Search results for: Complex Event Processing
2192 Material Concepts and Processing Methods for Electrical Insulation
Authors: R. Sekula
Abstract:
Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.
Keywords: Curing, epoxy insulation, numerical simulations, recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16412191 Gas Turbine Optimal PID Tuning by Genetic Algorithm using MSE
Authors: R. Oonsivilai, A. Oonsivilai
Abstract:
Realistic systems generally are systems with various inputs and outputs also known as Multiple Input Multiple Output (MIMO). Such systems usually prove to be complex and difficult to model and control purposes. Therefore, decomposition was used to separate individual inputs and outputs. A PID is assigned to each individual pair to regulate desired settling time. Suitable parameters of PIDs obtained from Genetic Algorithm (GA), using Mean of Squared Error (MSE) objective function.Keywords: Gas Turbine, PID, Genetic Algorithm, Transfer function.Mean of Squared Error
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22472190 Spread Spectrum Code Estimation by Genetic Algorithm
Authors: V. R. Asghari, M. Ardebilipour
Abstract:
In the context of spectrum surveillance, a method to recover the code of spread spectrum signal is presented, whereas the receiver has no knowledge of the transmitter-s spreading sequence. The approach is based on a genetic algorithm (GA), which is forced to model the received signal. Genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems. Experimental results show that the method provides a good estimation, even when the signal power is below the noise power.Keywords: Code estimation, genetic algorithms, spread spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15812189 Comparison between Deterministic and Probabilistic Stability Analysis, Featuring Consequent Risk Assessment
Authors: Isabela Moreira Queiroz
Abstract:
Slope stability analyses are largely carried out by deterministic methods and evaluated through a single security factor. Although it is known that the geotechnical parameters can present great dispersal, such analyses are considered fixed and known. The probabilistic methods, in turn, incorporate the variability of input key parameters (random variables), resulting in a range of values of safety factors, thus enabling the determination of the probability of failure, which is an essential parameter in the calculation of the risk (probability multiplied by the consequence of the event). Among the probabilistic methods, there are three frequently used methods in geotechnical society: FOSM (First-Order, Second-Moment), Rosenblueth (Point Estimates) and Monte Carlo. This paper presents a comparison between the results from deterministic and probabilistic analyses (FOSM method, Monte Carlo and Rosenblueth) applied to a hypothetical slope. The end was held to evaluate the behavior of the slope and consequent risk analysis, which is used to calculate the risk and analyze their mitigation and control solutions. It can be observed that the results obtained by the three probabilistic methods were quite close. It should be noticed that the calculation of the risk makes it possible to list the priority to the implementation of mitigation measures. Therefore, it is recommended to do a good assessment of the geological-geotechnical model incorporating the uncertainty in viability, design, construction, operation and closure by means of risk management.Keywords: Probabilistic methods, risk assessment, risk management, slope stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17482188 Central Asia and Kazakhstan: In Search of Civic Identity
Authors: Elnura Assyltayeva, Zhanar Aldubasheva, Zhengisbek Tolen, Ziyakul Assyltayeva, Aliya Alimzhanova
Abstract:
Mankind has entered into an extremely complex and controversial stage of its development: the world is simultaneously organized and chaoticized, globalized and localized, combined and split. Analysts point out that globalization as a process of strengthening economic, cultural, financial and other ties of states cause many problems. In the economic sphere, it creates the danger of growing gap between the states, in the sphere of politics it leads to the weakening of political power and influence of nation-states.Keywords: Civic identity, globalization, identity crisis, culture identity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17922187 Modeling of Co-Cu Elution From Clinoptilolite using Neural Network
Authors: John Kabuba, Antoine Mulaba-Bafubiandi
Abstract:
The elution process for the removal of Co and Cu from clinoptilolite as an ion-exchanger was investigated using three parameters: bed volume, pH and contact time. The present paper study has shown quantitatively that acid concentration has a significant effect on the elution process. The favorable eluant concentration was found to be 2 M HCl and 2 M H2SO4, respectively. The multi-component equilibrium relationship in the process can be very complex, and perhaps ill-defined. In such circumstances, it is preferable to use a non-parametric technique such as Neural Network to represent such an equilibrium relationship.
