Search results for: differential evolution algorithm.
3547 Application of Soft Computing Methods for Economic Dispatch in Power Systems
Authors: Jagabondhu Hazra, Avinash Sinha
Abstract:
Economic dispatch problem is an optimization problem where objective function is highly non linear, non-convex, non-differentiable and may have multiple local minima. Therefore, classical optimization methods may not converge or get trapped to any local minima. This paper presents a comparative study of four different evolutionary algorithms i.e. genetic algorithm, bacteria foraging optimization, ant colony optimization and particle swarm optimization for solving the economic dispatch problem. All the methods are tested on IEEE 30 bus test system. Simulation results are presented to show the comparative performance of these methods.
Keywords: Ant colony optimization, bacteria foraging optimization, economic dispatch, evolutionary algorithm, genetic algorithm, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24883546 A Multi-Level GA Search with Application to the Resource-Constrained Re-Entrant Flow Shop Scheduling Problem
Authors: Danping Lin, C.K.M. Lee
Abstract:
Re-entrant scheduling is an important search problem with many constraints in the flow shop. In the literature, a number of approaches have been investigated from exact methods to meta-heuristics. This paper presents a genetic algorithm that encodes the problem as multi-level chromosomes to reflect the dependent relationship of the re-entrant possibility and resource consumption. The novel encoding way conserves the intact information of the data and fastens the convergence to the near optimal solutions. To test the effectiveness of the method, it has been applied to the resource-constrained re-entrant flow shop scheduling problem. Computational results show that the proposed GA performs better than the simulated annealing algorithm in the measure of the makespanKeywords: Resource-constrained, re-entrant, genetic algorithm (GA), multi-level encoding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17983545 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem
Authors: W. Wongthatsanekorn, N. Matheekrieangkrai
Abstract:
This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.
Keywords: Bee Colony Optimization, Ready Mixed Concrete Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29173544 Accelerating GLA with an M-Tree
Authors: Olli Luoma, Johannes Tuikkala, Olli Nevalainen
Abstract:
In this paper, we propose a novel improvement for the generalized Lloyd Algorithm (GLA). Our algorithm makes use of an M-tree index built on the codebook which makes it possible to reduce the number of distance computations when the nearest code words are searched. Our method does not impose the use of any specific distance function, but works with any metric distance, making it more general than many other fast GLA variants. Finally, we present the positive results of our performance experiments.Keywords: Clustering, GLA, M-Tree, Vector Quantization .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15323543 Comparing the Performance of the Particle Swarm Optimization and the Genetic Algorithm on the Geometry Design of Longitudinal Fin
Authors: Hassan Azarkish, Said Farahat, S.Masoud H. Sarvari
Abstract:
In the present work, the performance of the particle swarm optimization and the genetic algorithm compared as a typical geometry design problem. The design maximizes the heat transfer rate from a given fin volume. The analysis presumes that a linear temperature distribution along the fin. The fin profile generated using the B-spline curves and controlled by the change of control point coordinates. An inverse method applied to find the appropriate fin geometry yield the linear temperature distribution along the fin corresponds to optimum design. The numbers of the populations, the count of iterations and time to convergence measure efficiency. Results show that the particle swarm optimization is most efficient for geometry optimization.Keywords: Genetic Algorithm, Geometry Optimization, longitudinal Fin, Particle Swarm Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16443542 Liver Tumor Detection by Classification through FD Enhancement of CT Image
Authors: N. Ghatwary, A. Ahmed, H. Jalab
Abstract:
In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.Keywords: Fractional differential (FD), Computed Tomography (CT), fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16883541 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques
Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan
Abstract:
Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.
Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21793540 Radiation Effect on Unsteady MHD Flow over a Stretching Surface
Authors: Zanariah Mohd Yusof, Siti Khuzaimah Soid, Ahmad Sukri Abd Aziz, Seripah Awang Kechil
Abstract:
Unsteady magnetohydrodynamics (MHD) boundary layer flow and heat transfer over a continuously stretching surface in the presence of radiation is examined. By similarity transformation, the governing partial differential equations are transformed to a set of ordinary differential equations. Numerical solutions are obtained by employing the Runge-Kutta-Fehlberg method scheme with shooting technique in Maple software environment. The effects of unsteadiness parameter, radiation parameter, magnetic parameter and Prandtl number on the heat transfer characteristics are obtained and discussed. It is found that the heat transfer rate at the surface increases as the Prandtl number and unsteadiness parameter increase but decreases with magnetic and radiation parameter.Keywords: Heat transfer, magnetohydrodynamics, radiation, unsteadiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26793539 On the Efficient Implementation of a Serial and Parallel Decomposition Algorithm for Fast Support Vector Machine Training Including a Multi-Parameter Kernel
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector machine learning for large-scale data mining tasks. Based on a decomposition algorithm for support vector machine training that can be run in serial as well as shared memory parallel mode we introduce a transformation of the training data that allows for the usage of an expensive generalized kernel without additional costs. We present experiments for the Gaussian kernel, but usage of other kernel functions is possible, too. In order to further speed up the decomposition algorithm we analyze the critical problem of working set selection for large training data sets. In addition, we analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our tests and conclusions led to several modifications of the algorithm and the improvement of overall support vector machine learning performance. Our method allows for using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machine Training, Multi-ParameterKernels, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14503538 NSGA Based Optimal Volt / Var Control in Distribution System with Dispersed Generation
Authors: P. N. Hrisheekesha, Jaydev Sharma
Abstract:
In this paper, a method based on Non-Dominated Sorting Genetic Algorithm (NSGA) has been presented for the Volt / Var control in power distribution systems with dispersed generation (DG). Genetic algorithm approach is used due to its broad applicability, ease of use and high accuracy. The proposed method is better suited for volt/var control problems. A multi-objective optimization problem has been formulated for the volt/var control of the distribution system. The non-dominated sorting genetic algorithm based method proposed in this paper, alleviates the problem of tuning the weighting factors required in solving the multi-objective volt/var control optimization problems. Based on the simulation studies carried out on the distribution system, the proposed scheme has been found to be simple, accurate and easy to apply to solve the multiobjective volt/var control optimization problem of the distribution system with dispersed generation.Keywords: Dispersed Generation, Distribution System, Non-Dominated Sorting Genetic Algorithm, Voltage / Reactive powercontrol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16343537 Study of the Effect of Inclusion of TiO2 in Active Flux on Submerged Arc Welding of Low Carbon Mild Steel Plate and Parametric Optimization of the Process by Using DEA Based Bat Algorithm
Authors: Sheetal Kumar Parwar, J. Deb Barma, A. Majumder
Abstract:
Submerged arc welding is a very complex process. It is a very efficient and high performance welding process. In this present study an attempt have been done to reduce the welding distortion by increased amount of oxide flux through TiO2 in submerged arc welding process. Care has been taken to avoid the excessiveness of the adding agent for attainment of significant results. Data Envelopment Analysis (DEA) based BAT algorithm is used for the parametric optimization purpose in which DEA is used to convert multi response parameters into a single response parameter. The present study also helps to know the effectiveness of the addition of TiO2 in active flux during submerged arc welding process.Keywords: BAT algorithm, design of experiment, optimization, submerged arc welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20143536 Automatic Removal of Ocular Artifacts using JADE Algorithm and Neural Network
Authors: V Krishnaveni, S Jayaraman, A Gunasekaran, K Ramadoss
Abstract:
