Search results for: Generalized Hough Transform
130 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio
Authors: Urvee B. Trivedi, U. D. Dalal
Abstract:
As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.Keywords: Cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary User (PU), secondary user (SU), Fast Fourier transform (FFT), signal to noise ratio (SNR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470129 Arabic Literature as a Tool for Educational Transformation in Nigeria
Authors: Abdulfatah A Raji
Abstract:
This paper started with the definitions of literature, Arabic literature, transformation and went further to highlight the components of educational transformation. The general history of Arabic literature was discussed with focus on how it undergoes some transformations from pre-Islamic period through Quranic era, Abbasid literature to renaissance period in which the modernization of Arabic literature started in Egypt. It also traces the spread of Arabic literature in Nigeria from the pre-colonial era during the Kanuri rulers to Jihad of Usman Dan Fodio and the development of literature which manifested to the Teacher’s Colleges and Bayero University in Northern Nigeria. Also, the establishment of primary and post-primary schools by Muslim organizations in many cities and towns of the Western part of Nigeria. Literary criticism was also discussed in line with Arabic literature. Poetry work of eminent poets were cited to show its importance in line with educational transformation in Nigerian literature and lessons from the cited Arabic poetry works were also highlighted to include: motivation to behave well and to tolerate others, better spirits of interaction, love and co-existence among different sexes, religion etc. All these can help in developing a better educational transformation in Nigeria which can in turn help in how to conduct researches for national development. The paper recommended compulsory Arabic literature at all levels of the nations’ educational system as well as publication of Arabic books and journals to encourage peace in this era of conflicts and further transform Nigeria’s educational system for better.Keywords: Arabic, literature, peace, development, Nigeria
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568128 Numerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics
Authors: Yao Jie, Yeo Khoon Seng
Abstract:
In recent decades, flapping wing aerodynamics has attracted great interest. Understanding the physics of biological flyers such as birds and insects can help improve the performance of micro air vehicles. The present research focuses on the aerodynamics of insect-like flapping wing flight with the approach of numerical computation. Insect model of hawkmoth is adopted in the numerical study with rigid wing assumption currently. The numerical model integrates the computational fluid dynamics of the flow and active control of wing kinematics to achieve stable flight. The computation grid is a hybrid consisting of background Cartesian nodes and clouds of mesh-free grids around immersed boundaries. The generalized finite difference method is used in conjunction with single value decomposition (SVD-GFD) in computational fluid dynamics solver to study the dynamics of a free hovering hummingbird hawkmoth. The longitudinal dynamics of the hovering flight is governed by three control parameters, i.e., wing plane angle, mean positional angle and wing beating frequency. In present work, a PID controller works out the appropriate control parameters with the insect motion as input. The controller is adjusted to acquire desired maneuvering of the insect flight. The numerical scheme in present study is proven to be accurate and stable to simulate the flight of the hummingbird hawkmoth, which has relatively high Reynolds number. The PID controller is responsive to provide feedback to the wing kinematics during the hovering flight. The simulated hovering flight agrees well with the real insect flight. The present numerical study offers a promising route to investigate the free flight aerodynamics of insects, which could overcome some of the limitations of experiments.
