Search results for: Real Time Pricing
6694 Cross Layer Optimization for Fairness Balancing Based on Adaptively Weighted Utility Functions in OFDMA Systems
Authors: Jianwei Wang, Timo Korhonen, Yuping Zhao
Abstract:
Cross layer optimization based on utility functions has been recently studied extensively, meanwhile, numerous types of utility functions have been examined in the corresponding literature. However, a major drawback is that most utility functions take a fixed mathematical form or are based on simple combining, which can not fully exploit available information. In this paper, we formulate a framework of cross layer optimization based on Adaptively Weighted Utility Functions (AWUF) for fairness balancing in OFDMA networks. Under this framework, a two-step allocation algorithm is provided as a sub-optimal solution, whose control parameters can be updated in real-time to accommodate instantaneous QoS constrains. The simulation results show that the proposed algorithm achieves high throughput while balancing the fairness among multiple users.Keywords: OFDMA, Fairness, AWUF, QoS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18286693 Learning Process Enhancement for Robot Behaviors
Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam, Abdullah Zawawi Hj. Talib
Abstract:
Designing a simulated system and training it to optimize its tasks in simulated environment helps the designers to avoid problems that may appear when designing the system directly in real world. These problems are: time consuming, high cost, high errors percentage and low efficiency and accuracy of the system. The proposed system will investigate and improve the efficiency and accuracy of a simulated robot to choose correct behavior to perform its task. In this paper, machine learning, which uses genetic algorithm, is adopted. This type of machine learning is called genetic-based machine learning in which a distributed classifier system is used to improve the efficiency and accuracy of the robot. Consequently, it helps the robot to achieve optimal action.Keywords: Machine Learning, Genetic-Based MachineLearning, Learning Classifier System, Behaviors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15296692 Alertness States Classification By SOM and LVQ Neural Networks
Authors: K. Ben Khalifa, M.H. Bédoui, M. Dogui, F. Alexandre
Abstract:
Several studies have been carried out, using various techniques, including neural networks, to discriminate vigilance states in humans from electroencephalographic (EEG) signals, but we are still far from results satisfactorily useable results. The work presented in this paper aims at improving this status with regards to 2 aspects. Firstly, we introduce an original procedure made of the association of two neural networks, a self organizing map (SOM) and a learning vector quantization (LVQ), that allows to automatically detect artefacted states and to separate the different levels of vigilance which is a major breakthrough in the field of vigilance. Lastly and more importantly, our study has been oriented toward real-worked situation and the resulting model can be easily implemented as a wearable device. It benefits from restricted computational and memory requirements and data access is very limited in time. Furthermore, some ongoing works demonstrate that this work should shortly results in the design and conception of a non invasive electronic wearable device.Keywords: Electroencephalogram interpretation, artificialneural networks, vigilance states, hardware implementation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14786691 Multirate Neural Control for AUV's Increased Situational Awareness during Diving Tasks Using Stochastic Model
Authors: Igor Astrov, Andrus Pedai
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the neural control of depth flight of an autonomous underwater vehicle (AUV). Constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a multirate neural control of an AUV trajectory for a nontrivial mid-small size AUV “r2D4" stochastic model. This control system has been demonstrated and evaluated by simulation of diving maneuvers using software package Simulink. From the simulation results it can be seen that the chosen AUV model is stable in the presence of noises, and also can be concluded that the proposed research technique will be useful for fast SA of similar AUV systems in real-time search-and-rescue operations.