The ElectroEncephaloGram (EEG) is useful for clinical diagnosis and biomedical research. EEG signals often contain strong ElectroOculoGram (EOG) artifacts produced by eye movements and eye blinks especially in EEG recorded from frontal channels. These artifacts obscure the underlying brain activity, making its visual or automated inspection difficult. The goal of ocular artifact removal is to remove ocular artifacts from the recorded EEG, leaving the underlying background signals due to brain activity. In recent times, Independent Component Analysis (ICA) algorithms have demonstrated superior potential in obtaining the least dependent source components. In this paper, the independent components are obtained by using the JADE algorithm (best separating algorithm) and are classified into either artifact component or neural component. Neural Network is used for the classification of the obtained independent components. Neural Network requires input features that exactly represent the true character of the input signals so that the neural network could classify the signals based on those key characters that differentiate between various signals. In this work, Auto Regressive (AR) coefficients are used as the input features for classification. Two neural network approaches are used to learn classification rules from EEG data. First, a Polynomial Neural Network (PNN) trained by GMDH (Group Method of Data Handling) algorithm is used and secondly, feed-forward neural network classifier trained by a standard back-propagation algorithm is used for classification and the results show that JADE-FNN performs better than JADEPNN.Keywords: Auto Regressive (AR) Coefficients, Feed Forward Neural Network (FNN), Joint Approximation Diagonalisation of Eigen matrices (JADE) Algorithm, Polynomial Neural Network (PNN).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18933535 On a Way for Constructing Numerical Methods on the Joint of Multistep and Hybrid Methods
Authors: G.Mehdiyeva, M.Imanova, V.Ibrahimov
Abstract:
Taking into account that many problems of natural sciences and engineering are reduced to solving initial-value problem for ordinary differential equations, beginning from Newton, the scientists investigate approximate solution of ordinary differential equations. There are papers of different authors devoted to the solution of initial value problem for ODE. The Euler-s known method that was developed under the guidance of the famous scientists Adams, Runge and Kutta is the most popular one among these methods. Recently the scientists began to construct the methods preserving some properties of Adams and Runge-Kutta methods and called them hybrid methods. The constructions of such methods are investigated from the middle of the XX century. Here we investigate one generalization of multistep and hybrid methods and on their base we construct specific methods of accuracy order p = 5 and p = 6 for k = 1 ( k is the order of the difference method).Keywords: Multistep and hybrid methods, initial value problem, degree and stability of hybrid methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16033534 Robust Statistics Based Algorithm to Remove Salt and Pepper Noise in Images
Authors: V.R.Vijaykumar, P.T.Vanathi, P.Kanagasabapathy, D.Ebenezer
Abstract:
In this paper, a robust statistics based filter to remove salt and pepper noise in digital images is presented. The function of the algorithm is to detect the corrupted pixels first since the impulse noise only affect certain pixels in the image and the remaining pixels are uncorrupted. The corrupted pixels are replaced by an estimated value using the proposed robust statistics based filter. The proposed method perform well in removing low to medium density impulse noise with detail preservation upto a noise density of 70% compared to standard median filter, weighted median filter, recursive weighted median filter, progressive switching median filter, signal dependent rank ordered mean filter, adaptive median filter and recently proposed decision based algorithm. The visual and quantitative results show the proposed algorithm outperforms in restoring the original image with superior preservation of edges and better suppression of impulse noise
Keywords: Image denoising, Nonlinear filter, Robust Statistics, and Salt and Pepper Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22103533 The Negative Effect of Traditional Loops Style on the Performance of Algorithms
Authors: Mahmoud Moh'd Mhashi
Abstract:
A new algorithm called Character-Comparison to Character-Access (CCCA) is developed to test the effect of both: 1) converting character-comparison and number-comparison into character-access and 2) the starting point of checking on the performance of the checking operation in string searching. An experiment is performed using both English text and DNA text with different sizes. The results are compared with five algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and Cycle. With the CCCA algorithm, the results suggest that the evaluation criteria of the average number of total comparisons are improved up to 35%. Furthermore, the results suggest that the clock time required by the other algorithms is improved in range from 22.13% to 42.33% by the new CCCA algorithm.
Keywords: Pattern matching, string searching, charactercomparison, character-access, text type, and checking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12743532 Microstructure and Texture Evolution of Cryo Rolled and Annealed Ductile TaNbHfZrTi Refractory High Entropy Alloy
Authors: M. Veeresham
Abstract:
The microstructure and texture evolution of cryo rolled and annealed ductile TaHfNbZrTi refractory high entropy alloy was investigated. To obtain that, the alloy is severely cryo rolled and subsequently annealed for the recrystallization process. The cryo rolled – 90% shows the presence of very fine grains and microstructural heterogeneity. The cryo rolled samples are annealed at a temperature ranging from 800°C to 1400°C, the partial recrystallization is observed at 800°C annealed condition, and at higher annealing temperatures the complete recrystallization process is noticed. The development of ND fiber texture is observed after the annealing.
