
Abstract—The evolution of current modeling specifications

gives rise to the problem of generating automated test cases from a

variety of application tools. Past endeavours on behavioural testing

of UML statecharts have not systematically leveraged the potential of

existing graph theory for testing of objects. Therefore there exists a

need for a simple, tool-independent, and effective method for

automatic test generation.

An architecture, codenamed ACUTE-J (Automated stateChart

Unit Testing Engine for Java), for automating the unit test generation

process is presented. A sequential approach for converting UML

statechart diagrams to JUnit test classes is described, with the

application of existing graph theory. Research byproducts such as a

universal XML Schema and API for statechart-driven testing are also

proposed.

The result from a Java implementation of ACUTE-J is discussed

in brief. The Chinese Postman algorithm is utilised as an illustration

for a run-through of the ACUTE-J architecture.

Keywords—Automated testing, model based testing, statechart

testing, UML, unit testing.

I. INTRODUCTION

ESTING is the process of executing a program or a

system for the purpose of improving the quality of the

software [19]. Software testing is an integral and a necessary

part of the software development life cycle, but it is also the

most costly and time consuming task [18]. Therefore there is a

need to form more intelligent tests and automate the procedure

in order to improve the quality of the software being

delivered.

Model Based Testing (MBT) is a methodology used for

generating test cases based on the behavioural model of the

system. In the past couple of decades Unified Modeling

Language (UML) has become the de facto industry standard

for modeling software systems as such [8].

Research in testing UML models has been around since the

late 1990’s, especially work involving generation of tests from

class and statechart diagrams [10]. And work involving test

generation and verification for Finite State Machine (FSM)

Manuscript received October 25, 2005.

D. Nam is a postgraduate student at the School of Electrical and

Information Engineering, University of Sydney, NSW 2006 Australia (phone:

+61 2 9351 2337; fax: +61 2 9351 3847; e-mail: dnam@ee.usyd.edu.au).

E. C. Mousset is with the School of Electrical and Information

Engineering, University of Sydney, NSW 2006 Australia (e-mail:

mousset@ee.usyd.edu.au).

D. C. Levy is with the School of Electrical and Information Engineering,

University of Sydney, NSW 2006 Australia (e-mail: dlevy@ee.usyd.edu.au).

date back even further.

Previous approaches include the use of UML for automatic

test generation in which the model is compiled into an

Intermediate Format (IF) [3]. Many approaches in statechart

unit tests generation have been tool-specific [11, 14],

addressing the problem using only vendor specific UML tools

or with the use of independently developed applications.

Many of the past work do not address the problem of

testing statecharts with multiple substate levels [12, 13].

Others have solved the problem by flattening the statechart to

resemble FSM and applying common FSM testing techniques

[10, 14]. But a common shortcoming in these approaches

seems to neglect the range of existing traversal algorithms and

their potential in achieving test objectives.

The objective of this research is to develop a tool-

independent approach for automatic generation of unit tests

for UML statecharts. The application of the approach to the

JUnit framework, as well as the use of graph theory [4], is

presented in this paper as an illustration of the concept.

The main dilemma in creating JUnit tests for imple-

mentation code is that there is no one standard for mapping

statechart diagrams to Java code. A variety of known

techniques are discussed in [2].

Most widely adopted approach is the use of nested switch

statements. Scalability has been pointed out as a potential

issue, especially in terms of readability and maintainability

[7].

Another approach is to transform the statechart into an

intermediate diagram called Testing Flow Graph, then

generating test cases based on the test criteria [15].

Other approaches include the use of design patterns such as

the State pattern [6], and State Table pattern [7] to describe

statecharts. But since these patterns have primarily focused on

encapsulating only the behaviour of the context state object, it

is problematic when dealing with behaviour specifics and

substates. Additionally, since design patterns are generic

models for solving recurring problems, it does not describe in

detail how to perform the direct mapping from models to Java

code [9].

In recent studies, a new method has been devised for

writing Java code based on UML statechart. The approach

extends on the State design pattern and is based on object

composition and delegation in order to solve the substate

problem [1].

This paper assumes that the implementation of the

statechart follows closely to the mapping technique described

Automating the Testing of Object Behaviour:

A Statechart-Driven Approach

Dong He Nam, Eric C. Mousset, and David C. Levy

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3700International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

14
72

.p
df

in [1]. In grey-box testing, the test procedure has some

knowledge of the implementation specifics of the system

under test. This is necessary in the absence of structural

information. And JUnit tests can then be generated for the

appropriate class and methods based solely on the behavioural

diagram such as statecharts.