Keywords: Aerodynamics, flight control, computational fluid dynamics, flapping-wing flight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451127 Preparation and Conductivity Measurements of LSM/YSZ Composite Solid Oxide Electrolysis Cell Anode Materials
Authors: Christian C. Vaso, Rinlee Butch M. Cervera
Abstract:
One of the most promising anode materials for solid oxide electrolysis cell (SOEC) application is the Sr-doped LaMnO3 (LSM) which is known to have a high electronic conductivity but low ionic conductivity. To increase the ionic conductivity or diffusion of ions through the anode, Yttria-stabilized Zirconia (YSZ), which has good ionic conductivity, is proposed to be combined with LSM to create a composite electrode and to obtain a high mixed ionic and electronic conducting anode. In this study, composite of lanthanum strontium manganite and YSZ oxide, La0.8Sr0.2MnO3/Zr0.92Y0.08O2 (LSM/YSZ), with different wt.% compositions of LSM and YSZ were synthesized using solid-state reaction. The obtained prepared composite samples of 60, 50, and 40 wt.% LSM with remaining wt.% of 40, 50, and 60, respectively for YSZ were fully characterized for its microstructure by using powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and Scanning electron microscope/Energy dispersive spectroscopy (SEM/EDS) analyses. Surface morphology of the samples via SEM analysis revealed a well-sintered and densified pure LSM, while a more porous composite sample of LSM/YSZ was obtained. Electrochemical impedance measurements at intermediate temperature range (500-700 °C) of the synthesized samples were also performed which revealed that the 50 wt.% LSM with 50 wt.% YSZ (L50Y50) sample showed the highest total conductivity of 8.27x10-1 S/cm at 600 oC with 0.22 eV activation energy.Keywords: Ceramics, microstructure, fuel cells, electrochemical impedance spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863126 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: Band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171125 Temperature Related Alterations to Mineral Levels and Crystalline Structure in Porcine Long Bone: Intense Heat vs. Open Flame
Authors: Caighley Logan, Suzzanne McColl
Abstract:
The outcome of fire related fatalities, along with other research, has found fires can have a detrimental effect to the mineral and crystalline structures within bone. This study focused on the mineral and crystalline structures within porcine bone samples to analyse the changes caused, with the intent of effectively ‘reverse engineering’ the data collected from burned bone samples to discover what may have happened. Using Fourier Transform Infrared (FTIR), and X-Ray Fluorescence (XRF), the data were collected from a controlled source of intense heat (muffle furnace) and an open fire, based in a living room setting in a standard size shipping container (2.5 m x 2.4 m) of a similar temperature with a known ignition source, a gasoline lighter. This approach is to analyse the changes to the samples and how the changes differ depending on the heat source. Results have found significant differences in the levels of remaining minerals for each type of heat/burning (p =< 0.001), particularly Phosphorus and Calcium, this also includes notable additions of absorbed elements and minerals from the surrounding materials, i.e., Cerium (Ce), Bromine (Br) and Neodymium (Ne). The analysis techniques included provide validated results in conjunction with previous studies.
Keywords: Forensic anthropology, thermal alterations, porcine bone, FTIR, XRF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204124 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients
Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim
Abstract:
The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.
Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 678123 Optical Limiting Characteristics of Core-Shell Nanoparticles
Authors: G.Vinitha, A.Ramalingam
Abstract:
TiO2 nanoparticles were synthesized by hydrothermal method at 180°C from TiOSO4 aqueous solution with1m/l concentration. The obtained products were coated with silica by means of a seeded polymerization technique for a coating time of 1440 minutes to obtain well defined TiO2@SiO2 core-shell structure. The uncoated and coated nanoparticles were characterized by using X-Ray diffraction technique (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) to study their physico-chemical properties. Evidence from XRD and FTIR results show that SiO2 is homogenously coated on the surface of titania particles. FTIR spectra show that there exists an interaction between TiO2 and SiO2 and results in the formation of Ti-O-Si chemical bonds at the interface of TiO2 particles and SiO2 coating layer. The non linear optical limiting properties of TiO2 and TiO2@SiO2 nanoparticles dispersed in ethylene glycol were studied at 532nm using 5ns Nd:YAG laser pulses. Three-photon absorption is responsible for optical limiting characteristics in these nanoparticles and it is seen that the optical nonlinearity is enhanced in core-shell structures when compared with single counterparts. This effective three-photon type absorption at this wavelength, is of potential application in fabricating optical limiting devices.Keywords: hydrothermal method, optical limiting devicesseeded polymerization technique, three-photon type absorption
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818122 Principle Components Updates via Matrix Perturbations
Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook
Abstract:
This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X ∈ R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.Keywords: Online data updates, covariance matrix, online principle component analysis (OPCA), matrix perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038121 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.
Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763120 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters
Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev
Abstract:
Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.Keywords: Lexicon of disasters, modelling, Petri nets, text annotation, social disasters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157119 Leveraging Hyperledger Iroha for the Issuance and Verification of Higher-Education Certificates
Authors: Vasiliki Vlachou, Christos Kontzinos, Ourania Markaki, Panagiotis Kokkinakos, Vagelis Karakolis, John Psarras
Abstract:
Higher Education is resisting the pull of technology, especially as this concerns the issuance and verification of degrees and certificates. It is widely known that education certificates are largely produced in paper form making them vulnerable to damage while holders of such certificates are dependent on the universities and other issuing organisations. QualiChain is an EU Horizon 2020 (H2020) research project aiming to transform and revolutionise the domain of public education and its ties with the job market by leveraging blockchain, analytics and decision support to develop a platform for the verification and sharing of education certificates. Blockchain plays an integral part in the QualiChain solution in providing a trustworthy environment to store, share and manage such accreditations. Under the context of this paper, three prominent blockchain platforms (Ethereum, Hyperledger Fabric, Hyperledger Iroha) were considered as a means of experimentation for creating a system with the basic functionalities that will be needed for trustworthy degree verification. The methodology and respective system developed and presented in this paper used Hyperledger Iroha and proved that this specific platform can be used to easily develop decentralize applications. Future papers will attempt to further experiment with other blockchain platforms and assess which has the best potential.
