Search results for: Task Scenarios
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1254

Search results for: Task Scenarios

324 Effect of Scene Changing on Image Sequences Compression Using Zero Tree Coding

Authors: Mbainaibeye Jérôme, Noureddine Ellouze

Abstract:

We study in this paper the effect of the scene changing on image sequences coding system using Embedded Zerotree Wavelet (EZW). The scene changing considered here is the full motion which may occurs. A special image sequence is generated where the scene changing occurs randomly. Two scenarios are considered: In the first scenario, the system must provide the reconstruction quality as best as possible by the management of the bit rate (BR) while the scene changing occurs. In the second scenario, the system must keep the bit rate as constant as possible by the management of the reconstruction quality. The first scenario may be motivated by the availability of a large band pass transmission channel where an increase of the bit rate may be possible to keep the reconstruction quality up to a given threshold. The second scenario may be concerned by the narrow band pass transmission channel where an increase of the bit rate is not possible. In this last case, applications for which the reconstruction quality is not a constraint may be considered. The simulations are performed with five scales wavelet decomposition using the 9/7-tap filter bank biorthogonal wavelet. The entropy coding is performed using a specific defined binary code book and EZW algorithm. Experimental results are presented and compared to LEAD H263 EVAL. It is shown that if the reconstruction quality is the constraint, the system increases the bit rate to obtain the required quality. In the case where the bit rate must be constant, the system is unable to provide the required quality if the scene change occurs; however, the system is able to improve the quality while the scene changing disappears.

Keywords: Image Sequence Compression, Wavelet Transform, Scene Changing, Zero Tree, Bit Rate, Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
323 A 3D Approach for Extraction of the Coronaryartery and Quantification of the Stenosis

Authors: Mahdi Mazinani, S. D. Qanadli, Rahil Hosseini, Tim Ellis, Jamshid Dehmeshki

Abstract:

Segmentation and quantification of stenosis is an important task in assessing coronary artery disease. One of the main challenges is measuring the real diameter of curved vessels. Moreover, uncertainty in segmentation of different tissues in the narrow vessel is an important issue that affects accuracy. This paper proposes an algorithm to extract coronary arteries and measure the degree of stenosis. Markovian fuzzy clustering method is applied to model uncertainty arises from partial volume effect problem. The algorithm employs: segmentation, centreline extraction, estimation of orthogonal plane to centreline, measurement of the degree of stenosis. To evaluate the accuracy and reproducibility, the approach has been applied to a vascular phantom and the results are compared with real diameter. The results of 10 patient datasets have been visually judged by a qualified radiologist. The results reveal the superiority of the proposed method compared to the Conventional thresholding Method (CTM) on both datasets.

Keywords: 3D coronary artery tree extraction, segmentation, quantification, fuzzy clustering, and Markov random field

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
322 The Use of Different Methodological Approaches to Teaching Mathematics at Secondary Level

Authors: M. Rodionov, N. Sharapova, Z. Dedovets

Abstract:

The article describes methods of preparation of future teachers that includes the entire diversity of traditional and computer-oriented methodological approaches. The authors reveal how, in the specific educational environment, a teacher can choose the most effective combination of educational technologies based on the nature of the learning task. The key conditions that determine such a choice are that the methodological approach corresponds to the specificity of the problem being solved and that it is also responsive to the individual characteristics of the students. The article refers to the training of students in the proper use of mathematical electronic tools for educational purposes. The preparation of future mathematics teachers should be a step-by-step process, building on specific examples. At the first stage, students optimally solve problems aided by electronic means of teaching. At the second stage, the main emphasis is on modeling lessons. At the third stage, students develop and implement strategies in the study of one of the topics within a school mathematics curriculum. The article also recommended the implementation of this strategy in preparation of future teachers and stated the possible benefits.

Keywords: Computer-oriented approach, traditional approach, future teachers, mathematics, lesson, students, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006
321 CNet Module Design of IMCS

Authors: Youkyung Park, SeungYup Kang, SungHo Kim, SimKyun Yook

Abstract:

IMCS is Integrated Monitoring and Control System for thermal power plant. This system consists of mainly two parts; controllers and OIS (Operator Interface System). These two parts are connected by Ethernet-based communication. The controller side of communication is managed by CNet module and OIS side is managed by data server of OIS. CNet module sends the data of controller to data server and receives commend data from data server. To minimizes or balance the load of data server, this module buffers data created by controller at every cycle and send buffered data to data server on request of data server. For multiple data server, this module manages the connection line with each data server and response for each request from multiple data server. CNet module is included in each controller of redundant system. When controller fail-over happens on redundant system, this module can provide data of controller to data sever without loss. This paper presents three main features – separation of get task, usage of ring buffer and monitoring communication status –of CNet module to carry out these functions.

