Search results for: Power electric markets
2441 Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues
Authors: Ayşe Dilek Maden
Abstract:
For a given a simple connected graph, we present some new bounds via a new approach for a special topological index given by the sum of the real number power of the non-zero normalized Laplacian eigenvalues. To use this approach presents an advantage not only to derive old and new bounds on this topic but also gives an idea how some previous results in similar area can be developed.
Keywords: Degree Kirchhoff index, normalized Laplacian eigenvalue, spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22012440 Analysis of the Root Causes of Transformer Bushing Failures
Authors: E. A. Feilat, I. A. Metwally, S. Al-Matri, A. S. Al-Abri
Abstract:
This paper presents the results of a comprehensive investigation of five blackouts that occurred on 28 August to 8 September 2011 due to bushing failures of the 132/33 kV, 125 MVA transformers at JBB Ali Grid station. The investigation aims to explore the root causes of the bushing failures and come up with recommendations that help in rectifying the problem and avoiding the reoccurrence of similar type of incidents. The incident reports about the failed bushings and the SCADA reports at this grid station were examined and analyzed. Moreover, comprehensive power quality field measurements at ten 33/11 kV substations (S/Ss) in JBB Ali area were conducted, and frequency scans were performed to verify any harmonic resonance frequencies due to power factor correction capacitors. Furthermore, the daily operations of the on-load tap changers (OLTCs) of both the 125 MVA and 20 MVA transformers at JBB Ali Grid station have been analyzed. The investigation showed that the five bushing failures were due to a local problem, i.e. internal degradation of the bushing insulation. This has been confirmed by analyzing the time interval between successive OLTC operations of the faulty grid transformers. It was also found that monitoring the number of OLTC operations can help in predicting bushing failure.Keywords: Modeling and simulation, power system, transformer, bushing, OLTC, power quality, partial discharge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107772439 Optimal Allocation of DG Units for Power Loss Reduction and Voltage Profile Improvement of Distribution Networks using PSO Algorithm
Authors: K. Varesi
Abstract:
This paper proposes a Particle Swarm Optimization (PSO) based technique for the optimal allocation of Distributed Generation (DG) units in the power systems. In this paper our aim is to decide optimal number, type, size and location of DG units for voltage profile improvement and power loss reduction in distribution network. Two types of DGs are considered and the distribution load flow is used to calculate exact loss. Load flow algorithm is combined appropriately with PSO till access to acceptable results of this operation. The suggested method is programmed under MATLAB software. Test results indicate that PSO method can obtain better results than the simple heuristic search method on the 30-bus and 33- bus radial distribution systems. It can obtain maximum loss reduction for each of two types of optimally placed multi-DGs. Moreover, voltage profile improvement is achieved.Keywords: Distributed Generation (DG), Optimal Allocation, Particle Swarm Optimization (PSO), Power Loss Minimization, Voltage Profile Improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31682438 Drying of Papaya (Carica papaya L.) Using a Microwave-vacuum Dryer
Authors: Kraipat Cheenkachorn, Piyawat Jintanatham, Sarun Rattanaprapa
Abstract:
In present work, drying characteristics of fresh papaya (Carica papaya L.) was studied to understand the dehydration process and its behavior. Drying experiments were carried out by a laboratory scaled microwave-vacuum oven. The parameters affecting drying characteristics including operating modes (continuous, pulsed), microwave power (400 and 800 W), and vacuum pressure (20, 30, and 40 cmHg) were investigated. For pulsed mode, two levels of power-off time (60 and 120 s) were used while the power-on time was fixed at 60 s and the vacuum pressure was fixed at 40 cmHg. For both operating modes, the effects of drying conditions on drying time, drying rate, and effective diffusivity were investigated. The results showed high microwave power, high vacuum, and pulsed mode of 60 s-on/60 s-off favored drying rate as shown by the shorten drying time and increased effective diffusivity. The drying characteristics were then described by Page-s model, which showed a good agreement with experimental data.
