Search results for: Approximation algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3740

Search results for: Approximation algorithm

2660 A Novel Genetic Algorithm Designed for Hardware Implementation

Authors: Zhenhuan Zhu, David Mulvaney, Vassilios Chouliaras

Abstract:

A new genetic algorithm, termed the 'optimum individual monogenetic genetic algorithm' (OIMGA), is presented whose properties have been deliberately designed to be well suited to hardware implementation. Specific design criteria were to ensure fast access to the individuals in the population, to keep the required silicon area for hardware implementation to a minimum and to incorporate flexibility in the structure for the targeting of a range of applications. The first two criteria are met by retaining only the current optimum individual, thereby guaranteeing a small memory requirement that can easily be stored in fast on-chip memory. Also, OIMGA can be easily reconfigured to allow the investigation of problems that normally warrant either large GA populations or individuals many genes in length. Local convergence is achieved in OIMGA by retaining elite individuals, while population diversity is ensured by continually searching for the best individuals in fresh regions of the search space. The results given in this paper demonstrate that both the performance of OIMGA and its convergence time are superior to those of a range of existing hardware GA implementations.

Keywords: Genetic algorithms, genetic hardware, machinelearning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
2659 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akın, İbrahim Aydoğdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teachinglearning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: Optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
2658 Optimal Combination for Modal Pushover Analysis by Using Genetic Algorithm

Authors: K. Shakeri, M. Mohebbi

Abstract:

In order to consider the effects of the higher modes in the pushover analysis, during the recent years several multi-modal pushover procedures have been presented. In these methods the response of the considered modes are combined by the square-rootof- sum-of-squares (SRSS) rule while application of the elastic modal combination rules in the inelastic phases is no longer valid. In this research the feasibility of defining an efficient alternative combination method is investigated. Two steel moment-frame buildings denoted SAC-9 and SAC-20 under ten earthquake records are considered. The nonlinear responses of the structures are estimated by the directed algebraic combination of the weighted responses of the separate modes. The weight of the each mode is defined so that the resulted response of the combination has a minimum error to the nonlinear time history analysis. The genetic algorithm (GA) is used to minimize the error and optimize the weight factors. The obtained optimal factors for each mode in different cases are compared together to find unique appropriate weight factors for each mode in all cases.

Keywords: Genetic Algorithm, Modal Pushover, Optimalweight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
2657 Quantum Computing: A New Era of Computing

Authors: Jyoti Chaturvedi Gursaran

Abstract:

Nature conducts its action in a very private manner. To reveal these actions classical science has done a great effort. But classical science can experiment only with the things that can be seen with eyes. Beyond the scope of classical science quantum science works very well. It is based on some postulates like qubit, superposition of two states, entanglement, measurement and evolution of states that are briefly described in the present paper. One of the applications of quantum computing i.e. implementation of a novel quantum evolutionary algorithm(QEA) to automate the time tabling problem of Dayalbagh Educational Institute (Deemed University) is also presented in this paper. Making a good timetable is a scheduling problem. It is NP-hard, multi-constrained, complex and a combinatorial optimization problem. The solution of this problem cannot be obtained in polynomial time. The QEA uses genetic operators on the Q-bit as well as updating operator of quantum gate which is introduced as a variation operator to converge toward better solutions.

Keywords: Quantum computing, qubit, superposition, entanglement, measurement of states, evolution of states, Scheduling problem, hard and soft constraints, evolutionary algorithm, quantum evolutionary algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
2656 Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics

Authors: S. Gómez, G. Sánchez, J. Zarama, M. Castañeda Ramos, J. Escoto Alcántar, J. Torres, A. Núñez, S. Santana, F. Nájera, J. A. Lopez

Abstract:

This paper shows in detail the mathematical model of direct and inverse kinematics for a robot manipulator (welding type) with four degrees of freedom. Using the D-H parameters, screw theory, numerical, geometric and interpolation methods, the theoretical and practical values of the position of robot were determined using an optimized algorithm for inverse kinematics obtaining the values of the particular joints in order to determine the virtual paths in a relatively short time.

