Search results for: Distributed Data Mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8183

Search results for: Distributed Data Mining

7043 Fuzzy Based Problem-Solution Data Structureas a Data Oriented Model for ABS Controlling

Authors: Ahmad Habibizad Navin, Mehdi Naghian Fesharaki, Mohamad Teshnelab, Ehsan Shahamatnia

Abstract:

The anti-lock braking systems installed on vehicles for safe and effective braking, are high-order nonlinear and timevariant. Using fuzzy logic controllers increase efficiency of such systems, but impose a high computational complexity as well. The main concept introduced by this paper is reducing computational complexity of fuzzy controllers by deploying problem-solution data structure. Unlike conventional methods that are based on calculations, this approach is based on data oriented modeling.

Keywords: ABS, Fuzzy controller, PSDS, Time-Memory tradeoff, Data oriented modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
7042 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, these projects propose AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project present the best-in-school techniques used to preserve data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptography techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures, and identifies potential correction/mitigation measures.

Keywords: Data privacy, artificial intelligence, healthcare AI, data sharing, healthcare organizations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 114
7041 Use of Bayesian Network in Information Extraction from Unstructured Data Sources

Authors: Quratulain N. Rajput, Sajjad Haider

Abstract:

This paper applies Bayesian Networks to support information extraction from unstructured, ungrammatical, and incoherent data sources for semantic annotation. A tool has been developed that combines ontologies, machine learning, and information extraction and probabilistic reasoning techniques to support the extraction process. Data acquisition is performed with the aid of knowledge specified in the form of ontology. Due to the variable size of information available on different data sources, it is often the case that the extracted data contains missing values for certain variables of interest. It is desirable in such situations to predict the missing values. The methodology, presented in this paper, first learns a Bayesian network from the training data and then uses it to predict missing data and to resolve conflicts. Experiments have been conducted to analyze the performance of the presented methodology. The results look promising as the methodology achieves high degree of precision and recall for information extraction and reasonably good accuracy for predicting missing values.

Keywords: Information Extraction, Bayesian Network, ontology, Machine Learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
7040 Enhancement Approaches for Supporting Default Hierarchies Formation for Robot Behaviors

Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam

Abstract:

Robotic system is an important area in artificial intelligence that aims at developing the performance techniques of the robot and making it more efficient and more effective in choosing its correct behavior. In this paper the distributed learning classifier system is used for designing a simulated control system for robot to perform complex behaviors. A set of enhanced approaches that support default hierarchies formation is suggested and compared with each other in order to make the simulated robot more effective in mapping the input to the correct output behavior.

Keywords: Learning Classifier System, Default Hierarchies, Robot Behaviors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
7039 Data Acquisition from Cell Phone using Logical Approach

Authors: Keonwoo Kim, Dowon Hong, Kyoil Chung, Jae-Cheol Ryou

Abstract:

Cell phone forensics to acquire and analyze data in the cellular phone is nowadays being used in a national investigation organization and a private company. In order to collect cellular phone flash memory data, we have two methods. Firstly, it is a logical method which acquires files and directories from the file system of the cell phone flash memory. Secondly, we can get all data from bit-by-bit copy of entire physical memory using a low level access method. In this paper, we describe a forensic tool to acquire cell phone flash memory data using a logical level approach. By our tool, we can get EFS file system and peek memory data with an arbitrary region from Korea CDMA cell phone.

Keywords: Forensics, logical method, acquisition, cell phone, flash memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4123
7038 A Feasible Path Selection QoS Routing Algorithm with two Constraints in Packet Switched Networks

Authors: P.S.Prakash, S.Selvan

Abstract:

Over the past several years, there has been a considerable amount of research within the field of Quality of Service (QoS) support for distributed multimedia systems. One of the key issues in providing end-to-end QoS guarantees in packet networks is determining a feasible path that satisfies a number of QoS constraints. The problem of finding a feasible path is NPComplete if number of constraints is more than two and cannot be exactly solved in polynomial time. We proposed Feasible Path Selection Algorithm (FPSA) that addresses issues with pertain to finding a feasible path subject to delay and cost constraints and it offers higher success rate in finding feasible paths.