Keywords: papaya, microwave-vacuum drying, effective diffusivity, Page's model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28652437 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization
Authors: Hebberly Ahatlan
Abstract:
The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, Information Technology (IT) and Operational Technology (OT) convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.
Keywords: Digitalization, IT/OT convergence, semantic interoperability, TEIA alliance, VPP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202436 Evaluation of Power Factor Corrected AC - DC Converters and Controllers to meet UPS Performance Index
Authors: A. Muthuramalingam, S. Himavathi
Abstract:
Harmonic pollution and low power factor in power systems caused by power converters have been of great concern. To overcome these problems several converter topologies using advanced semiconductor devices and control schemes have been proposed. This investigation is to identify a low cost, small size, efficient and reliable ac to dc converter to meet the input performance index of UPS. The performance of single phase and three phase ac to dc converter along with various control techniques are studied and compared. The half bridge converter topology with linear current control is identified as most suitable. It is simple, energy efficient because of single switch power loss and transformer-less operation of UPS. The results are validated practically using a prototype built using IGBT and analog controller. The performance for both single and three-phase system is verified. Digital implementation of closed loop control achieves higher reliability. Its cost largely depends on chosen bit precision. The minimal bit precision for optimum converter performance is identified as 16-bit with fixed-point operation. From the investigation and practical implementation it is concluded that half bridge ac – dc converter along with digital linear controller meets the performance index of UPS for single and three phase systems.Keywords: PFC, energy efficient, half bridge, ac-dc converter, boost topology, linear current control, digital bit precision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30352435 Effect of Low Frequency Memory on High Power 12W LDMOS Transistors Intermodulation Distortion
Authors: A. Alghanim, J. Benedikt, P. J. Tasker
Abstract:
The increasing demand for higher data rates in wireless communication systems has led to the more effective and efficient use of all allocated frequency bands. In order to use the whole bandwidth at maximum efficiency, one needs to have RF power amplifiers with a higher linear level and memory-less performance. This is considered to be a major challenge to circuit designers. In this thesis the linearity and memory are studied and examined via the behavior of the intermodulation distortion (IMD). A major source of the in-band distortion can be shown to be influenced by the out-of-band impedances presented at either the input or the output of the device, especially those impedances terminated the low frequency (IF) components. Thus, in order to regulate the in-band distortion, the out of-band distortion must be controllable. These investigations are performed on a 12W LDMOS device characterised at 2.1 GHz within a purpose built, high-power measurement system.
Keywords: Low Frequency Memory, IntermodulationDistortion (IMD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19532434 Precision Control of Single-Phase PWM Inverter Using M68HC11E Microcontroller
Authors: Khaled A. Madi
Abstract:
Induction motors are being used in greater numbers throughout a wide variety of industrial and commercial applications because it provides many benefits and reliable device to convert the electrical energy into mechanical motion. In some application it-s desired to control the speed of the induction motor. Because of the physics of the induction motor the preferred method of controlling its speed is to vary the frequency of the AC voltage driving the motor. In recent years, with the microcontroller incorporated into an appliance it becomes possible to use it to generate the variable frequency AC voltage to control the speed of the induction motor. This study investigates the microcontroller based variable frequency power inverter. the microcontroller is provide the variable frequency pulse width modulation (PWM) signal that control the applied voltage on the gate drive, which is provides the required PWM frequency with less harmonics at the output of the power inverter. The fully controlled bridge voltage source inverter has been implemented with semiconductors power devices isolated gate bipolar transistor (IGBT), and the PWM technique has been employed in this inverter to supply the motor with AC voltage. The proposed drive system for three & single phase power inverter is simulated using Matlab/Simulink. The Matlab Simulation Results for the proposed system were achieved with different SPWM. From the result a stable variable frequency inverter over wide range has been obtained and a good agreement has been found between the simulation and hardware of a microcontroller based single phase inverter.Keywords: Power, inverter, PWM, microcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44362433 Numerical Investigation into Mixing Performance of Electrokinetically-Driven Power-Law Fluids in Microchannel with Patterned Trapezoid Blocks
Authors: Cha’o-Kuang Chen, Ching-Chang Cho
Abstract:
The study investigates the mixing performance of electrokinetically-driven power-law fluids in a microchannel containing patterned trapezoid blocks. The effects of the geometry parameters of the patterned trapezoid blocks and the flow behavior index in the power-law model on the mixing efficiency within the microchannel are explored. The results show that the mixing efficiency can be improved by increasing the width of the blocks and extending the length of upper surface of the blocks. In addition, the results show that the mixing efficiency increases with an increasing flow behavior index. Furthermore, it is shown that a heterogeneous patterning of the zeta potential on the upper surfaces of the trapezoid blocks prompts the formation of local flow recirculations, and therefore improves the mixing efficiency. Consequently, it is shown that the mixing performance improves with an increasing magnitude of the heterogeneous surface zeta potential.