Keywords: Kinematics, degree of freedom, optimization, robot manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6110
2655 Unit Commitment Solution Methods

Authors: Sayeed Salam

Abstract:

An effort to develop a unit commitment approach capable of handling large power systems consisting of both thermal and hydro generating units offers a large profitable return. In order to be feasible, the method to be developed must be flexible, efficient and reliable. In this paper, various proposed methods have been described along with their strengths and weaknesses. As all of these methods have some sort of weaknesses, a comprehensive algorithm that combines the strengths of different methods and overcomes each other-s weaknesses would be a suitable approach for solving industry-grade unit commitment problem.

Keywords: Unit commitment, Solution methods, and Comprehensive algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6184
2654 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Authors: Bin Mu, Site Li, Shijin Yuan

Abstract:

Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
2653 Reduced Order Modelling of Linear Dynamic Systems using Particle Swarm Optimized Eigen Spectrum Analysis

Authors: G. Parmar, S. Mukherjee, R. Prasad

Abstract:

The authors present an algorithm for order reduction of linear time invariant dynamic systems using the combined advantages of the eigen spectrum analysis and the error minimization by particle swarm optimization technique. Pole centroid and system stiffness of both original and reduced order systems remain same in this method to determine the poles, whereas zeros are synthesized by minimizing the integral square error in between the transient responses of original and reduced order models using particle swarm optimization technique, pertaining to a unit step input. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The algorithm is illustrated with the help of two numerical examples and the results are compared with the other existing techniques.

Keywords: Eigen spectrum, Integral square error, Orderreduction, Particle swarm optimization, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
2652 Spatial Data Mining by Decision Trees

Authors: S. Oujdi, H. Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 Algorithm, Decision trees, S-CART, Spatial data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2994
2651 Optimal Management of Internal Capital of Company

Authors: S. Sadallah

Abstract:

In this paper, dynamic programming is used to determine the optimal management of financial resources in company. Solution of the problem by consider into simpler substructures is constructed. The optimal management of internal capital of company are simulated. The tools applied in this development are based on graph theory. The software of given problems is built by using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.

Keywords: Management, software, optimal, greedy algorithm, graph-diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111
2650 Blind Identification Channel Using Higher Order Cumulants with Application to Equalization for MC−CDMA System

Authors: Mohammed Zidane, Said Safi, Mohamed Sabri, Ahmed Boumezzough

Abstract:

In this paper we propose an algorithm based on higher order cumulants, for blind impulse response identification of frequency radio channels and downlink (MC−CDMA) system Equalization. In order to test its efficiency, we have compared with another algorithm proposed in the literature, for that we considered on theoretical channel as the Proakis’s ‘B’ channel and practical frequency selective fading channel, called Broadband Radio Access Network (BRAN C), normalized for (MC−CDMA) systems, excited by non-Gaussian sequences. In the part of (MC−CDMA), we use the Minimum Mean Square Error (MMSE) equalizer after the channel identification to correct the channel’s distortion. The simulation results, in noisy environment and for different signal to noise ratio (SNR), are presented to illustrate the accuracy of the proposed algorithm.

Keywords: Blind identification and equalization, Higher Order Cumulants, (MC−CDMA) system, MMSE equalizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
2649 Use of Personal Rhythm to Authenticate Encrypted Messages

Authors: Carlos Gonzalez

Abstract:

When communicating using private and secure keys, there is always the doubt as to the identity of the message creator. We introduce an algorithm that uses the personal typing rhythm (keystroke dynamics) of the message originator to increase the trust of the authenticity of the message originator by the message recipient. The methodology proposes the use of a Rhythm Certificate Authority (RCA) to validate rhythm information. An illustrative example of the communication between Bob and Alice and the RCA is included. An algorithm of how to communicate with the RCA is presented. This RCA can be an independent authority or an enhanced Certificate Authority like the one used in public key infrastructure (PKI).

