Search results for: generalized regression neural networks
2476 Web Traffic Mining using Neural Networks
Authors: Farhad F. Yusifov
Abstract:
With the explosive growth of data available on the Internet, personalization of this information space become a necessity. At present time with the rapid increasing popularity of the WWW, Websites are playing a crucial role to convey knowledge and information to the end users. Discovering hidden and meaningful information about Web users usage patterns is critical to determine effective marketing strategies to optimize the Web server usage for accommodating future growth. The task of mining useful information becomes more challenging when the Web traffic volume is enormous and keeps on growing. In this paper, we propose a intelligent model to discover and analyze useful knowledge from the available Web log data.Keywords: Clustering, Self organizing map, Web log files, Web traffic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16082475 Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification
Authors: Essam Al-Daoud
Abstract:
Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.Keywords: AdaBoost, Bayesian neural network, Signal-to-Noise, support vector machine, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20242474 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.
Keywords: Neural network computing, information processing, input-output mapping, training time, computers with high memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13262473 Speaker Identification using Neural Networks
Authors: R.V Pawar, P.P.Kajave, S.N.Mali
Abstract:
The speech signal conveys information about the identity of the speaker. The area of speaker identification is concerned with extracting the identity of the person speaking the utterance. As speech interaction with computers becomes more pervasive in activities such as the telephone, financial transactions and information retrieval from speech databases, the utility of automatically identifying a speaker is based solely on vocal characteristic. This paper emphasizes on text dependent speaker identification, which deals with detecting a particular speaker from a known population. The system prompts the user to provide speech utterance. System identifies the user by comparing the codebook of speech utterance with those of the stored in the database and lists, which contain the most likely speakers, could have given that speech utterance. The speech signal is recorded for N speakers further the features are extracted. Feature extraction is done by means of LPC coefficients, calculating AMDF, and DFT. The neural network is trained by applying these features as input parameters. The features are stored in templates for further comparison. The features for the speaker who has to be identified are extracted and compared with the stored templates using Back Propogation Algorithm. Here, the trained network corresponds to the output; the input is the extracted features of the speaker to be identified. The network does the weight adjustment and the best match is found to identify the speaker. The number of epochs required to get the target decides the network performance.Keywords: Average Mean Distance function, Backpropogation, Linear Predictive Coding, MultilayeredPerceptron,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18962472 The Role of Online Social Networks in Social Movements: Social Polarization and Violations against Social Unity and Privacy of Individuals in Turkey
Authors: Tolga Yazici
Abstract:
As a matter of the fact that online social networks like Twitter, Facebook and MySpace have experienced an extensive growth in recent years. Social media offers individuals with a tool for communicating and interacting with one another. These social networks enable people to stay in touch with other people and express themselves. This process makes the users of online social networks active creators of content rather than being only consumers of traditional media. That’s why millions of people show strong desire to learn the methods and tools of digital content production and necessary communication skills. However, the booming interest in communication and interaction through online social networks and high level of eagerness to invent and implement the ways to participate in content production raise some privacy and security concerns. This presentation aims to open the assumed revolutionary, democratic and liberating nature of the online social media up for discussion by reviewing some recent political developments in Turkey. Firstly, the role of Internet and online social networks in mobilizing collective movements through social interactions and communications will be questioned. Secondly, some cases from Gezi and Okmeydanı Protests and also December 17-25 period will be presented in order to illustrate misinformation and manipulation in social media and violation of individual privacy through online social networks in order to damage social unity and stability contradictory to democratic nature of online social networking.
Keywords: Online, social media networks, democratic participation, social polarization, privacy of individuals, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18582471 A Phenomic Algorithm for Reconstruction of Gene Networks
Authors: Rio G. L. D'Souza, K. Chandra Sekaran, A. Kandasamy
Abstract:
The goal of Gene Expression Analysis is to understand the processes that underlie the regulatory networks and pathways controlling inter-cellular and intra-cellular activities. In recent times microarray datasets are extensively used for this purpose. The scope of such analysis has broadened in recent times towards reconstruction of gene networks and other holistic approaches of Systems Biology. Evolutionary methods are proving to be successful in such problems and a number of such methods have been proposed. However all these methods are based on processing of genotypic information. Towards this end, there is a need to develop evolutionary methods that address phenotypic interactions together with genotypic interactions. We present a novel evolutionary approach, called Phenomic algorithm, wherein the focus is on phenotypic interaction. We use the expression profiles of genes to model the interactions between them at the phenotypic level. We apply this algorithm to the yeast sporulation dataset and show that the algorithm can identify gene networks with relative ease.