Keywords: Blockchain, degree verification, higher education certificates, Hyperledger Iroha.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830118 Transformability in Post-Earthquake Houses in Iran: with Special Focus on Lar City
Authors: M. Parva, K. Dola, F. Pour Rahimian
Abstract:
Earthquake is considered as one of the most catastrophic disasters in Iran, in terms of both short-term and long-term hazards. Due to the particular financial and time constraints in Iran, quickly constructed post-earthquake houses (PEHs) do not fulfill the minimum requirements to be considered as comfortable dwellings for people. Consequently, people often transform PEHs after they start to reside. However, lack of understanding about process, motivation, and results of housing transformation leads to construction of some houses not suitable for future transformations, hence resulting in eventually demolished or abandoned PEHs. This study investigated housing transformations in a natural bed of post-earthquake Lar. This paper reports results of the conducted survey for comparing normal condition housing transformation with post-earthquake housing transformation in order to reveal the factors that affect post-earthquake housing transformation in Iran. The findings proposed the use of a combination of ‘Temporary’ and ‘Permanent’ housing reconstruction models in Iran to provide victims with basic but permanent post-disaster dwellings. It is also suggested that needs for future transformation should be predicted and addressed during early stages of design and development. This study contributes to both research and practice regarding post-earthquake housing reconstruction in Iran by proposing new design approaches and guidelines.
Keywords: Housing transformation, Iran, Lar, post-earthquake housing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877117 The Study of the Interaction between Catanionic Surface Micelle SDS-CTAB and Insulin at Air/Water Interface
Authors: B. Tah, P. Pal, M. Mahato, R. Sarkar, G. B. Talapatra
Abstract:
Herein, we report the different types of surface morphology due to the interaction between the pure protein Insulin (INS) and catanionic surfactant mixture of Sodium Dodecyl Sulfate (SDS) and Cetyl Trimethyl Ammonium Bromide (CTAB) at air/water interface obtained by the Langmuir-Blodgett (LB) technique. We characterized the aggregations by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in LB films. We found that the INS adsorption increased in presence of catanionic surfactant at air/water interface. The presence of small amount of surfactant induces two-stage growth kinetics due to the pure protein absorption and protein-catanionic surface micelle interaction. The protein remains in native state in presence of small amount of surfactant mixture. Smaller amount of surfactant mixture with INS is producing surface micelle type structure. This may be considered for drug delivery system. On the other hand, INS becomes unfolded and fibrillated in presence of higher amount of surfactant mixture. In both the cases, the protein was successfully immobilized on a glass substrate by the LB technique. These results may find applications in the fundamental science of the physical chemistry of surfactant systems, as well as in the preparation of drug-delivery system.
Keywords: Air/water interface, Catanionic micelle, Insulin, Langmuir-Blodgett film
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488116 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval
Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema
Abstract:
The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595115 Face Recognition Using Double Dimension Reduction
Authors: M. A Anjum, M. Y. Javed, A. Basit
Abstract:
In this paper a new approach to face recognition is presented that achieves double dimension reduction making the system computationally efficient with better recognition results. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results improve with increase in face image resolution and levels off when arriving at a certain resolution level. In the proposed model of face recognition, first image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to better computational speed and feature extraction potential of Discrete Cosine Transform (DCT) it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A trade of between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL database, Yale database and a color database. The proposed technique has performed much better compared to other techniques. The significance of the model is two fold: (1) dimension reduction up to an effective and suitable face image resolution (2) appropriate DCT coefficients are retained to achieve best recognition results with varying image poses, intensity and illumination level.
Keywords: Biometrics, DCT, Face Recognition, Feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492114 Material Analysis for Temple Painting Conservation in Taiwan
Authors: Chen-Fu Wang, Lin-Ya Kung
Abstract:
For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.
