training set in such a way that almost the equal number of patterns fall into each of the classes. Moreover, each perceptron is trained only for the classes which are present at respective node and ignore other classes. Splitting nodes are employed into the neural tree architecture to divide the training set when the current perceptron node repeats the same classification of the parent node. A new error function based on the depth of the tree is introduced to reduce the computational time for the training of a perceptron. Experiments are performed to check the efficiency and encouraging results are obtained in terms of accuracy and computational costs.

Keywords: Neural Tree, Pattern Classification, Perceptron, Splitting Nodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
1022 Analysis of Medical Data using Data Mining and Formal Concept Analysis

Authors: Anamika Gupta, Naveen Kumar, Vasudha Bhatnagar

Abstract:

This paper focuses on analyzing medical diagnostic data using classification rules in data mining and context reduction in formal concept analysis. It helps in finding redundancies among the various medical examination tests used in diagnosis of a disease. Classification rules have been derived from positive and negative association rules using the Concept lattice structure of the Formal Concept Analysis. Context reduction technique given in Formal Concept Analysis along with classification rules has been used to find redundancies among the various medical examination tests. Also it finds out whether expensive medical tests can be replaced by some cheaper tests.

Keywords: Data Mining, Formal Concept Analysis, Medical Data, Negative Classification Rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
1021 Data Mining Classification Methods Applied in Drug Design

Authors: Mária Stachová, Lukáš Sobíšek

Abstract:

Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.

Keywords: data mining, classification, drug design, QSAR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2850
1020 Multiclass Support Vector Machines for Environmental Sounds Classification Using log-Gabor Filters

Authors: S. Souli, Z. Lachiri

Abstract:

In this paper we propose a robust environmental sound classification approach, based on spectrograms features driven from log-Gabor filters. This approach includes two methods. In the first methods, the spectrograms are passed through an appropriate log-Gabor filter banks and the outputs are averaged and underwent an optimal feature selection procedure based on a mutual information criteria. The second method uses the same steps but applied only to three patches extracted from each spectrogram.

To investigate the accuracy of the proposed methods, we conduct experiments using a large database containing 10 environmental sound classes. The classification results based on Multiclass Support Vector Machines show that the second method is the most efficient with an average classification accuracy of 89.62 %.

Keywords: Environmental sounds, Log-Gabor filters, Spectrogram, SVM Multiclass, Visual features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746