Keywords: Evolutionary computing, gene expression analysis, gene networks, microarray data analysis, phenomic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19302470 Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network
Authors: V.S.Kale, S.R.Bhide, P.P.Bedekar, G.V.K.Mohan
Abstract:
The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.
Keywords: Artificial neural network, fault detection and classification, parallel transmission lines, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30132469 A Distributed Weighted Cluster Based Routing Protocol for Manets
Authors: Naveen Chauhan, L.K. Awasthi, Narottam chand, Vivek Katiyar, Ankit Chug
Abstract:
Mobile ad-hoc networks (MANETs) are a form of wireless networks which do not require a base station for providing network connectivity. Mobile ad-hoc networks have many characteristics which distinguish them from other wireless networks which make routing in such networks a challenging task. Cluster based routing is one of the routing schemes for MANETs in which various clusters of mobile nodes are formed with each cluster having its own clusterhead which is responsible for routing among clusters. In this paper we have proposed and implemented a distributed weighted clustering algorithm for MANETs. This approach is based on combined weight metric that takes into account several system parameters like the node degree, transmission range, energy and mobility of the nodes. We have evaluated the performance of proposed scheme through simulation in various network situations. Simulation results show that proposed scheme outperforms the original distributed weighted clustering algorithm (DWCA).Keywords: MANETs, Clustering, Routing, WirelessCommunication, Distributed Clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18952468 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.
Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27692467 Neuron-Based Control Mechanisms for a Robotic Arm and Hand
Authors: Nishant Singh, Christian Huyck, Vaibhav Gandhi, Alexander Jones
Abstract:
A robotic arm and hand controlled by simulated neurons is presented. The robot makes use of a biological neuron simulator using a point neural model. The neurons and synapses are organised to create a finite state automaton including neural inputs from sensors, and outputs to effectors. The robot performs a simple pick-and-place task. This work is a proof of concept study for a longer term approach. It is hoped that further work will lead to more effective and flexible robots. As another benefit, it is hoped that further work will also lead to a better understanding of human and other animal neural processing, particularly for physical motion. This is a multidisciplinary approach combining cognitive neuroscience, robotics, and psychology.Keywords: Robot, neuron, cell assembly, spiking neuron, force sensitive resistor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19822466 Location Management in Cellular Networks
Authors: Bhavneet Sidhu, Hardeep Singh
Abstract:
Cellular networks provide voice and data services to the users with mobility. To deliver services to the mobile users, the cellular network is capable of tracking the locations of the users, and allowing user movement during the conversations. These capabilities are achieved by the location management. Location management in mobile communication systems is concerned with those network functions necessary to allow the users to be reached wherever they are in the network coverage area. In a cellular network, a service coverage area is divided into smaller areas of hexagonal shape, referred to as cells. The cellular concept was introduced to reuse the radio frequency. Continued expansion of cellular networks, coupled with an increasingly restricted mobile spectrum, has established the reduction of communication overhead as a highly important issue. Much of this traffic is used in determining the precise location of individual users when relaying calls, with the field of location management aiming to reduce this overhead through prediction of user location. This paper describes and compares various location management schemes in the cellular networks.Keywords: Cellular Networks, Location Area, MobilityManagement, Paging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40312465 Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling
Authors: Kious Mecheri, Hadjadj Abdechafik, Ameur Aissa
Abstract:
The wear of cutting tool degrades the quality of the product in the manufacturing processes. The on line monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear on line. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc…. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions.
Keywords: Flank wear, cutting forces, high speed milling, signal processing, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25832464 Neural Network Control of a Biped Robot Model with Composite Adaptation Low
Authors: Ahmad Forouzantabar
Abstract:
this paper presents a novel neural network controller with composite adaptation low to improve the trajectory tracking problems of biped robots comparing with classical controller. The biped model has 5_link and 6 degrees of freedom and actuated by Plated Pneumatic Artificial Muscle, which have a very high power to weight ratio and it has large stoke compared to similar actuators. The proposed controller employ a stable neural network in to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitation of conventional controllers such as PD or adaptive controllers and guarantee good performance. This NN controller significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, therefore improving tracking accuracy. Simulation results plus graphical simulation in virtual reality show that NN controller tracking performance is considerably better than PD controller tracking performance.Keywords: Biped robot, Neural network, Plated Pneumatic Artificial Muscle, Composite adaptation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18512463 Improved Dynamic Bayesian Networks Applied to Arabic on Line Characters Recognition
Authors: Redouane Tlemsani, Abdelkader Benyettou
Abstract:
Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology.