Keywords: Ethernet communication, DCS, power plant, ring buffer, data integrity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
320 Understanding the Programming Techniques Using a Complex Case Study to Teach Advanced Object-Oriented Programming

Authors: M. Al-Jepoori, D. Bennett

Abstract:

Teaching Object-Oriented Programming (OOP) as part of a Computing-related university degree is a very difficult task; the road to ensuring that students are actually learning object oriented concepts is unclear, as students often find it difficult to understand the concept of objects and their behavior. This problem is especially obvious in advanced programming modules where Design Pattern and advanced programming features such as Multi-threading and animated GUI are introduced. Looking at the students’ performance at their final year on a university course, it was obvious that the level of students’ understanding of OOP varies to a high degree from one student to another. Students who aim at the production of Games do very well in the advanced programming module. However, the students’ assessment results of the last few years were relatively low; for example, in 2016-2017, the first quartile of marks were as low as 24.5 and the third quartile was 63.5. It is obvious that many students were not confident or competent enough in their programming skills. In this paper, the reasons behind poor performance in Advanced OOP modules are investigated, and a suggested practice for teaching OOP based on a complex case study is described and evaluated.

Keywords: Complex programming case study, design pattern, learning advanced programming, object oriented programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
319 A Fuzzy Multi-objective Model for a Machine Selection Problem in a Flexible Manufacturing System

Authors: Phruksaphanrat B.

Abstract:

This research presents a fuzzy multi-objective model for a machine selection problem in a flexible manufacturing system of a tire company. Two main objectives are minimization of an average machine error and minimization of the total setup time. Conventionally, the working team uses trial and error in selecting a pressing machine for each task due to the complexity and constraints of the problem. So, both objectives may not satisfy. Moreover, trial and error takes a lot of time to get the final decision. Therefore, in this research preemptive fuzzy goal programming model is developed for solving this multi-objective problem. The proposed model can obtain the appropriate results that the Decision Making (DM) is satisfied for both objectives. Besides, alternative choice can be easily generated by varying the satisfaction level. Additionally, decision time can be reduced by using the model, which includes all constraints of the system to generate the solutions. A numerical example is also illustrated to show the effectiveness of the proposed model.

Keywords: Machine Selection, Preemptive Fuzzy Goal Programming, Mixed Integer Programming, Application of Tire Industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
318 On Developing an Automatic Speech Recognition System for Standard Arabic Language

Authors: R. Walha, F. Drira, H. El-Abed, A. M. Alimi

Abstract:

The Automatic Speech Recognition (ASR) applied to Arabic language is a challenging task. This is mainly related to the language specificities which make the researchers facing multiple difficulties such as the insufficient linguistic resources and the very limited number of available transcribed Arabic speech corpora. In this paper, we are interested in the development of a HMM-based ASR system for Standard Arabic (SA) language. Our fundamental research goal is to select the most appropriate acoustic parameters describing each audio frame, acoustic models and speech recognition unit. To achieve this purpose, we analyze the effect of varying frame windowing (size and period), acoustic parameter number resulting from features extraction methods traditionally used in ASR, speech recognition unit, Gaussian number per HMM state and number of embedded re-estimations of the Baum-Welch Algorithm. To evaluate the proposed ASR system, a multi-speaker SA connected-digits corpus is collected, transcribed and used throughout all experiments. A further evaluation is conducted on a speaker-independent continue SA speech corpus. The phonemes recognition rate is 94.02% which is relatively high when comparing it with another ASR system evaluated on the same corpus.