Keywords: refractory high entropy alloy, cryo-rolling, annealing, microstructure, texture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5153531 Hi-Fi Traffic Clearance Technique for Life Saving Vehicles using Differential GPS System
Authors: N. Yuvaraj, V. B. Prakash, D. Venkatraj
Abstract:
This paper may be considered as combination of both pervasive computing and Differential GPS (global positioning satellite) which relates to control automatic traffic signals in such a way as to pre-empt normal signal operation and permit lifesaving vehicles. Before knowing the arrival of the lifesaving vehicles from the signal there is a chance of clearing the traffic. Traffic signal preemption system includes a vehicle equipped with onboard computer system capable of capturing diagnostic information and estimated location of the lifesaving vehicle using the information provided by GPS receiver connected to the onboard computer system and transmitting the information-s using a wireless transmitter via a wireless network. The fleet management system connected to a wireless receiver is capable of receiving the information transmitted by the lifesaving vehicle .A computer is also located at the intersection uses corrected vehicle position, speed & direction measurements, in conjunction with previously recorded data defining approach routes to the intersection, to determine the optimum time to switch a traffic light controller to preemption mode so that lifesaving vehicles can pass safely. In case when the ambulance need to take a “U" turn in a heavy traffic area we suggest a solution. Now we are going to make use of computerized median which uses LINKED BLOCKS (removable) to solve the above problem.Keywords: Ubiquitous computing, differential GPS, fleet management system, wireless transmitter and receiver computerized median i.e. linked blocks (removable).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20003530 Ride Control of Passenger Cars with Semi-active Suspension System Using a Linear Quadratic Regulator and Hybrid Optimization Algorithm
Authors: Ali Fellah Jahromi, Wen Fang Xie, Rama B. Bhat
Abstract:
A semi-active control strategy for suspension systems of passenger cars is presented employing Magnetorheological (MR) dampers. The vehicle is modeled with seven DOFs including the, roll pitch and bounce of car body, and the vertical motion of the four tires. In order to design an optimal controller based on the actuator constraints, a Linear-Quadratic Regulator (LQR) is designed. The design procedure of the LQR consists of selecting two weighting matrices to minimize the energy of the control system. This paper presents a hybrid optimization procedure which is a combination of gradient-based and evolutionary algorithms to choose the weighting matrices with regards to the actuator constraint. The optimization algorithm is defined based on maximum comfort and actuator constraints. It is noted that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car, thus, providing a comfortable ride.Keywords: Full car model, Linear Quadratic Regulator, Sequential Quadratic Programming, Genetic Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29513529 A Comparative Analysis of Asymmetric Encryption Schemes on Android Messaging Service
Authors: Mabrouka Algherinai, Fatma Karkouri
Abstract:
Today, Short Message Service (SMS) is an important means of communication. SMS is not only used in informal environment for communication and transaction, but it is also used in formal environments such as institutions, organizations, companies, and business world as a tool for communication and transactions. Therefore, there is a need to secure the information that is being transmitted through this medium to ensure security of information both in transit and at rest. But, encryption has been identified as a means to provide security to SMS messages in transit and at rest. Several past researches have proposed and developed several encryption algorithms for SMS and Information Security. This research aims at comparing the performance of common Asymmetric encryption algorithms on SMS security. The research employs the use of three algorithms, namely RSA, McEliece, and RABIN. Several experiments were performed on SMS of various sizes on android mobile device. The experimental results show that each of the three techniques has different key generation, encryption, and decryption times. The efficiency of an algorithm is determined by the time that it takes for encryption, decryption, and key generation. The best algorithm can be chosen based on the least time required for encryption. The obtained results show the least time when McEliece size 4096 is used. RABIN size 4096 gives most time for encryption and so it is the least effective algorithm when considering encryption. Also, the research shows that McEliece size 2048 has the least time for key generation, and hence, it is the best algorithm as relating to key generation. The result of the algorithms also shows that RSA size 1024 is the most preferable algorithm in terms of decryption as it gives the least time for decryption.
Keywords: SMS, RSA, McEliece, RABIN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7013528 Tonal Pitch Structure as a Tool of Social Consolidation
Authors: Piotr Podlipniak
Abstract:
This paper proposes that in the course of evolution pitch structure became a human specific tool of communication the function of which is to induce emotional states such as uncertainty and cohesion. By the means of eliciting these emotions during collective music performance people are able to unconsciously give cues concerning social acceptance. This is probably one of the reasons why in all cultures people collectively perform tonal music. It is also suggested that tonal pitch structure had been invented socially before it became an evolutionary innovation of hominines. It means that a predisposition to tonally organize pitches evolved by the means of ‘Baldwin effect’ – a process in which natural selection transforms the learned response of an organism into the instinctive response. In the proposed, hypothetical evolutionary scenario of the emergence of tonal pitch structure social forces such as a need for closer cooperation play the crucial role.Keywords: Emotion, evolution, tonality, social consolidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14143527 Effect of Magnetic Field on Mixed Convection Boundary Layer Flow over an Exponentially Shrinking Vertical Sheet with Suction
Authors: S. S. P. M. Isa, N. M. Arifin, R. Nazar, N. Bachok, F. M. Ali, I. Pop
Abstract:
A theoretical study has been presented to describe the boundary layer flow and heat transfer on an exponentially shrinking sheet with a variable wall temperature and suction, in the presence of magnetic field. The governing nonlinear partial differential equations are converted into ordinary differential equations by similarity transformation, which are then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and tables for several sets of values of the parameters. The effects of the governing parameters on the flow and heat transfer characteristics are thoroughly examined.