Keywords: Temple painting, painting material, conservation, FT-IR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275113 Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities
Authors: Sumathi Poobal, G. Ravindran
Abstract:
Image compression is one of the most important applications Digital Image Processing. Advanced medical imaging requires storage of large quantities of digitized clinical data. Due to the constrained bandwidth and storage capacity, however, a medical image must be compressed before transmission and storage. There are two types of compression methods, lossless and lossy. In Lossless compression method the original image is retrieved without any distortion. In lossy compression method, the reconstructed images contain some distortion. Direct Cosine Transform (DCT) and Fractal Image Compression (FIC) are types of lossy compression methods. This work shows that lossy compression methods can be chosen for medical image compression without significant degradation of the image quality. In this work DCT and Fractal Compression using Partitioned Iterated Function Systems (PIFS) are applied on different modalities of images like CT Scan, Ultrasound, Angiogram, X-ray and mammogram. Approximately 20 images are considered in each modality and the average values of compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the reconstructed image is arrived by the PSNR values. Based on the results it can be concluded that the DCT has higher PSNR values and FIC has higher compression ratio. Hence in medical image compression, DCT can be used wherever picture quality is preferred and FIC is used wherever compression of images for storage and transmission is the priority, without loosing picture quality diagnostically.Keywords: DCT, FIC, PIFS, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825112 Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control
Authors: Rami N. Khushaba, Adel Al-Jumaily
Abstract:
The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.Keywords: Biomedical Signal Processing, Data mining andInformation Extraction, Machine Learning, Rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737111 Alcohols as a Phase Change Material with Excellent Thermal Storage Properties in Buildings
Authors: Dehong Li, Yuchen Chen, Alireza Kaboorani, Denis Rodrigue, Xiaodong (Alice) Wang
Abstract:
Utilizing solar energy for thermal energy storage has emerged as an appealing option for lowering the amount of energy that is consumed by buildings. Due to their high heat storage density, non-corrosive and non-polluting properties, alcohols can be a good alternative to petroleum-derived paraffin phase change materials (PCMs). In this paper, ternary eutectic PCMs with suitable phase change temperatures were designed and prepared using lauryl alcohol (LA), cetyl alcohol (CA), stearyl alcohol (SA) and xylitol (X). The Differential Scanning Calorimetry (DSC) results revealed that the phase change temperatures of LA-CA-SA, LA-CA-X, and LA-SA-X were 20.52 °C, 20.37 °C, and 22.18 °C, respectively. The latent heat of phase change of the ternary eutectic PCMs were all stronger than that of the paraffinic PCMs at roughly the same temperature. The highest latent heat was 195 J/g. It had good thermal energy storage capacity. The preparation mechanism was investigated using Fourier-transform Infrared Spectroscopy (FTIR), and it was found that the ternary eutectic PCMs were only physically mixed among the components. Ternary eutectic PCMs had a simple preparation process, suitable phase change temperature, and high energy storage density. They are suitable for low-temperature architectural packaging applications.
Keywords: Thermal energy storage, buildings, phase change materials, alcohols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 270110 Night-Time Traffic Light Detection Based On SVM with Geometric Moment Features
Authors: Hyun-Koo Kim, Young-Nam Shin, Sa-gong Kuk, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective traffic lights detection method at the night-time. First, candidate blobs of traffic lights are extracted from RGB color image. Input image is represented on the dominant color domain by using color transform proposed by Ruta, then red and green color dominant regions are selected as candidates. After candidate blob selection, we carry out shape filter for noise reduction using information of blobs such as length, area, area of boundary box, etc. A multi-class classifier based on SVM (Support Vector Machine) applies into the candidates. Three kinds of features are used. We use basic features such as blob width, height, center coordinate, area, area of blob. Bright based stochastic features are also used. In particular, geometric based moment-s values between candidate region and adjacent region are proposed and used to improve the detection performance. The proposed system is implemented on Intel Core CPU with 2.80 GHz and 4 GB RAM and tested with the urban and rural road videos. Through the test, we show that the proposed method using PF, BMF, and GMF reaches up to 93 % of detection rate with computation time of in average 15 ms/frame.Keywords: Night-time traffic light detection, multi-class classification, driving assistance system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3885109 AI-Driven Cloud Security: Proactive Defense Against Evolving Cyber Threats
Authors: Ashly Joseph
Abstract:
Cloud computing has become an essential component of enterprises and organizations globally in the current era of digital technology. The cloud has a multitude of advantages, including scalability, flexibility, and cost-effectiveness, rendering it an appealing choice for data storage and processing. The increasing storage of sensitive information in cloud environments has raised significant concerns over the security of such systems. The frequency of cyber threats and attacks specifically aimed at cloud infrastructure has been increasing, presenting substantial dangers to the data, reputation, and financial stability of enterprises. Conventional security methods can become inadequate when confronted with ever intricate and dynamic threats. Artificial Intelligence (AI) technologies possess the capacity to significantly transform cloud security through their ability to promptly identify and thwart assaults, adjust to emerging risks, and offer intelligent perspectives for proactive security actions. The objective of this research study is to investigate the utilization of AI technologies in augmenting the security measures within cloud computing systems. This paper aims to offer significant insights and recommendations for businesses seeking to protect their cloud-based assets by analyzing the present state of cloud security, the capabilities of AI, and the possible advantages and obstacles associated with using AI into cloud security policies.