Keywords: ASR, HMM, acoustical analysis, acoustic modeling, Standard Arabic language

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
317 Gene Expression Signature for Classification of Metastasis Positive and Negative Oral Cancer in Homosapiens

Authors: A. Shukla, A. Tarsauliya, R. Tiwari, S. Sharma

Abstract:

Cancer classification to their corresponding cohorts has been key area of research in bioinformatics aiming better prognosis of the disease. High dimensionality of gene data has been makes it a complex task and requires significance data identification technique in order to reducing the dimensionality and identification of significant information. In this paper, we have proposed a novel approach for classification of oral cancer into metastasis positive and negative patients. We have used significance analysis of microarrays (SAM) for identifying significant genes which constitutes gene signature. 3 different gene signatures were identified using SAM from 3 different combination of training datasets and their classification accuracy was calculated on corresponding testing datasets using k-Nearest Neighbour (kNN), Fuzzy C-Means Clustering (FCM), Support Vector Machine (SVM) and Backpropagation Neural Network (BPNN). A final gene signature of only 9 genes was obtained from above 3 individual gene signatures. 9 gene signature-s classification capability was compared using same classifiers on same testing datasets. Results obtained from experimentation shows that 9 gene signature classified all samples in testing dataset accurately while individual genes could not classify all accurately.

Keywords: Cancer, Gene Signature, SAM, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
316 Using Teager Energy Cepstrum and HMM distancesin Automatic Speech Recognition and Analysis of Unvoiced Speech

Authors: Panikos Heracleous

Abstract:

In this study, the use of silicon NAM (Non-Audible Murmur) microphone in automatic speech recognition is presented. NAM microphones are special acoustic sensors, which are attached behind the talker-s ear and can capture not only normal (audible) speech, but also very quietly uttered speech (non-audible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech conversion etc.) for sound-impaired people. Using a small amount of training data and adaptation approaches, 93.9% word accuracy was achieved for a 20k Japanese vocabulary dictation task. Non-audible murmur recognition in noisy environments is also investigated. In this study, further analysis of the NAM speech has been made using distance measures between hidden Markov model (HMM) pairs. It has been shown the reduced spectral space of NAM speech using a metric distance, however the location of the different phonemes of NAM are similar to the location of the phonemes of normal speech, and the NAM sounds are well discriminated. Promising results in using nonlinear features are also introduced, especially under noisy conditions.

Keywords: Speech recognition, unvoiced speech, nonlinear features, HMM distance measures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
315 Measuring the Cognitive Abilities of Teenage Basketball Players in Singapore

Authors: Stella Y. Ng, John B. Peacock, Kay Chuan Tan

Abstract:

This paper discusses the use of a computerized test to measure the decision-making abilities of teenage basketball players in Singapore. There are five sections in this test – Competitive state anxiety inventory-2 (CSAI-2) questionnaire (measures player’s cognitive anxiety, somatic anxiety and self-confidence), Corsi block-tapping task (measures player’s short-term spatial memory), situation awareness global assessment technique (SAGAT) (measures players’ situation awareness in a basketball game), multiple choice questions on basketball knowledge (measures players’ knowledge of basketball rules and concepts), and lastly, a learning test that requires participants to recall and recognize basketball set plays (measures player’s ability to learn and recognize set plays). A total of 25 basketball players, aged 14 to 16 years old, from three secondary school teams participated in this experiment. The results that these basketball players obtained from this cognitive test were then used to compare with their physical fitness and basketball performance.

Keywords: Basketball, cognitive abilities, computerized test, decision-making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
314 Confronting the Uncertainty of Systemic Innovation in Public Welfare Services

Authors: Harri Jalonen

Abstract:

Faced with social and health system capacity constraints and rising and changing demand for welfare services, governments and welfare providers are increasingly relying on innovation to help support and enhance services. However, the evidence reported by several studies indicates that the realization of that potential is not an easy task. Innovations can be deemed inherently complex to implement and operate, because many of them involve a combination of technological and organizational renewal within an environment featuring a diversity of stakeholders. Many public welfare service innovations are markedly systemic in their nature, which means that they emerge from, and must address, the complex interplay between political, administrative, technological, institutional and legal issues. This paper suggests that stakeholders dealing with systemic innovation in welfare services must deal with ambiguous and incomplete information in circumstances of uncertainty. Employing a literature review methodology and case study, this paper identifies, categorizes and discusses different aspects of the uncertainty of systemic innovation in public welfare services, and argues that uncertainty can be classified into eight categories: technological uncertainty, market uncertainty, regulatory/institutional uncertainty, social/political uncertainty, acceptance/legitimacy uncertainty, managerial uncertainty, timing uncertainty and consequence uncertainty.