Keywords: feasible path, multiple constraints, path selection, QoS routing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
7037 Data Migration Methodology from Relational to NoSQL Databases

Authors: Mohamed Hanine, Abdesadik Bendarag, Omar Boutkhoum

Abstract:

Currently, the field of data migration is very topical. As the number of applications developed rapidly, the ever-increasing volume of data collected has driven the architectural migration from Relational Database Management System (RDBMS) to NoSQL (Not Only SQL) database. This very recent technology is important enough in the field of database management. The main aim of this paper is to present a methodology for data migration from RDBMS to NoSQL database. To illustrate this methodology, we implement a software prototype using MySQL as a RDBMS and MongoDB as a NoSQL database. Although this is a hard engineering work, our results show that the proposed methodology can successfully accomplish the goal of this study.

Keywords: Data Migration, MySQL, RDBMS, NoSQL, MongoDB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4366
7036 B-VIS Service-oriented Middleware for RFID Sensor Network

Authors: Wiroon Sriborrirux, Sorakrai Kraipui, Nakorn Indra-Payoong

Abstract:

One of the most importance of intelligence in-car and roadside systems is the cooperative vehicle-infrastructure system. In Thailand, ITS technologies are rapidly growing and real-time vehicle information is considerably needed for ITS applications; for example, vehicle fleet tracking and control and road traffic monitoring systems. This paper defines the communication protocols and software design for middleware components of B-VIS (Burapha Vehicle-Infrastructure System). The proposed B-VIS middleware architecture serves the needs of a distributed RFID sensor network and simplifies some intricate details of several communication standards.

Keywords: Middleware, RFID sensor network, Cooperativevehicle-infrastructure system, Enterprise Java Bean.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
7035 Data Hiding by Vector Quantization in Color Image

Authors: Yung-Gi Wu

Abstract:

With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.

Keywords: Data hiding, vector quantization, watermark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
7034 Approximate Range-Sum Queries over Data Cubes Using Cosine Transform

Authors: Wen-Chi Hou, Cheng Luo, Zhewei Jiang, Feng Yan

Abstract:

In this research, we propose to use the discrete cosine transform to approximate the cumulative distributions of data cube cells- values. The cosine transform is known to have a good energy compaction property and thus can approximate data distribution functions easily with small number of coefficients. The derived estimator is accurate and easy to update. We perform experiments to compare its performance with a well-known technique - the (Haar) wavelet. The experimental results show that the cosine transform performs much better than the wavelet in estimation accuracy, speed, space efficiency, and update easiness.

Keywords: DCT, Data Cube

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
7033 Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies

Authors: Madhav V. Chitturi, Anshu Manik, Kasthurirangan Gopalakrishnan

Abstract:

The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.

Keywords: HMA, dynamic modulus, GA, evolutionarycomputation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
7032 The Locker Problem with Empty Lockers

Authors: David Avis, Luc Devroye, Kazuo Iwama

Abstract:

We consider a cooperative game played by n players against a referee. The players names are randomly distributed among n lockers, with one name per locker. Each player can open up to half the lockers and each player must find his name. Once the game starts the players may not communicate. It has been previously shown that, quite surprisingly, an optimal strategy exists for which the success probability is never worse than 1 − ln 2 ≈ 0.306. In this paper we consider an extension where the number of lockers is greater than the number of players, so that some lockers are empty. We show that the players may still win with positive probability even if there are a constant k number of empty lockers. We show that for each fixed probability p, there is a constant c so that the players can win with probability at least p if they are allowed to open cn lockers.