Keywords: Clinoptilolite, elution, modeling, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14312186 Tagged Grid Matching Based Object Detection in Wavelet Neural Network
Authors: R. Arulmurugan, P. Sengottuvelan
Abstract:
Object detection using Wavelet Neural Network (WNN) plays a major contribution in the analysis of image processing. Existing cluster-based algorithm for co-saliency object detection performs the work on the multiple images. The co-saliency detection results are not desirable to handle the multi scale image objects in WNN. Existing Super Resolution (SR) scheme for landmark images identifies the corresponding regions in the images and reduces the mismatching rate. But the Structure-aware matching criterion is not paying attention to detect multiple regions in SR images and fail to enhance the result percentage of object detection. To detect the objects in the high-resolution remote sensing images, Tagged Grid Matching (TGM) technique is proposed in this paper. TGM technique consists of the three main components such as object determination, object searching and object verification in WNN. Initially, object determination in TGM technique specifies the position and size of objects in the current image. The specification of the position and size using the hierarchical grid easily determines the multiple objects. Second component, object searching in TGM technique is carried out using the cross-point searching. The cross out searching point of the objects is selected to faster the searching process and reduces the detection time. Final component performs the object verification process in TGM technique for identifying (i.e.,) detecting the dissimilarity of objects in the current frame. The verification process matches the search result grid points with the stored grid points to easily detect the objects using the Gabor wavelet Transform. The implementation of TGM technique offers a significant improvement on the multi-object detection rate, processing time, precision factor and detection accuracy level.
Keywords: Object Detection, Cross-point Searching, Wavelet Neural Network, Object Determination, Gabor Wavelet Transform, Tagged Grid Matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19722185 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator
Authors: Jaeyoung Lee
Abstract:
Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.
Keywords: Edge network, embedded network, MMA, matrix multiplication accelerator and semantic segmentation network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4752184 From Risk/Security Analysis via Timespace to a Model of Human Vulnerability and Human Security
Authors: Anders Troedsson
Abstract:
For us humans, risk and insecurity are intimately linked to vulnerabilities - where there is vulnerability, there is potentially risk and insecurity. Reducing vulnerability through compensatory measures means decreasing the likelihood of a certain external event be qualified as a risk/threat/assault, and thus also means increasing the individual’s sense of security. The paper suggests that a meaningful way to approach the study of risk/ insecurity is to organize thinking about the vulnerabilities that external phenomena evoke in humans as perceived by them. Such phenomena are, through a set of given vulnerabilities, potentially translated into perceptions of "insecurity." An ontological discussion about salient timespace characteristics of external phenomena as perceived by humans, including such which potentially can be qualified as risk/threat/assault, leads to the positing of two dimensions which are central for describing what in the paper is called the essence of risk/threat/assault. As is argued, such modeling helps analysis steer free of the subjective factor which is intimately connected to human perception and which mediates between phenomena “out there” potentially identified as risk/threat/assault, and their translation into an experience of security or insecurity. A proposed set of universally given vulnerabilities are scrutinized with the help of the two dimensions, resulting in a modeling effort featuring four realms of vulnerabilities which together represent a dynamic whole. This model in turn informs modeling on human security.
Keywords: Human vulnerabilities, human security, inert-immediate, material-immaterial, timespace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10692183 Trend Analysis for Extreme Rainfall Events in New South Wales, Australia
Authors: Evan Hajani, Ataur Rahman, Khaled Haddad
Abstract:
Climate change will affect the hydrological cycle in many different ways such as increase in evaporation and rainfalls. There have been growing interests among researchers to identify the nature of trends in historical rainfall data in many different parts of the world. This paper examines the trends in annual maximum rainfall data from 30 stations in New South Wales, Australia by using two non-parametric tests, Mann-Kendall (MK) and Spearman’s Rho (SR). Rainfall data were analyzed for fifteen different durations ranging from 6 min to 3 days. It is found that the sub-hourly durations (6, 12, 18, 24, 30 and 48 minutes) show statistically significant positive (upward) trends whereas longer duration (subdaily and daily) events generally show a statistically significant negative (downward) trend. It is also found that the MK test and SR test provide notably different results for some rainfall event durations considered in this study. Since shorter duration sub-hourly rainfall events show positive trends at many stations, the design rainfall data based on stationary frequency analysis for these durations need to be adjusted to account for the impact of climate change. These shorter durations are more relevant to many urban development projects based on smaller catchments having a much shorter response time.