Keywords: Exponentially shrinking sheet, magnetic field, mixed convection, suction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24833526 A Special Algorithm to Approximate the Square Root of Positive Integer
Authors: Hsian Ming Goo
Abstract:
The paper concerns a special approximate algorithm of the square root of the specific positive integer, which is built by the use of the property of positive integer solution of the Pell’s equation, together with using some elementary theorems of matrices, and then takes it to compare with general used the Newton’s method and give a practical numerical example and error analysis; it is unexpected to find its special property: the significant figure of the approximation value of the square root of positive integer will increase one digit by one. It is well useful in some occasions.
Keywords: Special approximate algorithm, square root, Pell’s equation, Newton’s method, error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28113525 Content-Based Color Image Retrieval Based On 2-D Histogram and Statistical Moments
Authors: Khalid Elasnaoui, Brahim Aksasse, Mohammed Ouanan
Abstract:
In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.Keywords: 2-D histogram, Statistical moments, Indexing, Similarity distance, Histograms intersection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19383524 A Novel Modified Adaptive Fuzzy Inference Engine and Its Application to Pattern Classification
Authors: J. Hossen, A. Rahman, K. Samsudin, F. Rokhani, S. Sayeed, R. Hasan
Abstract:
The Neuro-Fuzzy hybridization scheme has become of research interest in pattern classification over the past decade. The present paper proposes a novel Modified Adaptive Fuzzy Inference Engine (MAFIE) for pattern classification. A modified Apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input output data sets. A TSK type fuzzy inference system is constructed by the automatic generation of membership functions and rules by the fuzzy c-means clustering and Apriori algorithm technique, respectively. The generated adaptive fuzzy inference engine is adjusted by the least-squares fit and a conjugate gradient descent algorithm towards better performance with a minimal set of rules. The proposed MAFIE is able to reduce the number of rules which increases exponentially when more input variables are involved. The performance of the proposed MAFIE is compared with other existing applications of pattern classification schemes using Fisher-s Iris and Wisconsin breast cancer data sets and shown to be very competitive.Keywords: Apriori algorithm, Fuzzy C-means, MAFIE, TSK
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19383523 Modeling and Analysis of Concrete Slump Using Hybrid Artificial Neural Networks
Authors: Vinay Chandwani, Vinay Agrawal, Ravindra Nagar
Abstract:
Artificial Neural Networks (ANN) trained using backpropagation (BP) algorithm are commonly used for modeling material behavior associated with non-linear, complex or unknown interactions among the material constituents. Despite multidisciplinary applications of back-propagation neural networks (BPNN), the BP algorithm possesses the inherent drawback of getting trapped in local minima and slowly converging to a global optimum. The paper present a hybrid artificial neural networks and genetic algorithm approach for modeling slump of ready mix concrete based on its design mix constituents. Genetic algorithms (GA) global search is employed for evolving the initial weights and biases for training of neural networks, which are further fine tuned using the BP algorithm. The study showed that, hybrid ANN-GA model provided consistent predictions in comparison to commonly used BPNN model. In comparison to BPNN model, the hybrid ANNGA model was able to reach the desired performance goal quickly. Apart from the modeling slump of ready mix concrete, the synaptic weights of neural networks were harnessed for analyzing the relative importance of concrete design mix constituents on the slump value. The sand and water constituents of the concrete design mix were found to exhibit maximum importance on the concrete slump value.