Keywords: Autonomous underwater vehicles, multirate systems, neurocontrollers, situational awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15906690 The Fundamental Reliance of Iterative Learning Control on Stability Robustness
Authors: Richard W. Longman
Abstract:
Iterative learning control aims to achieve zero tracking error of a specific command. This is accomplished by iteratively adjusting the command given to a feedback control system, based on the tracking error observed in the previous iteration. One would like the iterations to converge to zero tracking error in spite of any error present in the model used to design the learning law. First, this need for stability robustness is discussed, and then the need for robustness of the property that the transients are well behaved. Methods of producing the needed robustness to parameter variations and to singular perturbations are presented. Then a method involving reverse time runs is given that lets the world behavior produce the ILC gains in such a way as to eliminate the need for a mathematical model. Since the real world is producing the gains, there is no issue of model error. Provided the world behaves linearly, the approach gives an ILC law with both stability robustness and good transient robustness, without the need to generate a model.Keywords: Iterative learning control, stability robustness, monotonic convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15946689 Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations
Authors: Marco Actis Grande, Somlak Wannarumon
Abstract:
This paper proposes the numerical simulation of the investment casting of gold jewelry. It aims to study the behavior of fluid flow during mould filling and solidification and to optimize the process parameters, which lead to predict and control casting defects such as gas porosity and shrinkage porosity. A finite difference method, computer simulation software FLOW-3D was used to simulate the jewelry casting process. The simplified model was designed for both numerical simulation and real casting production. A set of sensor acquisitions were allocated on the different positions of the wax tree of the model to detect filling times, while a set of thermocouples were allocated to detect the temperature during casting and cooling. Those detected data were applied to validate the results of the numerical simulation to the results of the real casting. The resulting comparisons signify that the numerical simulation can be used as an effective tool in investment-casting-process optimization and casting-defect prediction.Keywords: Computer fluid dynamic, Investment casting, Jewelry, Mould filling, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27376688 A Virtual Reality Laboratory for Distance Education in Chemistry
Authors: J. Georgiou, K. Dimitropoulos, A. Manitsaris
Abstract:
Simulations play a major role in education not only because they provide realistic models with which students can interact to acquire real world experiences, but also because they constitute safe environments in which students can repeat processes without any risk in order to perceive easier concepts and theories. Virtual reality is widely recognized as a significant technological advance that can facilitate learning process through the development of highly realistic 3D simulations supporting immersive and interactive features. The objective of this paper is to analyze the influence of virtual reality-s use in chemistry instruction as well as to present an integrated web-based learning environment for the simulation of chemical experiments. The proposed application constitutes a cost-effective solution for both schools and universities without appropriate infrastructure and a valuable tool for distance learning and life-long education in chemistry. Its educational objectives are the familiarization of students with the equipment of a real chemical laboratory and the execution of virtual volumetric analysis experiments with the active participation of students.
Keywords: Chemistry, simulations, experiments, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28086687 Effect of Different Diesel Fuels on Formation of the Cavitation Phenomena
Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi
Abstract:
Cavitation inside a diesel injector nozzle is investigated numerically in this study. The Reynolds Stress Navier Stokes set of equations (RANS) are utilized to investigate flow behavior inside the nozzle numerically. Moreover, K-ε turbulent model is found to be a better approach comparing to K-ω turbulent model. The Winklhofer rectangular shape nozzle is also simulated in order to verify the current numerical scheme, and with the mass flow rate approach, the current solution is verified. Afterward, a six-hole real size nozzle was simulated and it was found that among the different fuels used in this study with the same condition, diesel fuel provides the largest length of cavitation. Also, it was found that at the same boundary condition, rapeseed methyl ester (RME) fuel leads to the highest value of discharge coefficient and mass flow rate.
Keywords: cavitation, diesel fuel, CFD, real size nozzle, discharge coefficient
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4706686 Opening up Government Datasets for Big Data Analysis to Support Policy Decisions
Authors: K. Hardy, A. Maurushat
Abstract:
Policy makers are increasingly looking to make evidence-based decisions. Evidence-based decisions have historically used rigorous methodologies of empirical studies by research institutes, as well as less reliable immediate survey/polls often with limited sample sizes. As we move into the era of Big Data analytics, policy makers are looking to different methodologies to deliver reliable empirics in real-time. The question is not why did these people do this for the last 10 years, but why are these people doing this now, and if the this is undesirable, and how can we have an impact to promote change immediately. Big data analytics rely heavily on government data that has been released in to the public domain. The open data movement promises greater productivity and more efficient delivery of services; however, Australian government agencies remain reluctant to release their data to the general public. This paper considers the barriers to releasing government data as open data, and how these barriers might be overcome.