Keywords: Climate change, Mann-Kendall test, Spearman’s Rho test, trends, design rainfall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29182182 Integrating Low and High Level Object Recognition Steps
Authors: András Barta, István Vajk
Abstract:
In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.Keywords: Object recognition, Bayesian network, Wavelets, Document processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14952181 A Novel Design Approach for Mechatronic Systems Based On Multidisciplinary Design Optimization
Authors: Didier Casner, Jean Renaud, Remy Houssin, Dominique Knittel
Abstract:
In this paper, a novel approach for the multidisciplinary design optimization (MDO) of complex mechatronic systems. This approach, which is a part of a global project aiming to include the MDO aspect inside an innovative design process. As a first step, the paper considers the MDO as a redesign approach which is limited to the parametric optimization. After defining and introducing the different keywords, the proposed method which is based on the V-Model which is commonly used in mechatronics.
Keywords: mechatronics, Multidisciplinary Design Optimization (MDO), multiobjective optimization, engineering design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20832180 Daily Probability Model of Storm Events in Peninsular Malaysia
Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain
Abstract:
Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.
Keywords: Daily probability model, monsoon seasons, regions, storm events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16392179 Pd(II) Complex with 4-Bromo-Bis-Hydroxymethyl Phenol and Nicotinamide: Synthesis and Spectral Analysis
Authors: Özlen Altun, Zeliha Yoruç
Abstract:
In the present study, the reactions involving 4-bromo-2,6-bis-hydroxymethyl-phenol (BBHMP) and nicotinamide (NA) in the presence of Pd(II) ions were investigated. Optimum conditions for the reactions were established as pH = 7 and λ = 450 nm. According to absorbance measurements, the molar ratio of BBHMP: NA: Pd2+ was found to be 1: 2: 2. As a result of physicochemical, spectrophotometric and thermal analyses, the reactions of BBHMP and NA with Pd(II) are complexation reactions and one molecule of BBHMP and two molecules of NA react with two molecules of the Pd(II) ion.
Keywords: Nicotinamide, 4-bromo-2, 6-bis-hydroxymethyl-phenol, Pd(II), spectral analysis, synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7362178 Generation of Electro-Encephalography Readiness Potentials by Intention
Authors: Seokbeen Lim, Gilwon Yoon
Abstract:
The readiness potential in brain waves is a brain activity related with an intention whose potential arises even before its conscious intention. This study was carried out in order to understand the generation and mechanism of the readiness potential more. The experiment with two subjects was conducted in two ways following the Oddball task protocol. Firstly, auditory stimuli were randomly presented to the subjects. The subject was allowed to press the keyboard with the right index finger only when the subject heard the target stimulus but not the standard stimulus. Secondly, unlike the first one, the auditory stimuli were randomly presented, and the subjects pressed the keyboard in the same manner, but at the same time with grasping action of the left hand. The readiness potential showed up for both of these experiments. In the first Oddball experiment, the readiness potential was detected only when the target stimulus was presented. However, in the second Oddball experiment with the left hand action of grasping something, the readiness potential was detected at the presentation of for both standard and target stimuli. However, detected readiness potentials with the target stimuli were larger than those of the standard stimuli. We found an interesting phenomenon that the readiness potential was able to be detected even the standard stimulus. This indicates that motor-related readiness potentials can be generated only by the intention to move. These results present a new perspective in psychology and brain engineering since subconscious brain action may be prior to conscious recognition of the intention.
Keywords: Readiness potential, auditory stimuli, event-related potential, electroencephalography, oddball task.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10412177 Application of Fuzzy Neural Network for Image Tumor Description
Authors: Nahla Ibraheem Jabbar, Monica Mehrotra
Abstract:
This paper used a fuzzy kohonen neural network for medical image segmentation. Image segmentation plays a important role in the many of medical imaging applications by automating or facilitating the diagnostic. The paper analyses the tumor by extraction of the features of (area, entropy, means and standard deviation).These measurements gives a description for a tumor.
Keywords: FCM, features extraction, medical image processing, neural network, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21172176 From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability
Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli
Abstract:
Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.
Keywords: Agriculture 4.0, agri-food supply chain, Industry 4.0, voluntary traceability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23622175 Prediction of Road Accidents in Qatar by 2022
Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa
Abstract:
There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.