Keywords: Artificial neural networks, Genetic algorithms, Back-propagation algorithm, Ready Mix Concrete, Slump value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29133522 Automating the Testing of Object Behaviour: A Statechart-Driven Approach
Authors: Dong He Nam, Eric C. Mousset, David C. Levy
Abstract:
The evolution of current modeling specifications gives rise to the problem of generating automated test cases from a variety of application tools. Past endeavours on behavioural testing of UML statecharts have not systematically leveraged the potential of existing graph theory for testing of objects. Therefore there exists a need for a simple, tool-independent, and effective method for automatic test generation. An architecture, codenamed ACUTE-J (Automated stateChart Unit Testing Engine for Java), for automating the unit test generation process is presented. A sequential approach for converting UML statechart diagrams to JUnit test classes is described, with the application of existing graph theory. Research byproducts such as a universal XML Schema and API for statechart-driven testing are also proposed. The result from a Java implementation of ACUTE-J is discussed in brief. The Chinese Postman algorithm is utilised as an illustration for a run-through of the ACUTE-J architecture.
Keywords: Automated testing, model based testing, statechart testing, UML, unit testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19843521 Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux
Authors: Phool Singh, Ashok Jangid, N.S. Tomer, Deepa Sinha
Abstract:
The aim of this paper is to study the oblique stagnation point flow on vertical plate with uniform surface heat flux in presence of magnetic field. Using Stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained using Runge-Kutta Fehlberg method with the help of shooting technique. In the present work the effects of striking angle, magnetic field parameter, Grashoff number, the Prandtl number on velocity and heat transfer characteristics have been discussed. Effect of above mentioned parameter on the position of stagnation point are also studied.Keywords: Heat flux, Oblique stagnation point, Mixedconvection, Magneto hydrodynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19223520 A New Knapsack Public-Key Cryptosystem Based on Permutation Combination Algorithm
Authors: Min-Shiang Hwang, Cheng-Chi Lee, Shiang-Feng Tzeng
Abstract:
A new secure knapsack cryptosystem based on the Merkle-Hellman public key cryptosystem will be proposed in this paper. Although it is common sense that when the density is low, the knapsack cryptosystem turns vulnerable to the low-density attack. The density d of a secure knapsack cryptosystem must be larger than 0.9408 to avoid low-density attack. In this paper, we investigate a new Permutation Combination Algorithm. By exploiting this algorithm, we shall propose a novel knapsack public-key cryptosystem. Our proposed scheme can enjoy a high density to avoid the low-density attack. The density d can also exceed 0.9408 to avoid the low-density attack.Keywords: Public key, Knapsack problem, Knapsack cryptosystem, low-density attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19633519 Secure Hashing Algorithm and Advance Encryption Algorithm in Cloud Computing
Authors: Jaimin Patel
Abstract:
Cloud computing is one of the most sharp and important movement in various computing technologies. It provides flexibility to users, cost effectiveness, location independence, easy maintenance, enables multitenancy, drastic performance improvements, and increased productivity. On the other hand, there are also major issues like security. Being a common server, security for a cloud is a major issue; it is important to provide security to protect user’s private data, and it is especially important in e-commerce and social networks. In this paper, encryption algorithms such as Advanced Encryption Standard algorithms, their vulnerabilities, risk of attacks, optimal time and complexity management and comparison with other algorithms based on software implementation is proposed. Encryption techniques to improve the performance of AES algorithms and to reduce risk management are given. Secure Hash Algorithms, their vulnerabilities, software implementations, risk of attacks and comparison with other hashing algorithms as well as the advantages and disadvantages between hashing techniques and encryption are given.
Keywords: Cloud computing, encryption algorithm, secure hashing algorithm, brute force attack, birthday attack, plaintext attack, man-in-the-middle attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17563518 Modeling and Design of MPPT Controller Using Stepped P&O Algorithm in Solar Photovoltaic System
Authors: R. Prakash, B. Meenakshipriya, R. Kumaravelan
Abstract:
This paper presents modeling and simulation of Grid Connected Photovoltaic (PV) system by using improved mathematical model. The model is used to study different parameter variations and effects on the PV array including operating temperature and solar irradiation level. In this paper stepped P&O algorithm is proposed for MPPT control. This algorithm will identify the suitable duty ratio in which the DC-DC converter should be operated to maximize the power output. Photo voltaic array with proposed stepped P&O-MPPT controller can operate in the maximum power point for the whole range of solar data (irradiance and temperature).
Keywords: Photovoltaic (PV), Maximum Power Point Tracking (MPPT), Boost converter, Stepped Perturb & Observe method (Stepped P&O).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4019