Keywords: Locker problem, pointer-following algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
7031 Distributed Load Flow Analysis using Graph Theory

Authors: D. P. Sharma, A. Chaturvedi, G.Purohit , R.Shivarudraswamy

Abstract:

In today scenario, to meet enhanced demand imposed by domestic, commercial and industrial consumers, various operational & control activities of Radial Distribution Network (RDN) requires a focused attention. Irrespective of sub-domains research aspects of RDN like network reconfiguration, reactive power compensation and economic load scheduling etc, network performance parameters are usually estimated by an iterative process and is commonly known as load (power) flow algorithm. In this paper, a simple mechanism is presented to implement the load flow analysis (LFA) algorithm. The reported algorithm utilizes graph theory principles and is tested on a 69- bus RDN.

Keywords: Radial Distribution network, Graph, Load-flow, Array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3143
7030 Primary School Principals in Turkey: Their Working Conditions and Professional Profiles

Authors: Ali I. Gumuseli

Abstract:

In order to achieve effective management, the professional and individual characteristics and qualifications of school principals and their system-oriented perception is very important. Therefore, it is necessary to conduct regular comprehensive studies into the profiles of school principals. The purpose of this study is to determine the perceptions of primary school principals about their working conditions and to present their professional profiles. The questionnaire was distributed to 1475 respondents and 1428 valid questionnaires were evaluated. The results of the research were discussed and compared to other similar studies.Keywordseducation, education management, primary school principal, principals profiles

Keywords: education, education management, primary school principal, principals profiles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
7029 Peer-to-Peer Epidemic Algorithms for Reliable Multicasting in Ad Hoc Networks

Authors: Zülküf Genç, Öznur Özkasap

Abstract:

Characteristics of ad hoc networks and even their existence depend on the nodes forming them. Thus, services and applications designed for ad hoc networks should adapt to this dynamic and distributed environment. In particular, multicast algorithms having reliability and scalability requirements should abstain from centralized approaches. We aspire to define a reliable and scalable multicast protocol for ad hoc networks. Our target is to utilize epidemic techniques for this purpose. In this paper, we present a brief survey of epidemic algorithms for reliable multicasting in ad hoc networks, and describe formulations and analytical results for simple epidemics. Then, P2P anti-entropy algorithm for content distribution and our prototype simulation model are described together with our initial results demonstrating the behavior of the algorithm.

Keywords: Ad hoc networks, epidemic, peer-to-peer, reliablemulticast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
7028 Review for Identifying Online Opinion Leaders

Authors: Yu Wang

Abstract:

Nowadays, Internet enables its users to share the information online and to interact with others. Facing with numerous information, these Internet users are confused and begin to rely on the opinion leaders’ recommendations. The online opinion leaders are the individuals who have professional knowledge, who utilize the online channels to spread word-of-mouth information and who can affect the attitudes or even the behavior of their followers to some degree. Because utilizing the online opinion leaders is seen as an important approach to affect the potential consumers, how to identify them has become one of the hottest topics in the related field. Hence, in this article, the concepts and characteristics are introduced, and the researches related to identifying opinion leaders are collected and divided into three categories. Finally, the implications for future studies are provided.

Keywords: Online opinion leaders, user attributes analysis, text mining analysis, network structure analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
7027 The Feasibility of Augmenting an Augmented Reality Image Card on a Quick Response Code

Authors: Alfred Chen, Shr Yu Lu, Cong Seng Hong, Yur-June Wang

Abstract:

This research attempts to study the feasibility of augmenting an augmented reality (AR) image card on a Quick Response (QR) code. The authors have developed a new visual tag, which contains a QR code and an augmented AR image card. The new visual tag has features of reading both of the revealed data of the QR code and the instant data from the AR image card. Furthermore, a handheld communicating device is used to read and decode the new visual tag, and then the concealed data of the new visual tag can be revealed and read through its visual display. In general, the QR code is designed to store the corresponding data or, as a key, to access the corresponding data from the server through internet. Those reveled data from the QR code are represented in text. Normally, the AR image card is designed to store the corresponding data in 3-Dimensional or animation/video forms. By using QR code's property of high fault tolerant rate, the new visual tag can access those two different types of data by using a handheld communicating device. The new visual tag has an advantage of carrying much more data than independent QR code or AR image card. The major findings of this research are: 1) the most efficient area for the designed augmented AR card augmenting on the QR code is 9% coverage area out of the total new visual tag-s area, and 2) the best location for the augmented AR image card augmenting on the QR code is located in the bottom-right corner of the new visual tag.