Keywords: Road Safety, Prediction, Accident, Model, Qatar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26472174 On Musical Information Geometry with Applications to Sonified Image Analysis
Authors: Shannon Steinmetz, Ellen Gethner
Abstract:
In this paper a theoretical foundation is developed to segment, analyze and associate patterns within audio. We explore this on imagery via sonified audio applied to our segmentation framework. The approach involves a geodesic estimator within the statistical manifold, parameterized by musical centricity. We demonstrate viability by processing a database of random imagery to produce statistically significant clusters of similar imagery content.
Keywords: Sonification, musical information geometry, image content extraction, automated quantification, audio segmentation, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4472173 Intelligent Audio Watermarking using Genetic Algorithm in DWT Domain
Authors: M. Ketcham, S. Vongpradhip
Abstract:
In this paper, an innovative watermarking scheme for audio signal based on genetic algorithms (GA) in the discrete wavelet transforms is proposed. It is robust against watermarking attacks, which are commonly employed in literature. In addition, the watermarked image quality is also considered. We employ GA for the optimal localization and intensity of watermark. The watermark detection process can be performed without using the original audio signal. The experimental results demonstrate that watermark is inaudible and robust to many digital signal processing, such as cropping, low pass filter, additive noise.
Keywords: Intelligent Audio Watermarking, GeneticAlgorithm, DWT Domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20612172 Dielectric Studies on Nano Zirconium Dioxide Synthesized through Co-Precipitation Process
Authors: K. Geethalakshmi, T. Prabhakaran, J. Hemalatha
Abstract:
Nano sized zirconium dioxide in monoclinic phase (m-ZrO2) has been synthesized in pure form through co-precipitation processing at different calcination temperatures and has been characterized by several techniques such as XRD, FT-IR, UV-Vis Spectroscopy and SEM. The dielectric and capacitance values of the pelletized samples have been examined at room temperature as the functions of frequency. The higher dielectric constant value of the sample having larger grain size proves the strong influence of grain size on the dielectric constant.
Keywords: capacitance, dielectric constant, m-ZrO2, nano zirconia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40412171 Algorithm for Bleeding Determination Based On Object Recognition and Local Color Features in Capsule Endoscopy
Authors: Yong-Gyu Lee, Jin Hee Park, Youngdae Seo, Gilwon Yoon
Abstract:
Automatic determination of blood in less bright or noisy capsule endoscopic images is difficult due to low S/N ratio. Especially it may not be accurate to analyze these images due to the influence of external disturbance. Therefore, we proposed detection methods that are not dependent only on color bands. In locating bleeding regions, the identification of object outlines in the frame and features of their local colors were taken into consideration. The results showed that the capability of detecting bleeding was much improved.Keywords: Endoscopy, object recognition, bleeding, image processing, RGB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19512170 Password Cracking on Graphics Processing Unit Based Systems
Authors: N. Gopalakrishna Kini, Ranjana Paleppady, Akshata K. Naik
Abstract:
Password authentication is one of the widely used methods to achieve authentication for legal users of computers and defense against attackers. There are many different ways to authenticate users of a system and there are many password cracking methods also developed. This paper proposes how best password cracking can be performed on a CPU-GPGPU based system. The main objective of this work is to project how quickly a password can be cracked with some knowledge about the computer security and password cracking if sufficient security is not incorporated to the system.Keywords: GPGPU, password cracking, secret key, user authentication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26322169 On-Line Geometrical Identification of Reconfigurable Machine Tool using Virtual Machining
Authors: Alexandru Epureanu, Virgil Teodor
Abstract:
One of the main research directions in CAD/CAM machining area is the reducing of machining time. The feedrate scheduling is one of the advanced techniques that allows keeping constant the uncut chip area and as sequel to keep constant the main cutting force. They are two main ways for feedrate optimization. The first consists in the cutting force monitoring, which presumes to use complex equipment for the force measurement and after this, to set the feedrate regarding the cutting force variation. The second way is to optimize the feedrate by keeping constant the material removal rate regarding the cutting conditions. In this paper there is proposed a new approach using an extended database that replaces the system model. The feedrate scheduling is determined based on the identification of the reconfigurable machine tool, and the feed value determination regarding the uncut chip section area, the contact length between tool and blank and also regarding the geometrical roughness. The first stage consists in the blank and tool monitoring for the determination of actual profiles. The next stage is the determination of programmed tool path that allows obtaining the piece target profile. The graphic representation environment models the tool and blank regions and, after this, the tool model is positioned regarding the blank model according to the programmed tool path. For each of these positions the geometrical roughness value, the uncut chip area and the contact length between tool and blank are calculated. Each of these parameters are compared with the admissible values and according to the result the feed value is established. We can consider that this approach has the following advantages: in case of complex cutting processes the prediction of cutting force is possible; there is considered the real cutting profile which has deviations from the theoretical profile; the blank-tool contact length limitation is possible; it is possible to correct the programmed tool path so that the target profile can be obtained. Applying this method, there are obtained data sets which allow the feedrate scheduling so that the uncut chip area is constant and, as a result, the cutting force is constant, which allows to use more efficiently the machine tool and to obtain the reduction of machining time.Keywords: Reconfigurable machine tool, system identification, uncut chip area, cutting conditions scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14542168 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: S. Chahba, R. Sehab, A. Akrad, C. Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.