II. STATE-OF-THE-ART: UML MODELING TOOLS

There are numerous commercial and open-source UML

modeling tools available on the market today. They vary in

functionality and price, as well as their support for different

versions of UML and XMI. Following paragraphs give a brief

account of two of the tools investigated.

IBM Rational Rose™ Enterprise Edition is one of the most

widely used UML modeling tools in the industry and

academia. Version 2003.06.13 supports UML 1.4 and has

code generation capability in many different languages

including Java. Rose Enterprise™ does not directly support

XMI exporting, but an add-in developed by Unisys allows

models to be exported in XMI 1.1.

Gentleware’s Poseidon for UML™ Community Edition is a

freely available tool for non-commercial use. It supports 9 of

UML diagrams including the statechart diagram. Poseidon for

UML™ is compliant with the UML 2.0 Diagram Interchange

Standard and has limited Java code generation capability

based on Class diagrams. The most useful feature of this tool

however, is its support for statechart diagram subset of UML

2.0. And XMI 1.2 is used as the standard saving format for the

models.

UML 2.0 is the latest and the current adopted specification.

UML 2.0 Superstructure, which was completed in October

2004, is one of four parts in UML 2.0 specification. It

describes thirteen structure, behaviour, and interaction

diagrams that comprise UML. Although UML 2.0 is gradually

replacing its predecessor UML 1.5, there is still a market for

the previous version as vendors and open-source community

battle to make the complete transition.

This last remark also applies to XMI 2.0 and is a key

motivation behind our research and its materialisation as a

testing tool. More specifically, a key design objective for the

ACUTE-J architecture is to support a variety of versions of

UML and XMI on a tool-independent basis.

III. SYSTEM ARCHITECTURE

ACUTE-J applies an MBT approach for automatically

generating JUnit tests from UML statecharts. The automated

process of ACUTE-J runs parallel to the development and

implementation of the system. The architecture as depicted in

Fig. 1 comprises of four main components: Semantic

Formatter, Translator API, Test Generator, and Test Writer.

The test generation process begins with the modeling of the

statechart using a UML tool which supports XMI exportation

such as Rational Rose™. Once the statechart diagram has

been generated and exported to XMI, it is passed onto

Semantic Formatter. The key responsibility of Semantic

Formatter is to produce an output XML file which contains

only the statechart specific metadata. And with the use of

Translator API, the XML document is parsed and stored as

memory objects, ready for application of traversal algorithms.

There are many traversal algorithms which exist in graph

theory [4, 5] that can be applied to a statechart testing. This

paper looks at the Chinese Postman algorithm in detail and its

application in testing statecharts with multiple substate levels.

The penultimate stage of the statechart unit testing is carried

out by Test Generator. It is responsible for generating test data

which is then exported as an XML file for Test Writer to use

in creating the final JUnit test class files.

.

A. Semantic Formatter

The Semantic Formatter plays two main roles. First is to

achieve tool-independency and second, to achieve separation

of concern.

The primary role of the Semantic Formatter is to move from

a UML-centric representation, namely XMI, to a more

universal, behaviour-oriented representation. The Semantic

Formatter as the name suggests is responsible in catering for

the varying differences of UML tools available to the

modelers, and the many flavours/versions of XMI that are

supported by these tools. There is a need for a continual

support of older and obsolete versions until the most recent

XMI 2.x is fully implemented by all UML tools.

A typical XMI file exported using a UML tool shows

statechart information nested amongst large amount of

information regarding other UML diagrams and graphical

formatting specifics. The secondary functionality of the

Semantic Formatter is to filter out this irrelevant information

and produce a workable XML file containing only the

necessary information regarding the states, transitions, guards,

and signals.

A behaviour-oriented representation, in the form of an

XML Schema and as a target space for the Semantic Formatter

is currently under study.

Fig. 1 ACUTE-J Architecture

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3701International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

14
72

.p
df

B. Translator Object Model and API

Another by-product of our research is a behaviour-oriented

object model and API for the in-memory representation of the

statechart.