Keywords: Personal rhythm, public-key encryption, authentication, digital signature, keystroke dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059
2648 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: Complex-valued signal processing, synthetic aperture radar (SAR), 2-D radar imaging, compressive sensing, Sparse Bayesian learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
2647 Human Action Recognition Based on Ridgelet Transform and SVM

Authors: A. Ouanane, A. Serir

Abstract:

In this paper, a novel algorithm based on Ridgelet Transform and support vector machine is proposed for human action recognition. The Ridgelet transform is a directional multi-resolution transform and it is more suitable for describing the human action by performing its directional information to form spatial features vectors. The dynamic transition between the spatial features is carried out using both the Principal Component Analysis and clustering algorithm K-means. First, the Principal Component Analysis is used to reduce the dimensionality of the obtained vectors. Then, the kmeans algorithm is then used to perform the obtained vectors to form the spatio-temporal pattern, called set-of-labels, according to given periodicity of human action. Finally, a Support Machine classifier is used to discriminate between the different human actions. Different tests are conducted on popular Datasets, such as Weizmann and KTH. The obtained results show that the proposed method provides more significant accuracy rate and it drives more robustness in very challenging situations such as lighting changes, scaling and dynamic environment

Keywords: Human action, Ridgelet Transform, PCA, K-means, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
2646 Variable Step-Size Affine Projection Algorithm With a Weighted and Regularized Projection Matrix

Authors: Tao Dai, Andy Adler, Behnam Shahrrava

Abstract:

This paper presents a forgetting factor scheme for variable step-size affine projection algorithms (APA). The proposed scheme uses a forgetting processed input matrix as the projection matrix of pseudo-inverse to estimate system deviation. This method introduces temporal weights into the projection matrix, which is typically a better model of the real error's behavior than homogeneous temporal weights. The regularization overcomes the ill-conditioning introduced by both the forgetting process and the increasing size of the input matrix. This algorithm is tested by independent trials with coloured input signals and various parameter combinations. Results show that the proposed algorithm is superior in terms of convergence rate and misadjustment compared to existing algorithms. As a special case, a variable step size NLMS with forgetting factor is also presented in this paper.

Keywords: Adaptive signal processing, affine projection algorithms, variable step-size adaptive algorithms, regularization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
2645 Mathematical Modeling of the Influence of Hydrothermal Processes in the Water Reservoir

Authors: Alibek Issakhov

Abstract:

In this paper presents the mathematical model of hydrothermal processes in thermal power plant with different wind direction scenarios in the water reservoir, which is solved by the Navier - Stokes and temperature equations for an incompressible fluid in a stratified medium. Numerical algorithm based on the method of splitting by physical parameters. Three dimensional Poisson equation is solved with Fourier method by combination of tridiagonal matrix method (Thomas algorithm).

Keywords: thermal power plant, hydrothermal process, large eddy simulation, water reservoir

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
2644 Determining Cluster Boundaries Using Particle Swarm Optimization

Authors: Anurag Sharma, Christian W. Omlin

Abstract:

Self-organizing map (SOM) is a well known data reduction technique used in data mining. Data visualization can reveal structure in data sets that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOMs, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of a generic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOMs. The application of our method to unlabeled call data for a mobile phone operator demonstrates its feasibility. PSO algorithm utilizes U-matrix of SOMs to determine cluster boundaries; the results of this novel automatic method correspond well to boundary detection through visual inspection of code vectors and k-means algorithm.

Keywords: Particle swarm optimization, self-organizing maps, clustering, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
2643 Lung Segmentation Algorithm for CAD System in CTA Images

Authors: H. Özkan, O. Osman, S. Şahin, M. M. Atasoy, H. Barutca, A. F. Boz, A. Olsun

Abstract:

In this study, we present a new and fast algorithm for lung segmentation using CTA images. This process is quite important especially at lung vessel segmentation, detection of pulmonary emboly, finding nodules or segmentation of airways. Applied method has been carried out at four steps. At first step, images have been applied optimal threshold. At the second one, the subsegment vessels, which have a place in lung region and which are in small dimension, have been removed. At the third one, identifying and segmentation of lungs and airway edges have been carried out. Lastly, by throwing away the airway, lung segmentation has been presented.