Keywords: Non-Newtonian fluid, Power-law fluid, Electroosmotic flow, Passive mixer, Mixing, Micromixer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15162432 Integrated Power Saving for Multiple Relays and UEs in LTE-TDD
Authors: Chun-Chuan Yang, Jeng-Yueng Chen, Yi-Ting Mai, Chen-Ming Yang
Abstract:
In this paper, the design of integrated sleep scheduling for relay nodes and user equipments under a Donor eNB (DeNB) in the mode of Time Division Duplex (TDD) in LTE-A is presented. The idea of virtual time is proposed to deal with the discontinuous pattern of the available radio resource in TDD, and based on the estimation of the traffic load, three power saving schemes in the top-down strategy are presented. Associated mechanisms in each scheme including calculation of the virtual subframe capacity, the algorithm of integrated sleep scheduling, and the mapping mechanisms for the backhaul link and the access link are presented in the paper. Simulation study shows the advantage of the proposed schemes in energy saving over the standard DRX scheme.
Keywords: LTE-A, Relay, TDD, Power Saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11602431 Low Power and Less Area Architecture for Integer Motion Estimation
Authors: C Hisham, K Komal, Amit K Mishra
Abstract:
Full search block matching algorithm is widely used for hardware implementation of motion estimators in video compression algorithms. In this paper we are proposing a new architecture, which consists of a 2D parallel processing unit and a 1D unit both working in parallel. The proposed architecture reduces both data access power and computational power which are the main causes of power consumption in integer motion estimation. It also completes the operations with nearly the same number of clock cycles as compared to a 2D systolic array architecture. In this work sum of absolute difference (SAD)-the most repeated operation in block matching, is calculated in two steps. The first step is to calculate the SAD for alternate rows by a 2D parallel unit. If the SAD calculated by the parallel unit is less than the stored minimum SAD, the SAD of the remaining rows is calculated by the 1D unit. Early termination, which stops avoidable computations has been achieved with the help of alternate rows method proposed in this paper and by finding a low initial SAD value based on motion vector prediction. Data reuse has been applied to the reference blocks in the same search area which significantly reduced the memory access.
Keywords: Sum of absolute difference, high speed DSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14932430 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network
Authors: A. Morsli, A.Tlemçani, N. Ould Cherchali, M. S. Boucherit
Abstract:
This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to a shunt Active Power Filter (sAPF) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.Keywords: Fuzzy logic controller, P-Q method, Pulse Width Modulation (PWM), shunt Active Power Filter (sAPF), Total Harmonic Distortion (THD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23662429 Modeling and Design of MPPT Controller Using Stepped P&O Algorithm in Solar Photovoltaic System
Authors: R. Prakash, B. Meenakshipriya, R. Kumaravelan
Abstract:
This paper presents modeling and simulation of Grid Connected Photovoltaic (PV) system by using improved mathematical model. The model is used to study different parameter variations and effects on the PV array including operating temperature and solar irradiation level. In this paper stepped P&O algorithm is proposed for MPPT control. This algorithm will identify the suitable duty ratio in which the DC-DC converter should be operated to maximize the power output. Photo voltaic array with proposed stepped P&O-MPPT controller can operate in the maximum power point for the whole range of solar data (irradiance and temperature).