Keywords: Electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit fault diagnosis, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4672167 Analysis of S.P.O Techniques for Prediction of Dynamic Behavior of the Plate
Authors: Byung-kyoo Jung, Weui-bong Jeong
Abstract:
In most cases, it is considerably difficult to directly measure structural vibration with a lot of sensors because of complex geometry, time and equipment cost. For this reason, this paper deals with the problem of locating sensors on a plate model by four advanced sensor placement optimization (S.P.O) techniques. It also suggests the evaluation index representing the characteristic of orthogonal between each of natural modes. The index value provides the assistance to selecting of proper S.P.O technique and optimal positions for monitoring of dynamic systems without the experiment.Keywords: Genetic algorithm, Modal assurance criterion, Sensor placement optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16882166 Post Elevated Temperature Effect on the Strength and Microstructure of Thin High Performance Cementitious Composites (THPCC)
Authors: A. Q. Sobia, A. Shyzleen, M. S. Hamidah, I. Azmi, S. F. A. Rafeeqi, S. Ahmad
Abstract:
Reinforced Concrete (RC) structures strengthened with fiber reinforced polymer (FRP) lack in thermal resistance under elevated temperatures in the event of fire. This phenomenon led to the lining of strengthened concrete with thin high performance cementitious composites (THPCC) to protect the substrate against elevated temperature. Elevated temperature effects on THPCC, based on different cementitious materials have been studied in the past but high-alumina cement (HAC)-based THPCC have not been well characterized. This research study will focus on the THPCC based on HAC replaced by 60%, 70%, 80% and 85% of ground granulated blast furnace slag (GGBS). Samples were evaluated by the measurement of their mechanical strength (28 & 56 days of curing) after exposed to 400°C, 600°C and 28°C of room temperature for comparison and corroborated by their microstructure study. Results showed that among all mixtures, the mix containing only HAC showed the highest compressive strength after exposed to 600°C as compared to other mixtures. However, the tensile strength of THPCC made of HAC and 60% GGBS content was comparable to the THPCC with HAC only after exposed to 600°C. Field emission scanning electron microscopy (FESEM) images of THPCC accompanying Energy Dispersive X-ray (EDX) microanalysis revealed that the microstructure deteriorated considerably after exposure to elevated temperatures which led to the decrease in mechanical strength.Keywords: Ground granulated blast furnace slag, high aluminacement, microstructure at elevated temperature and residual strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23862165 Integrating Low and High Level Object Recognition Steps by Probabilistic Networks
Authors: András Barta, István Vajk
Abstract:
In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.
Keywords: Object recognition, Bayesian network, Wavelets, Document processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16792164 Intuition Operator: Providing Genomes with Reason
Authors: Grigorios N. Beligiannis, Georgios A. Tsirogiannis, Panayotis E. Pintelas
Abstract:
In this contribution, the use of a new genetic operator is proposed. The main advantage of using this operator is that it is able to assist the evolution procedure to converge faster towards the optimal solution of a problem. This new genetic operator is called ''intuition'' operator. Generally speaking, one can claim that this operator is a way to include any heuristic or any other local knowledge, concerning the problem, that cannot be embedded in the fitness function. Simulation results show that the use of this operator increases significantly the performance of the classic Genetic Algorithm by increasing the convergence speed of its population.
Keywords: Genetic algorithms, intuition operator, reasonable genomes, complex search space, nonlinear fitness functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15832163 Developing Manufacturing Process for the Graphene Sensors
Authors: Abdullah Faqihi, John Hedley
Abstract:
Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.Keywords: Laser scribing, LightScribe DVD, graphene oxide, scanning electron microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680