Many of the previous approaches [14, 17] make use of

XSLT alone for producing test cases, but when complex graph

algorithms requiring graph Eulerization and traversal path

determination; it makes sense to provide an API to support

these tasks. The functional role of the Translator is to package

the statechart information in a way allowing efficient

application of searching and traversal through the statecharts.

The Translator API is also meant to be versatile, allowing

users to define new algorithms, or to plug-in existing

algorithms of their choice.

C. Algorithms

The role of the algorithms is to determine the path in which

the statechart is traversed for the purpose of testing.

There are limitless numbers of existing graph algorithms

which can be applied to determine the test path such as

shortest round trip, depth first search, most likely paths, etc.

One of the simplest ways of coverage testing is to form a

random path through the statechart. The random path

algorithm can be used for exhaustive stress testing of the test

object. However, because there is no guarantee that all states

and transitions will be covered, it is not meaningful in the

larger scheme of coverage testing.

One of the more effective and efficient graph algorithms

used to satisfy coverage is the Chinese Postman algorithms.

The Chinese Postman algorithm, discovered by a Chinese

mathematician Kwan Mei-Ko in 1962, is based on the

problem of delivering mail along one-way streets in the

quickest and most efficient manner with least number of

travels along the same streets. This problem is easily adapted

to statecharts. The transitions represent the one-way streets

that must be traversed, and states are nodes or intersections

that join the streets.

The expected benefits of applying the Chinese Postman

algorithm is that the graph component of the statechart can be

visited in an efficient manner with the minimum number of

transitions whilst guaranteeing total transitional coverage.

Thus ensuring that every transition represented by method

calls is tested, and every possible state of the context object is

validated.

Unlike the conventional method of testing via flattening of

composite states, this research explores a new approach to

testing of statecharts with multiple substate levels. In our

approach, each level of the statechart is handled as a separate

distinct problem as shown in Fig. 2. Each statechart are then

Eulerized independently, Fig. 3, and recomposed into one

statechart solution with a complete path, as shown in Fig. 4.

D. Test Generator

Test Generator is responsible for producing the body of the

tests. This is achieved by applying the algorithms such as the

aforementioned against the statechart objects in memory. The

test data is constructed by generating the expected results of

the state variables according to the model and according to the

traversal path undertaken by the algorithm.

There are two broad types of tests that are generated for a

given statechart: navigational and behavioural. Testing of

navigation involves not only ensuring that all states are

reachable and all transitions can be made by the object, but

also guaranteeing that the context object remains in a valid

state at all times (see “Section IV. Results” for an illustration).

Behavioural testing is concerned with testing the guards of

transitions. This ensures that a transition to a new state is only

Fig. 2 Problem Division

Fig. 4 Recomposed Statechart Solution

Fig. 3 Eulerized Statecharts

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3702International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

14
72

.p
df

1 import junit.framework.*;
2 import junit.textui.TestRunner;

3

4 public class TestPhone extends TestCase {
5 Phone phone0;

6

7 public TestPhone(String name) { super(name); }
8

9 protected void setUp() { phone0 = new Phone(); }

10
11 protected void tearUp() { phone0 = null; }

12

13 public void testSetState() {
14 assertTrue(phone0.offState.equals(phone0.state));

15 phone0.plugIn(); // 1

16 assertTrue(phone0.onState.equals(phone0.state));
17 assertTrue(phone0.idleState.equals(phone0.state.state));

18 phone0.startRing(); // 2

19 assertTrue(phone0.onState.equals(phone0.state));
20 assertTrue(phone0.ringState.equals(phone0.state.state));

21 phone0.contRing(); // 3

22 assertTrue(phone0.onState.equals(phone0.state));
23 assertTrue(phone0.ringState.equals(phone0.state.state));

24 phone0.answer(); // 4

25 assertTrue(phone0.onState.equals(phone0.state));
26 assertTrue(phone0.connectedState.equals(phone0.state.state));

27 assertTrue(phone0.talkState.equals(phone0.state.state.state));
 .

 .

 .
28 phone0.startDial(); // 16

29 assertTrue(phone0.onState.equals(phone0.state));

30 assertTrue(phone0.dialState.equals(phone0.state.state));
31 phone0.engaged(); // 17

32 assertTrue(phone0.onState.equals(phone0.state));

33 assertTrue(phone0.idleState.equals(phone0.state.state));
34 phone0.plugOut(); // 18

35 assertTrue(phone0.offState.equals(phone0.state));

36 }
37

38 public static void main(String[] args) {

39 TestRunner.run(TestPhone.class);
40 }

41}

Listing 1 TestPhone.java

made if the guard condition is satisfied. An example of such

validation includes checking the upper and lower limits of an

integer variable, the format of character string, etc.