Keywords: Photovoltaic (PV), Maximum Power Point Tracking (MPPT), Boost converter, Stepped Perturb & Observe method (Stepped P&O).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40112428 Performance Analysis of MIMO-OFDM Using Convolution Codes with QAM Modulation
Authors: I Gede Puja Astawa, Yoedy Moegiharto, Ahmad Zainudin, Imam Dui Agus Salim, Nur Annisa Anggraeni
Abstract:
Performance of Orthogonal Frequency Division Multiplexing (OFDM) system can be improved by adding channel coding (error correction code) to detect and correct errors that occur during data transmission. One can use the convolution code. This paper present performance of OFDM using Space Time Block Codes (STBC) diversity technique use QAM modulation with code rate ½. The evaluation is done by analyzing the value of Bit Error Rate (BER) vs. Energy per Bit to Noise Power Spectral Density Ratio (Eb/No). This scheme is conducted 256 subcarrier transmits Rayleigh multipath channel in OFDM system. To achieve a BER of 10-3 is required 10dB SNR in SISO-OFDM scheme. For 2x2 MIMO-OFDM scheme requires 10 dB to achieve a BER of 10-3. For 4x4 MIMO-OFDM scheme requires 5 dB while adding convolution in a 4x4 MIMO-OFDM can improve performance up to 0 dB to achieve the same BER. This proves the existence of saving power by 3 dB of 4x4 MIMO-OFDM system without coding, power saving 7dB of 2x2 MIMO-OFDM and significant power savings from SISO-OFDM system
Keywords: Convolution code, OFDM, MIMO, QAM, BER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33872427 Contingency Screening Using Risk Factor Considering Transmission Line Outage
Authors: M. Marsadek, A. Mohamed
Abstract:
Power system security analysis is the most time demanding process due to large number of possible contingencies that need to be analyzed. In a power system, any contingency resulting in security violation such as line overload or low voltage may occur for a number of reasons at any time. To efficiently rank a contingency, both probability and the extent of security violation must be considered so as not to underestimate the risk associated with the contingency. This paper proposed a contingency ranking method that take into account the probabilistic nature of power system and the severity of contingency by using a newly developed method based on risk factor. The proposed technique is implemented on IEEE 24-bus system.Keywords: Line overload, low voltage, probability, risk factor, severity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12252426 Comparison of Stationary and Two-Axis Tracking System of 50MW Photovoltaic Power Plant in Al-Kufra, Libya: Landscape Impact and Performance
Authors: Yasser Aldali
Abstract:
The scope of this paper is to evaluate and compare the potential of LS-PV(Large Scale Photovoltaic Power Plant) power generation systems in the southern region of Libya at Al-Kufra for both stationary and tracking systems. A Microsoft Excel-VBA program has been developed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency of the system for stationary system and for tracking system. The results for energy production show that the total energy output is 114GWh/year for stationary system and 148GWh/year for tracking system. The average module efficiency for the stationary system is 16.6% and 16.2% for the tracking system.
The values of electricity generation capacity factor (CF) and solar capacity factor (SCF) for stationary system were found to be 26% and 62.5% respectively and 34% and 82% for tracking system. The GCR (Ground Cover Ratio) for a stationary system is 0.7, which corresponds to a tilt angle of 24°. The GCR for tracking system was found to be 0.12. The estimated ground area needed to build a 50MW PV plant amounts to approx. 0.55km2 for a stationary PV field constituted by HIT PV arrays and approx. 91MW/ km2. In case of a tracker PV field, the required ground area amounts approx.2.4km2 and approx. 20.5MW/ km2.