Keywords: Big data, open data, productivity, transparency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16376685 Optimum Time Coordination of Overcurrent Relays using Two Phase Simplex Method
Authors: Prashant P. Bedekar, Sudhir R. Bhide, Vijay S. Kale
Abstract:
Overcurrent (OC) relays are the major protection devices in a distribution system. The operating time of the OC relays are to be coordinated properly to avoid the mal-operation of the backup relays. The OC relay time coordination in ring fed distribution networks is a highly constrained optimization problem which can be stated as a linear programming problem (LPP). The purpose is to find an optimum relay setting to minimize the time of operation of relays and at the same time, to keep the relays properly coordinated to avoid the mal-operation of relays. This paper presents two phase simplex method for optimum time coordination of OC relays. The method is based on the simplex algorithm which is used to find optimum solution of LPP. The method introduces artificial variables to get an initial basic feasible solution (IBFS). Artificial variables are removed using iterative process of first phase which minimizes the auxiliary objective function. The second phase minimizes the original objective function and gives the optimum time coordination of OC relays.Keywords: Constrained optimization, LPP, Overcurrent relaycoordination, Two-phase simplex method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30076684 Emotion Recognition Using Neural Network: A Comparative Study
Authors: Nermine Ahmed Hendy, Hania Farag
Abstract:
Emotion recognition is an important research field that finds lots of applications nowadays. This work emphasizes on recognizing different emotions from speech signal. The extracted features are related to statistics of pitch, formants, and energy contours, as well as spectral, perceptual and temporal features, jitter, and shimmer. The Artificial Neural Networks (ANN) was chosen as the classifier. Working on finding a robust and fast ANN classifier suitable for different real life application is our concern. Several experiments were carried out on different ANN to investigate the different factors that impact the classification success rate. Using a database containing 7 different emotions, it will be shown that with a proper and careful adjustment of features format, training data sorting, number of features selected and even the ANN type and architecture used, a success rate of 85% or even more can be achieved without increasing the system complicity and the computation time
Keywords: Classification, emotion recognition, features extraction, feature selection, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47006683 A Programming Assessment Software Artefact Enhanced with the Help of Learners
Authors: Romeo A. Botes, Imelda Smit
Abstract:
The demands of an ever changing and complex higher education environment, along with the profile of modern learners challenge current approaches to assessment and feedback. More learners enter the education system every year. The younger generation expects immediate feedback. At the same time, feedback should be meaningful. The assessment of practical activities in programming poses a particular problem, since both lecturers and learners in the information and computer science discipline acknowledge that paper-based assessment for programming subjects lacks meaningful real-life testing. At the same time, feedback lacks promptness, consistency, comprehensiveness and individualisation. Most of these aspects may be addressed by modern, technology-assisted assessment. The focus of this paper is the continuous development of an artefact that is used to assist the lecturer in the assessment and feedback of practical programming activities in a senior database programming class. The artefact was developed using three Design Science Research cycles. The first implementation allowed one programming activity submission per assessment intervention. This pilot provided valuable insight into the obstacles regarding the implementation of this type of assessment tool. A second implementation improved the initial version to allow multiple programming activity submissions per assessment. The focus of this version is on providing scaffold feedback to the learner – allowing improvement with each subsequent submission. It also has a built-in capability to provide the lecturer with information regarding the key problem areas of each assessment intervention.
Keywords: Programming, computer-aided assessment, technology-assisted assessment, programming assessment software, design science research, mixed-method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9946682 Remote Monitoring and Control System of Potentiostat Based on the Internet of Things
Authors: Liang Zhao, Guangwen Wang, Guichang Liu
Abstract:
Constant potometer is an important component of pipeline anti-corrosion systems in the chemical industry. Based on Internet of Things (IoT) technology, Programmable Logic Controller (PLC) technology and database technology, this paper developed a set of a constant potometer remote monitoring management system. The remote monitoring and remote adjustment of the working status of the constant potometer are realized. The system has real-time data display, historical data query, alarm push management, user permission management, and supporting Web access and mobile client application (APP) access. The actual engineering project test results show the stability of the system, which can be widely used in cathodic protection systems.
Keywords: Internet of Things, pipe corrosion protection, potentiostat, remote monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9726681 Graphene Oxide Fiber with Different Exfoliation Time and Activated Carbon Particle
Authors: Nuray Uçar, Mervin Ölmez, Özge Alptoğa, Nilgün K. Yavuz, Ayşen Önen
Abstract:
In recent years, research on continuous graphene oxide fibers has been intensified. Therefore, many factors of production stages are being studied. In this study, the effect of exfoliation time and presence of activated carbon particle (ACP) on graphene oxide fiber’s properties has been analyzed. It has been seen that cross-sectional appearance of sample with ACP is harsh and porous because of ACP. The addition of ACP did not change the electrical conductivity. However, ACP results in an enormous decrease of mechanical properties. Longer exfoliation time results to higher crystallinity degree, C/O ratio and less d space between layers. The breaking strength and electrical conductivity of sample with less exfoliation time is some higher than sample with high exfoliation time.