Keywords: Lung segmentation, computed tomography angiography, computer-aided diagnostic system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
2642 Manifold Analysis by Topologically Constrained Isometric Embedding

Authors: Guy Rosman, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel

Abstract:

We present a new algorithm for nonlinear dimensionality reduction that consistently uses global information, and that enables understanding the intrinsic geometry of non-convex manifolds. Compared to methods that consider only local information, our method appears to be more robust to noise. Unlike most methods that incorporate global information, the proposed approach automatically handles non-convexity of the data manifold. We demonstrate the performance of our algorithm and compare it to state-of-the-art methods on synthetic as well as real data.

Keywords: Dimensionality reduction, manifold learning, multidimensional scaling, geodesic distance, boundary detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
2641 EEG Spikes Detection, Sorting, and Localization

Authors: Mazin Z. Othman, Maan M. Shaker, Mohammed F. Abdullah

Abstract:

This study introduces a new method for detecting, sorting, and localizing spikes from multiunit EEG recordings. The method combines the wavelet transform, which localizes distinctive spike features, with Super-Paramagnetic Clustering (SPC) algorithm, which allows automatic classification of the data without assumptions such as low variance or Gaussian distributions. Moreover, the method is capable of setting amplitude thresholds for spike detection. The method makes use of several real EEG data sets, and accordingly the spikes are detected, clustered and their times were detected.

Keywords: EEG time localizations, EEG spike detection, superparamagnetic algorithm, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
2640 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting

Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun

Abstract:

In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distribution.

Keywords: Multi-objective optimization, random drift particle swarm optimization, crowding distance, Pareto optimal solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
2639 A New Algorithm for Determining the Leading Coefficient of in the Parabolic Equation

Authors: Shiping Zhou, Minggen Cui

Abstract:

This paper investigates the inverse problem of determining the unknown time-dependent leading coefficient in the parabolic equation using the usual conditions of the direct problem and an additional condition. An algorithm is developed for solving numerically the inverse problem using the technique of space decomposition in a reproducing kernel space. The leading coefficients can be solved by a lower triangular linear system. Numerical experiments are presented to show the efficiency of the proposed methods.

Keywords: parabolic equations, coefficient inverse problem, reproducing kernel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
2638 Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network

Authors: Abed Sami Qawasme, Sameer Khader

Abstract:

This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.

Keywords: Multi level inverter, genetic algorithm, artificial neural network, total harmonic distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 626
2637 Moment Generating Functions of Observed Gaps between Hypopnea Using Saddlepoint Approximations

Authors: Nur Zakiah Mohd Saat, Abdul Aziz Jemain

Abstract:

Saddlepoint approximations is one of the tools to obtain an expressions for densities and distribution functions. We approximate the densities of the observed gaps between the hypopnea events using the Huzurbazar saddlepoint approximation. We demonstrate the density of a maximum likelihood estimator in exponential families.

Keywords: Exponential, maximum likehood estimators, observed gap, Saddlepoint approximations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
2636 UDCA: An Energy Efficient Clustering Algorithm for Wireless Sensor Network

Authors: Boregowda S.B., Hemanth Kumar A.R. Babu N.V, Puttamadappa C., And H.S Mruthyunjaya

Abstract:

In the past few years, the use of wireless sensor networks (WSNs) potentially increased in applications such as intrusion detection, forest fire detection, disaster management and battle field. Sensor nodes are generally battery operated low cost devices. The key challenge in the design and operation of WSNs is to prolong the network life time by reducing the energy consumption among sensor nodes. Node clustering is one of the most promising techniques for energy conservation. This paper presents a novel clustering algorithm which maximizes the network lifetime by reducing the number of communication among sensor nodes. This approach also includes new distributed cluster formation technique that enables self-organization of large number of nodes, algorithm for maintaining constant number of clusters by prior selection of cluster head and rotating the role of cluster head to evenly distribute the energy load among all sensor nodes.