Keywords: Large PV power plant, solar energy, environmental impact, Dual-axis tracking system, stationary system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31012425 Design of Low Power and High Speed Digital IIR Filter in 45nm with Optimized CSA for Digital Signal Processing Applications
Authors: G. Ramana Murthy, C. Senthilpari, P. Velrajkumar, Lim Tien Sze
Abstract:
In this paper, a design methodology to implement low-power and high-speed 2nd order recursive digital Infinite Impulse Response (IIR) filter has been proposed. Since IIR filters suffer from a large number of constant multiplications, the proposed method replaces the constant multiplications by using addition/subtraction and shift operations. The proposed new 6T adder cell is used as the Carry-Save Adder (CSA) to implement addition/subtraction operations in the design of recursive section IIR filter to reduce the propagation delay. Furthermore, high-level algorithms designed for the optimization of the number of CSA blocks are used to reduce the complexity of the IIR filter. The DSCH3 tool is used to generate the schematic of the proposed 6T CSA based shift-adds architecture design and it is analyzed by using Microwind CAD tool to synthesize low-complexity and high-speed IIR filters. The proposed design outperforms in terms of power, propagation delay, area and throughput when compared with MUX-12T, MCIT-7T based CSA adder filter design. It is observed from the experimental results that the proposed 6T based design method can find better IIR filter designs in terms of power and delay than those obtained by using efficient general multipliers.
Keywords: CSA Full Adder, Delay unit, IIR filter, Low-Power, PDP, Parametric Analysis, Propagation Delay, Throughput, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38152424 A 5-V to 30-V Current-Mode Boost Converter with Integrated Current Sensor and Power-on Protection
Authors: Jun Yu, Yat-Hei Lam, Boris Grinberg, Kevin Chai Tshun Chuan
Abstract:
This paper presents a 5-V to 30-V current-mode boost converter for powering the drive circuit of a micro-electro-mechanical sensor. The design of a transconductance amplifier and an integrated current sensing circuit are presented. In addition, essential building blocks for power-on protection such as a soft-start and clamp block and supply and clock ready block are discussed in details. The chip is fabricated in a 0.18-μm CMOS process. Measurement results show that the soft-start and clamp block can effectively limit the inrush current during startup and protect the boost converter from startup failure.
Keywords: Boost Converter, Current Sensing, Power-on protection, Step-up Converter, Soft-start.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20472423 A Digital Pulse-Width Modulation Controller for High-Temperature DC-DC Power Conversion Application
Authors: Jingjing Lan, Jun Yu, Muthukumaraswamy Annamalai Arasu
Abstract:
This paper presents a digital non-linear pulse-width modulation (PWM) controller in a high-voltage (HV) buck-boost DC-DC converter for the piezoelectric transducer of the down-hole acoustic telemetry system. The proposed design controls the generation of output signal with voltage higher than the supply voltage and is targeted to work under high temperature. To minimize the power consumption and silicon area, a simple and efficient design scheme is employed to develop the PWM controller. The proposed PWM controller consists of serial to parallel (S2P) converter, data assign block, a mode and duty cycle controller (MDC), linearly PWM (LPWM) and noise shaper, pulse generator and clock generator. To improve the reliability of circuit operation at higher temperature, this design is fabricated with the 1.0-μm silicon-on-insulator (SOI) CMOS process. The implementation results validated that the proposed design has the advantages of smaller size, lower power consumption and robust thermal stability.