This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data.
Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables.
In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization.
The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.
Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17852462 Estimate of Maximum Expected Intensity of One-Half-Wave Lines Dancing
Authors: A. Bekbaev, M. Dzhamanbaev, R. Abitaeva, A. Karbozova, G. Nabyeva
Abstract:
In this paper, the regression dependence of dancing intensity from wind speed and length of span was established due to the statistic data obtained from multi-year observations on line wires dancing accumulated by power systems of Kazakhstan and the Russian Federation. The lower and upper limitations of the equations parameters were estimated, as well as the adequacy of the regression model. The constructed model will be used in research of dancing phenomena for the development of methods and means of protection against dancing and for zoning plan of the territories of line wire dancing.Keywords: Power lines, line wire dancing, dancing intensity, regression equation, dancing area intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12122461 Application of Artificial Neural Network for Predicting Maintainability Using Object-Oriented Metrics
Authors: K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra
Abstract:
Importance of software quality is increasing leading to development of new sophisticated techniques, which can be used in constructing models for predicting quality attributes. One such technique is Artificial Neural Network (ANN). This paper examined the application of ANN for software quality prediction using Object- Oriented (OO) metrics. Quality estimation includes estimating maintainability of software. The dependent variable in our study was maintenance effort. The independent variables were principal components of eight OO metrics. The results showed that the Mean Absolute Relative Error (MARE) was 0.265 of ANN model. Thus we found that ANN method was useful in constructing software quality model.
Keywords: Software quality, Measurement, Metrics, Artificial neural network, Coupling, Cohesion, Inheritance, Principal component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25782460 An Efficient Heuristic for the Minimum Connected Dominating Set Problem on Ad Hoc Wireless Networks
Authors: S. Balaji, N. Revathi
Abstract:
Connected dominating set (CDS) problem in unit disk graph has signi£cant impact on an ef£cient design of routing protocols in wireless sensor networks, where the searching space for a route is reduced to nodes in the set. A set is dominating if all the nodes in the system are either in the set or neighbors of nodes in the set. In this paper, a simple and ef£cient heuristic method is proposed for £nding a minimum connected dominating set (MCDS) in ad hoc wireless networks based on the new parameter support of vertices. With this parameter the proposed heuristic approach effectively £nds the MCDS of a graph. Extensive computational experiments show that the proposed approach outperforms the recently proposed heuristics found in the literature for the MCDKeywords: ad hoc wireless networks, dominating sets, unit disk graphs, heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22102459 Optimization of Electromagnetic Interference Measurement by Convolutional Neural Network
Authors: Hussam Elias, Ninovic Perez, Holger Hirsch
Abstract:
With ever-increasing use of equipment, device or more generally any electrical or electronic system, the chance of Electromagnetic incompatibility incidents has considerably increased which demands more attention to ensure the possible risks of these technologies. Therefore, complying with certain Electromagnetic compatibility (EMC) rules and not overtaking an acceptable level of radiated emissions are utmost importance for the diffusion of electronic products. In this paper, developed measure tool and a convolutional neural network were used to propose a method to reduce the required time to carry out the final measurement phase of Electromagnetic interference (EMI) measurement according to the norm EN 55032 by predicting the radiated emission and determining the height of the antenna that meets the maximum radiation value.
Keywords: Antenna height, Convolutional Neural Network, Electromagnetic Compatibility, Mean Absolute Error, position error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622458 Wireless Sensor Networks:Delay Guarentee and Energy Efficient MAC Protocols
Authors: Marwan Ihsan Shukur, Lee Sheng Chyan, Vooi Voon Yap
Abstract:
Wireless sensor networks is an emerging technology that serves as environment monitors in many applications. Yet these miniatures suffer from constrained resources in terms of computation capabilities and energy resources. Limited energy resource in these nodes demands an efficient consumption of that resource either by developing the modules itself or by providing an efficient communication protocols. This paper presents a comprehensive summarization and a comparative study of the available MAC protocols proposed for Wireless Sensor Networks showing their capabilities and efficiency in terms of energy consumption and delay guarantee.Keywords: MAC (Medium Access Control), SEA (Simple EnergyAware), WSNs (Wireless Sensor Nodes or Networks) RTS (RequestTo Send), CTS (Clear To Send), SYNCH (Synchronize), NS2(Network Simulator 2).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21242457 What Managers Think of Informal Networks and Knowledge Sharing by Means of Personal Networking?