Test Generator outputs a single XML file containing

information regarding the package, classes, and methods to be

tested, as well as the body of the unit test.

E. Test Writer

The role of Test Writer is simply to apply XSLT 2.0 on the

test data and produce multiple JUnit test class files which can

be executed under the JUnit Testing Framework. Test Writer

can generate a complete suite of tests according to the graph

algorithms used by Test Generator to achieve different test

objectives.

IV. RESULTS

This section will cover a brief example of the application of

ACUTE-J to generate transition coverage test using the

Chinese Postman algorithm.

The diagram depicted above in Fig. 5 represents a simple

model of a typical house phone. The phone can be either Off

or On, and its substate behaviour in the On state consists of

the Idle, Ring, Dial, and Connected states. And for the

purpose of this example the Connected state also contains

substates Talk and Hold.

The statechart diagram may seem simple enough to

understand its behaviour. But in order to test the transitional

paths, what is the quickest and most efficient path to take in

order to test every transition and visit every state? This

problem cannot be readily addressed by mental application,

especially as statechart becomes large and the substate levels

grow.

The result of ACUTE-J’s application of the Chinese

Postman algorithm can also be seen in Fig. 5. The path

identified to be the most efficient is shown by the numbers in

the circles. As a result, all transitions in the statechart are

traversed and all states including substates are visited at least

once.

Once an algorithm has been applied by Test Generator, Test

Writer produces the JUnit test class for the Phone context

object. Listing 1 on the following page shows part of the final

TestPhone.java class. The commented numbers beside the

method calls corresponds to the path steps identified by the

application of the Chinese Postman algorithm. These numbers

are for illustration purposes only and are not part of the

generated test code by Test Writer.

The body of the test can be seen in the testSetState()

method. Important things to note are phone0.state which holds

the current state of the context object Phone; also, method

calls such as phone0.plugIn() correspond to the transitions in

the statechart.

The test begins by checking that the initial state of the

object is Off, as highlighted by line number 14 in the listing.

Once the first traversal phone0.plugIn() is made, the new

Fig. 5 Statechart Diagram of a Phone

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3703International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

14
72

.p
df

current state of the context object is verified. Line 16 checks

for the On state and line 17 checks for the Idle substate. The

test process continues in this manner until the entire path has

been validated. At each step, superstates and substates of the

Phone are checked. Lastly we ensure that the Phone object is

again in Off state, as line 35 shows.

V. DISCUSSION

The architecture of ACUTE-J described in this paper is part

of a continuing work in automated statechart unit testing.

The first and most obvious question that may arise is the

use of ACUTE-J specific XML schema and object model.

While the justification for such approach is to improve the

accessibility and modifiability of the statechart for algorithms,

it brings an opportunity to propose to the community; an

invitation for reflection on the matter, namely capturing and

representing responsibility-oriented information.

The advantages brought on by the use of the object model

and the API is significant. It opens up an opportunity to apply

complex graph algorithms for testing. These algorithms

require graph manipulations such as transition duplication,

and path determination which is not possible with using

XSLT.

Navigational testing or transition coverage testing described

in the results section contain minor limitations. Consider a top

level state within a statechart without any outgoing transitions.

Such object will remain in the transition-less state until the

termination of the object. Current implementation of Chinese

Postman algorithm does not deal with this special case.

Perhaps this kind of problem should be considered as a defect

within the model and handled syntactically by UML tools.

One way such models can still be tested is to devise look-

ahead algorithms purposed to detect transition-less states and

clone the testing path before making the final transition into

state-of-no-return. This way, these types of states can still be

tested in separate test cases, without affecting the rest of the

testing paths, and having to retrace through the statechart.

On a similar note, the testing of isolated states within a

statechart diagram is not accounted for in the present version

of the ACUTE-J architecture, for it is impossible to reach such

states via valid transition. The current algorithm will simply

ignore this kind of flaw in the model.

ACUTE-J test generation regime currently deals only with

simple statechart models. Complex features of UML statechart

diagram including history pseudostates, state reactions,

deferred events, synchronisation table, and orthogonal regions

fall outside the functional specification of ACUTE-J.