Keywords: Activated carbon, coagulation by wet spinning, exfoliation, graphene oxide fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16356680 Task-Based Language Teaching: A Paradigm Shift in ESL/EFL Teaching and Learning: A Case Study-Based Approach
Authors: Zehra Sultan
Abstract:
The study is based on the Task-based Language Teaching (TBLT) approach which is found to be very effective in the EFL/ESL classroom. This approach engages learners to acquire the usage of authentic language skills by interacting with the real world through a sequence of pedagogical tasks. The use of technology enhances the effectiveness of this approach. This study throws light on the historical background of TBLT, and its efficacy in the EFL /ESL classroom. In addition, this study precisely talks about the implementation of this approach in the General Foundation Program (GFP) of Muscat College, Oman. It furnishes the list of the pedagogical tasks embedded in the language curriculum of the GFP which are skillfully allied to the College graduate attributes. Moreover, the study also discusses the challenges pertaining to this approach from the point of view of teachers, students and its classroom application. Additionally, the operational success of this methodology is gauged through formative assessments of the GFP which is apparent in the students’ progress.
Keywords: Task-based language teaching, authentic language, communicative approach, real world activities, ESL/EFL activities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9586679 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting
Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu
Abstract:
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15606678 An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method
Authors: Yanan Yang, Zhigang Wang, Xiang Chen
Abstract:
This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.Keywords: Finite-thrust, Orbital transfer, Legendre pseudospectral method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18036677 Machine Learning Methods for Environmental Monitoring and Flood Protection
Authors: Alexander L. Pyayt, Ilya I. Mokhov, Bernhard Lang, Valeria V. Krzhizhanovskaya, Robert J. Meijer
Abstract:
More and more natural disasters are happening every year: floods, earthquakes, volcanic eruptions, etc. In order to reduce the risk of possible damages, governments all around the world are investing into development of Early Warning Systems (EWS) for environmental applications. The most important task of the EWS is identification of the onset of critical situations affecting environment and population, early enough to inform the authorities and general public. This paper describes an approach for monitoring of flood protections systems based on machine learning methods. An Artificial Intelligence (AI) component has been developed for detection of abnormal dike behaviour. The AI module has been integrated into an EWS platform of the UrbanFlood project (EU Seventh Framework Programme) and validated on real-time measurements from the sensors installed in a dike.Keywords: Early Warning System, intelligent environmentalmonitoring, machine learning, flood protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40846676 Membrane Distillation Process Modeling: Dynamical Approach
Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati
Abstract:
This paper presents a complete dynamic modeling of a membrane distillation process. The model contains two consistent dynamic models. A 2D advection-diffusion equation for modeling the whole process and a modified heat equation for modeling the membrane itself. The complete model describes the temperature diffusion phenomenon across the feed, membrane, permeate containers and boundary layers of the membrane. It gives an online and complete temperature profile for each point in the domain. It explains heat conduction and convection mechanisms that take place inside the process in terms of mathematical parameters, and justify process behavior during transient and steady state phases. The process is monitored for any sudden change in the performance at any instance of time. In addition, it assists maintaining production rates as desired, and gives recommendations during membrane fabrication stages. System performance and parameters can be optimized and controlled using this complete dynamic model. Evolution of membrane boundary temperature with time, vapor mass transfer along the process, and temperature difference between membrane boundary layers are depicted and included. Simulations were performed over the complete model with real membrane specifications. The plots show consistency between 2D advection-diffusion model and the expected behavior of the systems as well as literature. Evolution of heat inside the membrane starting from transient response till reaching steady state response for fixed and varying times is illustrated.