Authors: Mahmood Q.K. Ghaznavi, Martin Perry, Paul Toulson, Keri Logan
Abstract:
The importance of nurturing, accumulating, and efficiently deploying knowledge resources through formal structures and organisational mechanisms is well understood. Recent trends in knowledge management (KM) highlight that the effective creation and transfer of knowledge can also rely upon extra-organisational channels, such as, informal networks. The perception exists that the role of informal networks in knowledge creation and performance has been underestimated in the organisational context. Literature indicates that many managers fail to comprehend and successfully exploit the potential role of informal networks to create value for their organisations. This paper investigates: 1) whether managers share work-specific knowledge with informal contacts within and outside organisational boundaries; and 2) what do they think is the importance of this knowledge collaboration in their learning and work outcomes.
Keywords: Informal network, knowledge management, knowledge sharing, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21172456 A Study on the Relation of Corporate Governance and Pricing for Initial Public Offerings
Authors: Chei-Chang Chiou, Sen-Wei Wang, Yu-Min Wang
Abstract:
The purpose of this study is to investigate the relationship between corporate governance and pricing for initial public offerings (IPOs). Empirical result finds that the prediction of pricing of IPOs with corporate governance added can have a rather higher degree of predicting accuracy than that of non governance added during the training and testing samples. Therefore, it can be observed that corporate governance mechanism can affect the pricing of IPOsKeywords: Artificial neural networks, corporate governance, initial public offerings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18122455 Phosphine Mortality Estimation for Simulation of Controlling Pest of Stored Grain: Lesser Grain Borer (Rhyzopertha dominica)
Authors: Mingren Shi, Michael Renton
Abstract:
There is a world-wide need for the development of sustainable management strategies to control pest infestation and the development of phosphine (PH3) resistance in lesser grain borer (Rhyzopertha dominica). Computer simulation models can provide a relatively fast, safe and inexpensive way to weigh the merits of various management options. However, the usefulness of simulation models relies on the accurate estimation of important model parameters, such as mortality. Concentration and time of exposure are both important in determining mortality in response to a toxic agent. Recent research indicated the existence of two resistance phenotypes in R. dominica in Australia, weak and strong, and revealed that the presence of resistance alleles at two loci confers strong resistance, thus motivating the construction of a two-locus model of resistance. Experimental data sets on purified pest strains, each corresponding to a single genotype of our two-locus model, were also available. Hence it became possible to explicitly include mortalities of the different genotypes in the model. In this paper we described how we used two generalized linear models (GLM), probit and logistic models, to fit the available experimental data sets. We used a direct algebraic approach generalized inverse matrix technique, rather than the traditional maximum likelihood estimation, to estimate the model parameters. The results show that both probit and logistic models fit the data sets well but the former is much better in terms of small least squares (numerical) errors. Meanwhile, the generalized inverse matrix technique achieved similar accuracy results to those from the maximum likelihood estimation, but is less time consuming and computationally demanding.
Keywords: mortality estimation, probit models, logistic model, generalized inverse matrix approach, pest control simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15882454 Principal Component Regression in Noninvasive Pineapple Soluble Solids Content Assessment Based On Shortwave Near Infrared Spectrum
Authors: K. S. Chia, H. Abdul Rahim, R. Abdul Rahim
Abstract:
The Principal component regression (PCR) is a combination of principal component analysis (PCA) and multiple linear regression (MLR). The objective of this paper is to revise the use of PCR in shortwave near infrared (SWNIR) (750-1000nm) spectral analysis. The idea of PCR was explained mathematically and implemented in the non-destructive assessment of the soluble solid content (SSC) of pineapple based on SWNIR spectral data. PCR achieved satisfactory results in this application with root mean squared error of calibration (RMSEC) of 0.7611 Brix°, coefficient of determination (R2) of 0.5865 and root mean squared error of crossvalidation (RMSECV) of 0.8323 Brix° with principal components (PCs) of 14.Keywords: Pineapple, Shortwave near infrared, Principal component regression, Non-invasive measurement; Soluble solids content
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20292453 Generalized Vortex Lattice Method for Predicting Characteristics of Wings with Flap and Aileron Deflection
Authors: Mondher Yahyaoui
Abstract:
A generalized vortex lattice method for complex lifting surfaces with flap and aileron deflection is formulated. The method is not restricted by the linearized theory assumption and accounts for all standard geometric lifting surface parameters: camber, taper, sweep, washout, dihedral, in addition to flap and aileron deflection. Thickness is not accounted for since the physical lifting body is replaced by a lattice of panels located on the mean camber surface. This panel lattice setup and the treatment of different wake geometries is what distinguish the present work form the overwhelming majority of previous solutions based on the vortex lattice method. A MATLAB code implementing the proposed formulation is developed and validated by comparing our results to existing experimental and numerical ones and good agreement is demonstrated. It is then used to study the accuracy of the widely used classical vortex-lattice method. It is shown that the classical approach gives good agreement in the clean configuration but is off by as much as 30% when a flap or aileron deflection of 30° is imposed. This discrepancy is mainly due the linearized theory assumption associated with the conventional method. A comparison of the effect of four different wake geometries on the values of aerodynamic coefficients was also carried out and it is found that the choice of the wake shape had very little effect on the results.