Keywords: Machine Learning, Natural Learning Processing, Denial-of-Service attacks, Sentiment Analysis, Cloud computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189108 Motion Prediction and Motion Vector Cost Reduction during Fast Block Motion Estimation in MCTF
Authors: Karunakar A K, Manohara Pai M M
Abstract:
In 3D-wavelet video coding framework temporal filtering is done along the trajectory of motion using Motion Compensated Temporal Filtering (MCTF). Hence computationally efficient motion estimation technique is the need of MCTF. In this paper a predictive technique is proposed in order to reduce the computational complexity of the MCTF framework, by exploiting the high correlation among the frames in a Group Of Picture (GOP). The proposed technique applies coarse and fine searches of any fast block based motion estimation, only to the first pair of frames in a GOP. The generated motion vectors are supplied to the next consecutive frames, even to subsequent temporal levels and only fine search is carried out around those predicted motion vectors. Hence coarse search is skipped for all the motion estimation in a GOP except for the first pair of frames. The technique has been tested for different fast block based motion estimation algorithms over different standard test sequences using MC-EZBC, a state-of-the-art scalable video coder. The simulation result reveals substantial reduction (i.e. 20.75% to 38.24%) in the number of search points during motion estimation, without compromising the quality of the reconstructed video compared to non-predictive techniques. Since the motion vectors of all the pair of frames in a GOP except the first pair will have value ±1 around the motion vectors of the previous pair of frames, the number of bits required for motion vectors is also reduced by 50%.Keywords: Motion Compensated Temporal Filtering, predictivemotion estimation, lifted wavelet transform, motion vector
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619107 A Robust Salient Region Extraction Based on Color and Texture Features
Authors: Mingxin Zhang, Zhaogan Lu, Junyi Shen
Abstract:
In current common research reports, salient regions are usually defined as those regions that could present the main meaningful or semantic contents. However, there are no uniform saliency metrics that could describe the saliency of implicit image regions. Most common metrics take those regions as salient regions, which have many abrupt changes or some unpredictable characteristics. But, this metric will fail to detect those salient useful regions with flat textures. In fact, according to human semantic perceptions, color and texture distinctions are the main characteristics that could distinct different regions. Thus, we present a novel saliency metric coupled with color and texture features, and its corresponding salient region extraction methods. In order to evaluate the corresponding saliency values of implicit regions in one image, three main colors and multi-resolution Gabor features are respectively used for color and texture features. For each region, its saliency value is actually to evaluate the total sum of its Euclidean distances for other regions in the color and texture spaces. A special synthesized image and several practical images with main salient regions are used to evaluate the performance of the proposed saliency metric and other several common metrics, i.e., scale saliency, wavelet transform modulus maxima point density, and important index based metrics. Experiment results verified that the proposed saliency metric could achieve more robust performance than those common saliency metrics.Keywords: salient regions, color and texture features, image segmentation, saliency metric
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567106 Sorting Primitives and Genome Rearrangementin Bioinformatics: A Unified Perspective
Authors: Swapnoneel Roy, Minhazur Rahman, Ashok Kumar Thakur
Abstract:
Bioinformatics and computational biology involve the use of techniques including applied mathematics, informatics, statistics, computer science, artificial intelligence, chemistry, and biochemistry to solve biological problems usually on the molecular level. Research in computational biology often overlaps with systems biology. Major research efforts in the field include sequence alignment, gene finding, genome assembly, protein structure alignment, protein structure prediction, prediction of gene expression and proteinprotein interactions, and the modeling of evolution. Various global rearrangements of permutations, such as reversals and transpositions,have recently become of interest because of their applications in computational molecular biology. A reversal is an operation that reverses the order of a substring of a permutation. A transposition is an operation that swaps two adjacent substrings of a permutation. The problem of determining the smallest number of reversals required to transform a given permutation into the identity permutation is called sorting by reversals. Similar problems can be defined for transpositions and other global rearrangements. In this work we perform a study about some genome rearrangement primitives. We show how a genome is modelled by a permutation, introduce some of the existing primitives and the lower and upper bounds on them. We then provide a comparison of the introduced primitives.Keywords: Sorting Primitives, Genome Rearrangements, Transpositions, Block Interchanges, Strip Exchanges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161105 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading
Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera
Abstract:
For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.