Keywords: Membrane distillation, Dynamical modeling, Advection-diffusion equation, Thermal equilibrium, Heat equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28536675 Multi-objective Optimisation of Composite Laminates under Heat and Moisture Effects using a Hybrid Neuro-GA Algorithm
Authors: M. R. Ghasemi, A. Ehsani
Abstract:
In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.Keywords: Composite Laminates, GA, Multi-objectiveOptimisation, Neural Networks, RBFNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16316674 Parallel Discrete Fourier Transform for Fast FIR Filtering Based on Overlapped-save Block Structure
Authors: Ying-Wen Bai, Ju-Maw Chen
Abstract:
To successfully provide a fast FIR filter with FTT algorithms, overlapped-save algorithms can be used to lower the computational complexity and achieve the desired real-time processing. As the length of the input block increases in order to improve the efficiency, a larger volume of zero padding will greatly increase the computation length of the FFT. In this paper, we use the overlapped block digital filtering to construct a parallel structure. As long as the down-sampling (or up-sampling) factor is an exact multiple lengths of the impulse response of a FIR filter, we can process the input block by using a parallel structure and thus achieve a low-complex fast FIR filter with overlapped-save algorithms. With a long filter length, the performance and the throughput of the digital filtering system will also be greatly enhanced.
Keywords: FIR Filter, Overlapped-save Algorithm, ParallelStructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16716673 Revealing Nonlinear Couplings between Oscillators from Time Series
Authors: B.P. Bezruchko, D.A. Smirnov
Abstract:
Quantitative characterization of nonlinear directional couplings between stochastic oscillators from data is considered. We suggest coupling characteristics readily interpreted from a physical viewpoint and their estimators. An expression for a statistical significance level is derived analytically that allows reliable coupling detection from a relatively short time series. Performance of the technique is demonstrated in numerical experiments.Keywords: Nonlinear time series analysis, directional couplings, coupled oscillators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12656672 Existence and Stability Analysis of Discrete-time Fuzzy BAM Neural Networks with Delays and Impulses
Authors: Chao Wang, Yongkun Li
Abstract:
In this paper, the discrete-time fuzzy BAM neural network with delays and impulses is studied. Sufficient conditions are obtained for the existence and global stability of a unique equilibrium of this class of fuzzy BAM neural networks with Lipschitzian activation functions without assuming their boundedness, monotonicity or differentiability and subjected to impulsive state displacements at fixed instants of time. Some numerical examples are given to demonstrate the effectiveness of the obtained results.
Keywords: Discrete-time fuzzy BAM neural networks, ımpulses, global exponential stability, global asymptotical stability, equilibrium point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15096671 The Effects of Immersion on Visual Attention and Detection of Signals Performance for Virtual Reality Training Systems
Authors: Shiau-Feng Lin, Chiuhsiang Joe Lin, Rou-Wen Wang, Wei-Jung Shiang
Abstract:
The Virtual Reality (VR) is becoming increasingly important for business, education, and entertainment, therefore VR technology have been applied for training purposes in the areas of military, safety training and flying simulators. In particular, the superior and high reliability VR training system is very important in immersion. Manipulation training in immersive virtual environments is difficult partly because users must do without the hap contact with real objects they rely on in the real world to orient themselves and their manipulated. In this paper, we create a convincing questionnaire of immersion and an experiment to assess the influence of immersion on performance in VR training system. The Immersion Questionnaire (IQ) included spatial immersion, Psychological immersion, and Sensory immersion. We show that users with a training system complete visual attention and detection of signals. Twenty subjects were allocated to a factorial design consisting of two different VR systems (Desktop VR and Projector VR). The results indicated that different VR representation methods significantly affected the participants- Immersion dimensions.Keywords: Virtual Reality, Training, Immersion, Visual Attention, Visual Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18296670 Scheduling for a Reconfigurable Manufacturing System with Multiple Process Plans and Limited Pallets/Fixtures
Authors: Jae-Min Yu, Hyoung-Ho Doh, Ji-Su Kim, Dong-Ho Lee, Sung-Ho Nam
Abstract:
A reconfigurable manufacturing system (RMS) is an advanced system designed at the outset for rapid changes in its hardware and software components in order to quickly adjust its production capacity and functionally. Among various operational decisions, this study considers the scheduling problem that determines the input sequence and schedule at the same time for a given set of parts. In particular, we consider the practical constraints that the numbers of pallets/fixtures are limited and hence a part can be released into the system only when the fixture required for the part is available. To solve the integrated input sequencing and scheduling problems, we suggest a priority rule based approach in which the two sub-problems are solved using a combination of priority rules. To show the effectiveness of various rule combinations, a simulation experiment was done on the data for a real RMS, and the test results are reported.Keywords: Reconfigurable manufacturing system, scheduling, priority rules, multiple process plans, pallets/fixtures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18966669 Towards a Suitable and Systematic Approach for Component Based Software Development