Keywords: Aileron deflection, camber-surface-bound vortices, classical VLM, Generalized VLM, flap deflection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50592452 The Analysis of Different Classes of Weighted Fuzzy Petri Nets and Their Features
Authors: Yurii Bloshko, Oksana Olar
Abstract:
This paper presents the analysis of six different classes of Petri nets: fuzzy Petri nets (FPN), generalized fuzzy Petri nets (GFPN), parameterized fuzzy Petri nets (PFPN), T2GFPN, flexible generalized fuzzy Petri nets (FGFPN), binary Petri nets (BPN). These classes were simulated in the special software PNeS® for the analysis of its pros and cons on the example of models which are dedicated to the decision-making process of passenger transport logistics. The paper includes the analysis of two approaches: when input values are filled with the experts’ knowledge; when fuzzy expectations represented by output values are added to the point. These approaches fulfill the possibilities of triples of functions which are replaced with different combinations of t-/s-norms.
Keywords: Fuzzy petri net, intelligent computational techniques, knowledge representation, triangular norms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4622451 Gaussian Density and HOG with Content Based Image Retrieval System – A New Approach
Authors: N. Shanmugapriya, R. Nallusamy
Abstract:
Content-based image retrieval (CBIR) uses the contents of images to characterize and contact the images. This paper focus on retrieving the image by separating images into its three color mechanism R, G and B and for that Discrete Wavelet Transformation is applied. Then Wavelet based Generalized Gaussian Density (GGD) is practical which is used for modeling the coefficients from the wavelet transforms. After that it is agreed to Histogram of Oriented Gradient (HOG) for extracting its characteristic vectors with Relevant Feedback technique is used. The performance of this approach is calculated by exactness and it confirms that this method is wellorganized for image retrieval.
Keywords: Content-Based Image Retrieval (CBIR), Relevant Feedback, Histogram of Oriented Gradient (HOG), Generalized Gaussian Density (GGD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20442450 Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production
Authors: Nikhil, Ari Visa, Chin-Chao Chen, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.Keywords: Biohydrogen, bioprocess modeling, clusteringhybrid regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17792449 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: Drive test, LTE, machine learning, uplink throughput prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9072448 Application of BP Neural Network Model in Sports Aerobics Performance Evaluation
Authors: Shuhe Shao
Abstract:
This article provides partial evaluation index and its standard of sports aerobics, including the following 12 indexes: health vitality, coordination, flexibility, accuracy, pace, endurance, elasticity, self-confidence, form, control, uniformity and musicality. The three-layer BP artificial neural network model including input layer, hidden layer and output layer is established. The result shows that the model can well reflect the non-linear relationship between the performance of 12 indexes and the overall performance. The predicted value of each sample is very close to the true value, with a relative error fluctuating around of 5%, and the network training is successful. It shows that BP network has high prediction accuracy and good generalization capacity if being applied in sports aerobics performance evaluation after effective training.Keywords: BP neural network, sports aerobics, performance, evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16212447 Percolation Transition with Hidden Variables in Complex Networks
Authors: Zhanli Zhang, Wei Chen, Xin Jiang, Lili Ma, Shaoting Tang, Zhiming Zheng
Abstract:
A new class of percolation model in complex networks, in which nodes are characterized by hidden variables reflecting the properties of nodes and the occupied probability of each link is determined by the hidden variables of the end nodes, is studied in this paper. By the mean field theory, the analytical expressions for the phase of percolation transition is deduced. It is determined by the distribution of the hidden variables for the nodes and the occupied probability between pairs of them. Moreover, the analytical expressions obtained are checked by means of numerical simulations on a particular model. Besides, the general model can be applied to describe and control practical diffusion models, such as disease diffusion model, scientists cooperation networks, and so on.Keywords: complex networks, percolation transition, hidden variable, occupied probability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611