Keywords: Augmented reality, QR code, Visual tag, Handheldcommunicating device

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
7026 Accurate Crosstalk Analysis for RLC On-Chip VLSI Interconnect

Authors: Susmita Sahoo, Madhumanti Datta, Rajib Kar

Abstract:

This work proposes an accurate crosstalk noise estimation method in the presence of multiple RLC lines for the use in design automation tools. This method correctly models the loading effects of non switching aggressors and aggressor tree branches using resistive shielding effect and realistic exponential input waveforms. Noise peak and width expressions have been derived. The results obtained are at good agreement with SPICE results. Results show that average error for noise peak is 4.7% and for the width is 6.15% while allowing a very fast analysis.

Keywords: Crosstalk, distributed RLC segments, On-Chip interconnect, output response, VLSI, noise peak, noise width.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
7025 A Competitive Replica Placement Methodology for Ad Hoc Networks

Authors: Samee Ullah Khan, C. Ardil

Abstract:

In this paper, a mathematical model for data object replication in ad hoc networks is formulated. The derived model is general, flexible and adaptable to cater for various applications in ad hoc networks. We propose a game theoretical technique in which players (mobile hosts) continuously compete in a non-cooperative environment to improve data accessibility by replicating data objects. The technique incorporates the access frequency from mobile hosts to each data object, the status of the network connectivity, and communication costs. The proposed technique is extensively evaluated against four well-known ad hoc network replica allocation methods. The experimental results reveal that the proposed approach outperforms the four techniques in both the execution time and solution quality

Keywords: Data replication, auctions, static allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
7024 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: Deep learning, data mining, gender predication, MOOCs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
7023 Zero Truncated Strict Arcsine Model

Authors: Y. N. Phang, E. F. Loh

Abstract:

The zero truncated model is usually used in modeling count data without zero. It is the opposite of zero inflated model. Zero truncated Poisson and zero truncated negative binomial models are discussed and used by some researchers in analyzing the abundance of rare species and hospital stay. Zero truncated models are used as the base in developing hurdle models. In this study, we developed a new model, the zero truncated strict arcsine model, which can be used as an alternative model in modeling count data without zero and with extra variation. Two simulated and one real life data sets are used and fitted into this developed model. The results show that the model provides a good fit to the data. Maximum likelihood estimation method is used in estimating the parameters.

Keywords: Hurdle models, maximum likelihood estimation method, positive count data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
7022 Li-Fi Technology: Data Transmission through Visible Light

Authors: Shahzad Hassan, Kamran Saeed

Abstract:

People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.

Keywords: Communication, LED, Li-Fi, Wi-Fi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
7021 Components of Emotional Intelligence in Iranian Entrepreneurs

Authors: Farzaneh Noori

Abstract:

Entrepreneurs face different sort of difficulties especially with customers, organizations and employees. Emotional intelligence which is the ability to understand and control the emotions is an important factor to help entrepreneurs end up challenges to the result they prefer. So it is assumed that entrepreneurs especially those who have passed the first challenging years of starting a new business, have high emotional intelligence. In this study the Iranian established entrepreneurs have been surveyed. According to Iran Gem 2014 report the percentage of established entrepreneur in Iran is 10.92%. So by using Cochran sample formula (1%) 96 Iranian established entrepreneurs have been selected and Emotional intelligence appraisal questionnaire distributed to them. The SPSS19 result shows high emotional intelligence in Iranian established entrepreneurs.

Keywords: Emotional intelligence, Emotional intelligence appraisal questionnaire, Entrepreneurs, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
7020 Business Rules for Data Warehouse

Authors: Rajeev Kaula

Abstract:

Business rules and data warehouse are concepts and technologies that impact a wide variety of organizational tasks. In general, each area has evolved independently, impacting application development and decision-making. Generating knowledge from data warehouse is a complex process. This paper outlines an approach to ease import of information and knowledge from a data warehouse star schema through an inference class of business rules. The paper utilizes the Oracle database for illustrating the working of the concepts. The star schema structure and the business rules are stored within a relational database. The approach is explained through a prototype in Oracle-s PL/SQL Server Pages.