Finally, the testing approach described in this paper can

easily be extended to the testing of behaviour of components,

web services and their combination as workflows; where the

validation of behaviour and responsibility is the key.

VI. CONCLUSION

The key benefits of applying the method as described in this

paper are the increase in the quality of software by introducing

behaviour-relevant validation at the level of the unit testing

phase. This approach also encompasses leveraging graph

theory and related algorithms for achieving the test objective,

as highlighted in this paper with the use of Chinese Postman

algorithm.

Lastly, it opens an invitation for the community to reflect

on an XML schema for the packaging of state and

responsibility of objects/components.

REFERENCES

[1] I. A. Niaz and J. Tanaka, "An Object-Oriented Approach To Generate

Java Code From UML Statecharts," International Journal of Computer

& Information Sceinces (IJCIS), vol. Vol. 6, 2005.

[2] I. A. Niaz and J. Tanaka, “Mapping Statecharts to Java Code”, IASTED

International Conference on Software Engineering (SE2004), Innsbruck,

Austria, February 2004.

[3] C. Crichton, A. Cavarra, and J. Davies, “Using UML for Automatic Test

Generation”, Automated Software Engineering, 2001.

[4] H. Robinson, “Graph Theory Techniques in Model-Based Testing”,

International Conference on Testing Computer Software, 1999.

[5] H. Robinson, “Intelligent Test Automation”. Soft-ware Testing &

Quality Engineering magazine, September-October 2000.

http://www.geocities.com-/harry_robinson_testing/robinson.pdf

[6] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns –

Elements of Reusable Object-Oriented Software, Addison-Wesley, 1996.

[7] B.P. Douglass, Real Time UML – Developing efficient objects for

embedded systems, Addison-Wesley, Massachusetts, 1998.

[8] I. K. El-Far and J. A. Whittaker, "Model-based Software Testing,"

Encyclopedia on Software Engineering, 2001.

[9] P. Metz, J O’Brien and W. Weber, “Code Generation Concepts for

Statechart Diagrams of the UML v1.1”, Object Technology Group

(OTG) Conference, University of Vienna, Austria, June 1999.

[10] Y.G. Kim, H.S. Hong, S.M. Cho, D.H. Bae, S.D. Cha, “Test Cases

Generation from UML State Diagrams”, IEE Proceedings – Software,

146(4):187–192, August 1999.

[11] J. Offutt and A. Abdurazik, “Generating Tests from UML

Specifications”, Second International Conference on the Unified

Modeling Language (UML 99), Fort Collins, CO, October 1999, pp.

416-429.

[12] J. Hartmann, C. Imoberdorf, and M. Meisinger, "UML-Based Integration

Testing", International Symposium on Software Testing and Analysis

2000 (ISSTA 2000), Portland, USA, 2000.

[13] J. Takahashi and Y. Kakuda, "Extended-model Based Testing by

Directed Chinese Postman Algorithm", 7th IEEE International

Symposium on High Assurance Systems Engineering (HASE'02), Tokyo,

Japan, 2002.

[14] J. Grundy, Y. Cai and A. Lui, “Generation of Distributed System Test-

beds from High-level Software Architecture Descriptions”, Automated

Software Engineering Conference, San Diego, USA, 2001.

[15] Li. Liuying and Q. Zhichang, “Test Selection from UML Statecharts”,

31st International Conference on Technology of Object-Oriented

Language and Systems, Nanjing, China, 1999.

[16] S. Kansomkeat and W. Rivepiboon, “Automated-Generating Test Case

Using UML Statechart Diagrams”, 2003 Annual Research Conference of

the South African Institute of Computer Scientists and Information

Technologists on Enablement Through Technology, South Africa, 2003.

[17] M. J. Rutherford and A.L. Wolf, "A Case for Test-Code Generation in

Model-Driven Systems", Second International Conference on

Generative Programming and Component Engineering, Erfurt,

Germany, 2003.

[18] N. Eickelmann and A. Willey, “An Integrated System Test

Environment”, 14th International Internet & Software Quality Week

2001 (QW2001), San Francisco, May 2001.

[19] Testing Software Based Systems: The Final Frontier [Online]. Available:

http://www.softwaretechnews.com/stn3-3/final-frontier.html

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3704International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

14
72

.p
df