Authors: Kuljit Kaur, Parminder Kaur, Jaspreet Bedi, Hardeep Singh
Abstract:
Software crisis refers to the situation in which the developers are not able to complete the projects within time and budget constraints and moreover these overscheduled and over budget projects are of low quality as well. Several methodologies have been adopted form time to time to overcome this situation and now in the focus is component based software engineering. In this approach, emphasis is on reuse of already existing software artifacts. But the results can not be achieved just by preaching the principles; they need to be practiced as well. This paper highlights some of the very basic elements of this approach, which has to be in place to get the desired goals of high quality, low cost with shorter time-to-market software products.Keywords: Component Model, Software Components, SoftwareRepository, Process Models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17656668 Impact of ISO 9000 on Time-based Performance: An Event Study
Authors: Chris K. Y. Lo, Andy C. L. Yeung, T. C. Edwin Cheng
Abstract:
ISO 9000 is the most popular and widely adopted meta-standard for quality and operational improvements. However, only limited empirical research has been conducted to examine the impact of ISO 9000 on operational performance based on objective and longitudinal data. To reveal any causal relationship between the adoption of ISO 9000 and operational performance, we examined the timing and magnitude of change in time-based performance as a result of ISO 9000 adoption. We analyzed the changes in operating cycle, inventory days, and account receivable days prior and after the implementation of ISO 9000 in 695 publicly listed manufacturing firms. We found that ISO 9000 certified firms shortened their operating cycle time by 5.28 days one year after the implementation of ISO 9000. In the long-run (3 years after certification), certified firms showed continuous improvement in time-based efficiency, and experienced a shorter operating cycle time of 11 days than that of non-certified firms. There was an average of 6.5% improvement in operating cycle time for ISO 9000 certified firms. Both inventory days and account receivable days showed similar significant improvements after the implementation of ISO 9000, too.
Keywords: ISO 9000, Operating Cycle, Time-based efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20746667 Modelling Conditional Volatility of Saving Rate by a Time-Varying Parameter Model
Authors: Katleho D. Makatjane, Kalebe M. Kalebe
Abstract:
The present paper used time-varying parameters which are based on the score function of a probability density at time t to model volatility of saving rate. We used a scaled likelihood function to update the parameters of the model overtime. Our results revealed high diligence of time-varying since the location parameter is greater than zero. Furthermore, we discovered a leptokurtic condition on saving rate’s distribution. Kapetanios, Shin-Shell Nonlinear Augmented Dickey-Fuller (KSS-NADF) test showed that the saving rate has a nonlinear unit root; therefore, it can be modeled by a generalised autoregressive score (GAS) model. Additionally, value at risk (VaR) and conditional tail expectation (CTE) indicate that 99% of the time people in Lesotho are saving more than spending. This puts the economy in high risk of not expanding. Therefore, the monetary policy committee (MPC) of Lesotho should revise their monetary policies towards this high saving rates risk.
Keywords: Generalized autoregressive score, time-varying, saving rate, Lesotho.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6206666 Impact of Crises on Official Statistics: A Case Study of Environmental Statistics at Statistical Centre for the Cooperation Council for the Arab Countries of the Gulf during the COVID-19 Pandemic
Authors: Ibtihaj Al-Siyabi
Abstract:
The crisis of COVID-19 posed enormous challenges to the statistical providers. While official statistics were disrupted by the pandemic and related containment measures, there was a growing and pressing need for real-time data and statistics to inform decisions. This paper gives an account of the way the pandemic impacted the operations of the National Statistical Offices (NSOs) in general in terms of data collection and methods used, and the main challenges encountered by them based on international surveys. It highlights the performance of the Statistical Centre for the Cooperation Council for the Arab Countries of the Gulf, GCC-STAT, and its responsiveness to the pandemic placing special emphasis on environmental statistics. The paper concludes by confirming the GCC-STAT’s resilience and success in facing the challenges.
Keywords: NSO, COVID-19, pandemic, National Statistical Offices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286665 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems
Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa
Abstract:
Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.Keywords: Day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4508