Keywords: Business Rules, Data warehouse, PL/SQL ServerPages, Relational model, Web Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2984
7019 Authorization of Commercial Communication Satellite Grounds for Promoting Turkish Data Relay System

Authors: Celal Dudak, Aslı Utku, Burak Yağlioğlu

Abstract:

Uninterrupted and continuous satellite communication through the whole orbit time is becoming more indispensable every day. Data relay systems are developed and built for various high/low data rate information exchanges like TDRSS of USA and EDRSS of Europe. In these missions, a couple of task-dedicated communication satellites exist. In this regard, for Turkey a data relay system is attempted to be defined exchanging low data rate information (i.e. TTC) for Earth-observing LEO satellites appointing commercial GEO communication satellites all over the world. First, justification of this attempt is given, demonstrating duration enhancements in the link. Discussion of preference of RF communication is, also, given instead of laser communication. Then, preferred communication GEOs – including TURKSAT4A already belonging to Turkey- are given, together with the coverage enhancements through STK simulations and the corresponding link budget. Also, a block diagram of the communication system is given on the LEO satellite.

Keywords: Communication, satellite, data relay system, coverage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
7018 A Scenario-Based Approach for the Air Traffic Flow Management Problem with Stochastic Capacities

Authors: Soumia Ichoua

Abstract:

In this paper, we investigate the strategic stochastic air traffic flow management problem which seeks to balance airspace capacity and demand under weather disruptions. The goal is to reduce the need for myopic tactical decisions that do not account for probabilistic knowledge about the NAS near-future states. We present and discuss a scenario-based modeling approach based on a time-space stochastic process to depict weather disruption occurrences in the NAS. A solution framework is also proposed along with a distributed implementation aimed at overcoming scalability problems. Issues related to this implementation are also discussed.

Keywords: Air traffic management, sample average approximation, scenario-based approach, stochastic capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
7017 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: Anomaly detection, autoencoder, data centers, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
7016 AnQL: A Query Language for Annotation Documents

Authors: Neerja Bhatnagar, Ben A. Juliano, Renee S. Renner

Abstract:

This paper presents data annotation models at five levels of granularity (database, relation, column, tuple, and cell) of relational data to address the problem of unsuitability of most relational databases to express annotations. These models do not require any structural and schematic changes to the underlying database. These models are also flexible, extensible, customizable, database-neutral, and platform-independent. This paper also presents an SQL-like query language, named Annotation Query Language (AnQL), to query annotation documents. AnQL is simple to understand and exploits the already-existent wide knowledge and skill set of SQL.

Keywords: Annotation query language, data annotations, data annotation models, semantic data annotations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
7015 Machine Learning-Enabled Classification of Climbing Using Small Data

Authors: Nicholas Milburn, Yu Liang, Dalei Wu

Abstract:

Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.

Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 567
7014 Decentralised Edge Authentication in the Industrial Enterprise IoT Space

Authors: C. P. Autry, A.W. Roscoe

Abstract:

Authentication protocols based on public key infrastructure (PKI) and trusted third party (TTP) are no longer adequate for industrial scale IoT networks thanks to issues such as low compute and power availability, the use of widely distributed and commercial off-the-shelf (COTS) systems, and the increasingly sophisticated attackers and attacks we now have to counter. For example, there is increasing concern about nation-state-based interference and future quantum computing capability. We have examined this space from first principles and have developed several approaches to group and point-to-point authentication for IoT that do not depend on the use of a centralised client-server model. We emphasise the use of quantum resistant primitives such as strong cryptographic hashing and the use multi-factor authentication.

Keywords: Authentication, enterprise IoT cybersecurity, public key infrastructure, trusted third party.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472