Keywords: DC-DC power conversion, digital control, high temperatures, pulse-width modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17112422 Solar and Wind Energy Potential Study of Lower Sindh, Pakistan for Power Generation
Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui
Abstract:
Global and diffuse solar radiation on horizontal surface of Lower Sindh, namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization for power generation in Sindh province. The results obtained show a large variation in the direct and diffuse component of solar radiation in summer and winter months in Lower Sindh (50% direct and 50% diffuse for Karachi and Hyderabad). In Nawabshah area, the contribution of diffuse solar radiation is low during the monsoon months, July and August. The KT value of Nawabshah indicates a clear sky throughout almost the entire year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even during the monsoon months. The estimated values indicate that Nawabshah has high solar potential, whereas Karachi and Hyderabad have low solar potential. During the monsoon months the Lower part of Sindh can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 m/sec to 6.9 m/sec. A wind corridor exists near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in the monsoon months of July and August, wind speeds are higher in the Lower region of Sindh.Keywords: Hybrid power system, power generation, solar and wind energy potential, Lower Sindh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18012421 Secured Mutual Authentication Protocol for Radio Frequency Identification Systems
Authors: C. Kalamani, S. Sowmiya, S. Dheivambigai, G. Harihara Sudhan
Abstract:
Radio Frequency Identification (RFID) is a blooming technology which uses radio frequency to track the objects. This technology transmits signals between tag and reader to fetch information from the tag with a unique serial identity. Generally, the drawbacks of RFID technology are high cost, high consumption of power and weak authentication systems between a reader and a tag. The proposed protocol utilizes less dynamic power using reversible truncated multipliers which are implemented in RFID tag-reader with mutual authentication protocol system to reduce both leakage and dynamic power consumption. The proposed system was simulated using Xilinx and Cadence tools.Keywords: Mutual authentication, protocol, reversible gates, RFID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6802420 Development of Synthetic Jet Air Blower for Air-breathing PEM Fuel Cell
Authors: Jongpil Choi, Eon-Soo Lee, Jae-Huk Jang, Young Ho Seo, Byeonghee Kim
Abstract:
This paper presents a synthetic jet air blower actuated by PZT for air blowing for air-breathing micro PEM fuel cell. The several factors to affect the performance of air-breathing PEM fuel cell such as air flow rate, opening ratio and cathode open type in the cathode side were studied. Especially, an air flow rate is critical condition to improve its performance. In this paper, we developed a synthetic jet air blower to supply a high stoichiometric air flow. The synthetic jet mechanism is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT actuator, which consists of a small cylindrical cavity, in/outlet channel and PZT diaphragms. The flow rate of the fabricated synthetic jet air blower was 400cc/min at 550Hz and its power consumption was very low under 0.3W. The proposed air-breathing PEM fuel cell which installed synthetic jet air blower was higher performance and stability during continuous operation than the air-breathing fuel cell without auxiliary device to supply the air. The results showed that the maximum power density was 188mW/cm2 at 400mA/cm2. This maximum power density and durability were improved more than 40% and 20%, respectively.Keywords: Air-breathing PEM fuel cell, Synthetic jet air blower, Opening ratio, Power consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22802419 Embedded Systems Energy Consumption Analysis Through Co-modelling and Simulation
Authors: José Antonio Esparza Isasa, Finn Overgaard Hansen, Peter Gorm Larsen
Abstract:
This paper presents a new methodology to study power and energy consumption in mechatronic systems early in the development process. This new approach makes use of two modeling languages to represent and simulate embedded control software and electromechanical subsystems in the discrete event and continuous time domain respectively within a single co-model. This co-model enables an accurate representation of power and energy consumption and facilitates the analysis and development of both software and electro-mechanical subsystems in parallel. This makes the engineers aware of energy-wise implications of different design alternatives and enables early trade-off analysis from the beginning of the analysis and design activities.
Keywords: Energy consumption, embedded systems, modeldriven engineering, power awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20742418 Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition
Authors: A. Benyahia, M. Zergoug, M. Amir, M. Fodil
Abstract:
The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed.
Keywords: NDT, pulsed eddy current, continuous wavelet transform, Mexican hat wavelet mother, defect detection, power spectral density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7652417 A Comprehensive Evaluation of IGBTs Performance under Zero Current Switching
Authors: Ly. Benbahouche
Abstract:
Currently, several soft switching topologies have been studied to achieve high power switching efficiency, reduced cost, improved reliability and reduced parasites. It is well known that improvement in power electronics systems always depend on advanced in power devices. The IGBT has been successfully used in a variety of switching applications such as motor drives and appliance control because of its superior characteristics.
The aim of this paper is focuses on simulation and explication of the internal dynamics of IGBTs behaviour under the most popular soft switching schemas that is Zero Current Switching (ZCS) environments.