Keywords: Clustering algorithms, Cluster head, Energy consumption, Sensor nodes, and Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
2635 Motion Parameter Estimation via Dopplerlet-Transform-Based Matched Field Processing

Authors: Hongyan Dai

Abstract:

This work presents a matched field processing (MFP) algorithm based on Dopplerlet transform for estimating the motion parameters of a sound source moving along a straight line and with a constant speed by using a piecewise strategy, which can significantly reduce the computational burden. Monte Carlo simulation results and an experimental result are presented to verify the effectiveness of the algorithm advocated.

Keywords: matched field processing; Dopplerlet transform; motion parameter estimation; piecewise strategy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
2634 Ultra High Speed Approach for Document Skew Detection and Correction Based On Centre of Gravity

Authors: Seyyed Yasser Hashemi

Abstract:

Skew detection and correction (SDC) has a direct effect in efficiency and exactitude of documents’ segmentation and analysis and thus is considered as a very important step in documents’ analysis field. Skew is a major problem in documents’ analysis for every language. For Arabic/Persian document scripts this problem is more severe because of special features of these languages. In this paper an efficient and fast algorithm for Document Skew Detection (DSD) based on the concept of segmentation and Center of Gravity (COG) is proposed. This algorithm is examined for 150 Arabic/Persian and English documents and SDC process are done successfully for 93 percent of documents with error rate of less than 1°. This algorithm shows better results for English documents compared to Arabic/Persian documents. The proposed method is also represents favorable results for handwritten, printed and also complicated documents such as newspapers and journals even with very low quality and resolution.

Keywords: Arabic/Persian document, Baseline, Centre of gravity, Document segmentation, Skew detection and correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
2633 Predicting the Minimum Free Energy RNA Secondary Structures using Harmony Search Algorithm

Authors: Abdulqader M. Mohsen, Ahamad Tajudin Khader, Dhanesh Ramachandram, Abdullatif Ghallab

Abstract:

The physical methods for RNA secondary structure prediction are time consuming and expensive, thus methods for computational prediction will be a proper alternative. Various algorithms have been used for RNA structure prediction including dynamic programming and metaheuristic algorithms. Musician's behaviorinspired harmony search is a recently developed metaheuristic algorithm which has been successful in a wide variety of complex optimization problems. This paper proposes a harmony search algorithm (HSRNAFold) to find RNA secondary structure with minimum free energy and similar to the native structure. HSRNAFold is compared with dynamic programming benchmark mfold and metaheuristic algorithms (RnaPredict, SetPSO and HelixPSO). The results showed that HSRNAFold is comparable to mfold and better than metaheuristics in finding the minimum free energies and the number of correct base pairs.

Keywords: Metaheuristic algorithms, dynamic programming algorithms, harmony search optimization, RNA folding, Minimum free energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
2632 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model

Authors: Nicolae Bold, Daniel Nijloveanu

Abstract:

The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.

Keywords: Genetic algorithm, chromosomes, genes, cropping, agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
2631 Bleeding Detection Algorithm for Capsule Endoscopy

Authors: Yong-Gyu Lee, Gilwon Yoon

Abstract:

Automatic detection of bleeding is of practical importance since capsule endoscopy produces an extremely large number of images. Algorithm development of bleeding detection in the digestive tract is difficult due to different contrasts among the images, food dregs, secretion and others. In this study, were assigned weighting factors derived from the independent features of the contrast and brightness between bleeding and normality. Spectral analysis based on weighting factors was fast and accurate. Results were a sensitivity of 87% and a specificity of 90% when the accuracy was determined for each pixel out of 42 endoscope images.

Keywords: bleeding, capsule endoscopy, image analysis, weighted spectrum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132