Keywords: Blast phenomenon, experimental methods, material models, numerical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136104 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the CPU, RAM, and ROM memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.
Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351103 Buckling Optimization of Radially-Graded, Thin-Walled, Long Cylinders under External Pressure
Authors: Karam Y. Maalawi
Abstract:
This paper presents a generalized formulation for the problem of buckling optimization of anisotropic, radially graded, thin-walled, long cylinders subject to external hydrostatic pressure. The main structure to be analyzed is built of multi-angle fibrous laminated composite lay-ups having different volume fractions of the constituent materials within the individual plies. This yield to a piecewise grading of the material in the radial direction; that is the physical and mechanical properties of the composite material are allowed to vary radially. The objective function is measured by maximizing the critical buckling pressure while preserving the total structural mass at a constant value equals to that of a baseline reference design. In the selection of the significant optimization variables, the fiber volume fractions adjoin the standard design variables including fiber orientation angles and ply thicknesses. The mathematical formulation employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately as well as the inclusion of the coupling stiffness terms is presented. The proposed model deals with dimensionless quantities in order to be valid for thin shells having arbitrary thickness-to-radius ratios. The critical buckling pressure level curves augmented with the mass equality constraint are given for several types of cylinders showing the functional dependence of the constrained objective function on the selected design variables. It was shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.Keywords: Buckling instability, structural optimization, functionally graded material, laminated cylindrical shells, externalhydrostatic pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359102 The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite
Authors: S. Sharma, U. Batra, S. Kapoor, A. Dua
Abstract:
In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the assynthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p<0.0001, two way ANOVA), however, these were independent of TEA addition (p>0.15, two way ANOVA). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p<0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance.Keywords: Capping agent, hydroxyapatite, regression analysis, sol-gel, 2- sample t-test, two-way ANOVA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619101 Load Transfer Mechanism Based Unified Strut-and-Tie Modeling for Design of Concrete Beams
Authors: Ahmed, M., Yasser A., Mahmoud H., Ahmed, A., Abdulla M. S., Nazar, S.
Abstract:
Strut-and-Tie Models (STM) for the design of concrete beams, comprising of struts, ties, nodes as the basic tools, is conceptually simple, but its realization for complex concrete structure is not straightforward and depends on flow of internal forces in the structure. STM technique has won wide acceptance for deep member and shear design. STM technique is a unified approach that considers all load effects (bending, axial, shear, and torsion) simultaneously, not just applicable to shear loading only. The present study is to portray Strut-and-Tie Modeling based on Load-Transfer-Mechanisms as a unified method to analyze, design and detailing for deep and slender concrete beams. Three shear span- effective depth ratio (a/ d) are recommended for the modeling of STM elements corresponding to dominant load paths. The study also discusses the research work conduct on effective stress of concrete, tie end anchorage, and transverse reinforcement demand under different load transfer mechanism. It is also highlighted that to make the STM versatile tool for design of beams applicable to all shear spans, the effective stress of concrete and, transverse reinforcement demand, inclined angle of strut, and anchorage requirements of tie bars is required to be correlated with respect to load transfer mechanism. The country code provisions are to be modified and updated to apply for generalized design of concrete deep and slender member using load transfer mechanism based STM technique. Examples available in literature are reanalyzed with refined STM based on load transfer mechanisms and results are compared. It is concluded from the results that proposed approach will require true reinforcement demand depending on dominant force transfer action in concrete beam.
Keywords: Deep member, Load transfer mechanism, Strut-and-Tie Model, Strut, Truss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5986