The main purpose of this paper is to point out some mechanisms relating to current tail during the turn-off and examination of the response at turn-off with variation of temperature, inductance L, snubber capacitors Cs, and bus voltage in order to achieve an improved understanding of internal carrier dynamics. It is shown that the snubber capacitor, the inductance and even the temperature controls the magnitude and extent of the tail current, hence the turn-off time (switching speed of the device).
Moreover, it has also been demonstrated that the ZCS switching can be utilized efficiently to improve and reduce the power losses as well as the turn-off time. Furthermore, the turn-off loss in ZCS was found to depend on the time of switching of the device.
Keywords: PT-IGBT, ZCS, turn-off losses, dV/dt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25872416 Hybrid Neuro Fuzzy Approach for Automatic Generation Control of Two -Area Interconnected Power System
Authors: Gayadhar Panda, Sidhartha Panda, C. Ardil
Abstract:
The main objective of Automatic Generation Control (AGC) is to balance the total system generation against system load losses so that the desired frequency and power interchange with neighboring systems is maintained. Any mismatch between generation and demand causes the system frequency to deviate from its nominal value. Thus high frequency deviation may lead to system collapse. This necessitates a very fast and accurate controller to maintain the nominal system frequency. This paper deals with a novel approach of artificial intelligence (AI) technique called Hybrid Neuro-Fuzzy (HNF) approach for an (AGC). The advantage of this controller is that it can handle the non-linearities at the same time it is faster than other conventional controllers. The effectiveness of the proposed controller in increasing the damping of local and inter area modes of oscillation is demonstrated in a two area interconnected power system. The result shows that intelligent controller is having improved dynamic response and at the same time faster than conventional controller.
Keywords: Automatic Generation Control (AGC), Dynamic Model, Two-area Power System, Fuzzy Logic Controller, Neural Network, Hybrid Neuro-Fuzzy(HNF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24612415 Design and Analysis of Two-Phase Boost DC-DC Converter
Authors: Taufik Taufik, Tadeus Gunawan, Dale Dolan, Makbul Anwari
Abstract:
Multiphasing of dc-dc converters has been known to give technical and economical benefits to low voltage high power buck regulator modules. A major advantage of multiphasing dc-dc converters is the improvement of input and output performances in the buck converter. From this aspect, a potential use would be in renewable energy where power quality plays an important factor. This paper presents the design of a 2-phase 200W boost converter for battery charging application. Analysis of results from hardware measurement of the boost converter demonstrates the benefits of using multiphase. Results from the hardware prototype of the 2-phase boost converter further show the potential extension of multiphase beyond its commonly used low voltage high current domains.
Keywords: Multiphase, boost converter, power electronics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47052414 A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation
Authors: S. J. Arif
Abstract:
In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation.
Keywords: Digital encoder for frequency measurement, frequency deviation measurement, measurement and control systems, power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14302413 Reversible Signed Division for Computing Systems
Authors: D. Krishnaveni, M. Geetha Priya
Abstract:
Applications of reversible logic gates in the design of complex integrated circuits provide power optimization. This technique finds a great use in low power CMOS design, optical computing, quantum computing and nanotechnology. This paper proposes a reversible signed division circuit that can divide an n-bit signed dividend with an n-bit signed divisor using non-restoration division logic. The proposed design adequately addresses the ‘delay’ there by improving the efficiency of the circuit. An attempt is made to design a reversible signed division circuit. This paper provides a threshold to build more complex arithmetic systems using reversible logic, thus increasing the performance of computing systems.
Keywords: Low power CMOS, quantum computing, reversible logic gates, shift register, signed division.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12622412 Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System
Authors: Alpesh Adeshara, Rajendrasinh Jadeja, Praghnesh Bhatt
Abstract:
Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of supervisory control and data acquisition system (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide area measurement system (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of Matlab based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.Keywords: DFT-Discrete Fourier Transform, GPS-Global Positioning System, PMU-Phasor Measurement System, WAMS-Wide Area Monitoring System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2726