Keywords: Systemic innovation, uncertainty, welfare services

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
313 Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece

Authors: Chrysanthos Maraveas, Argiris Plesias, Garyfalia G. Triantafyllou, Konstantinos Petronikolos

Abstract:

The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required.

Keywords: Earthquake resistance, pushover analysis, reinforced concrete, retrofit, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
312 Unsupervised Outlier Detection in Streaming Data Using Weighted Clustering

Authors: Yogita, Durga Toshniwal

Abstract:

Outlier detection in streaming data is very challenging because streaming data cannot be scanned multiple times and also new concepts may keep evolving. Irrelevant attributes can be termed as noisy attributes and such attributes further magnify the challenge of working with data streams. In this paper, we propose an unsupervised outlier detection scheme for streaming data. This scheme is based on clustering as clustering is an unsupervised data mining task and it does not require labeled data, both density based and partitioning clustering are combined for outlier detection. In this scheme partitioning clustering is also used to assign weights to attributes depending upon their respective relevance and weights are adaptive. Weighted attributes are helpful to reduce or remove the effect of noisy attributes. Keeping in view the challenges of streaming data, the proposed scheme is incremental and adaptive to concept evolution. Experimental results on synthetic and real world data sets show that our proposed approach outperforms other existing approach (CORM) in terms of outlier detection rate, false alarm rate, and increasing percentages of outliers.

Keywords: Concept Evolution, Irrelevant Attributes, Streaming Data, Unsupervised Outlier Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637
311 Application of Data Mining Tools to Predicate Completion Time of a Project

Authors: Seyed Hossein Iranmanesh, Zahra Mokhtari

Abstract:

Estimation time and cost of work completion in a project and follow up them during execution are contributors to success or fail of a project, and is very important for project management team. Delivering on time and within budgeted cost needs to well managing and controlling the projects. To dealing with complex task of controlling and modifying the baseline project schedule during execution, earned value management systems have been set up and widely used to measure and communicate the real physical progress of a project. But it often fails to predict the total duration of the project. In this paper data mining techniques is used predicting the total project duration in term of Time Estimate At Completion-EAC (t). For this purpose, we have used a project with 90 activities, it has updated day by day. Then, it is used regular indexes in literature and applied Earned Duration Method to calculate time estimate at completion and set these as input data for prediction and specifying the major parameters among them using Clem software. By using data mining, the effective parameters on EAC and the relationship between them could be extracted and it is very useful to manage a project with minimum delay risks. As we state, this could be a simple, safe and applicable method in prediction the completion time of a project during execution.

Keywords: Data Mining Techniques, Earned Duration Method, Earned Value, Estimate At Completion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
310 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography

Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz

Abstract:

Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.

Keywords: Ring recognition, edge detection, X-ray computed tomography, dendrochronology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
309 Effects of External and Internal Focus of Attention in Motor Learning of Children Cerebral Palsy

Authors: Morteza Pourazar, Fatemeh Mirakhori, Fazlolah Bagherzadeh, Rasool Hemayattalab

Abstract:

The purpose of study was to examine the effects of external and internal focus of attention in the motor learning of children with cerebral palsy. The study involved 30 boys (7 to 12 years old) with CP type 1 who practiced throwing beanbags. The participants were randomly assigned to the internal focus, external focus, and control groups, and performed six blocks of 10-trial with attentional focus reminders during a practice phase and no reminders during retention and transfer tests. Analysis of variance (ANOVA) with repeated measures on the last factor was used. The results show that significant main effects were found for time and group. However, the interaction of time and group was not significant. Retention scores were significantly higher for the external focus group. The external focus group performed better than other groups; however, the internal focus and control groups’ performance did not differ. The study concluded that motor skills in Spastic Hemiparetic Cerebral Palsy (SHCP) children could be enhanced by external attention.

Keywords: Cerebral Palsy, external attention, internal attention, throwing task.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
308 Hybrid Gravity Gradient Inversion-Ant Colony Optimization Algorithm for Motion Planning of Mobile Robots

Authors: Meng Wu

Abstract:

Motion planning is a common task required to be fulfilled by robots. A strategy combining Ant Colony Optimization (ACO) and gravity gradient inversion algorithm is proposed for motion planning of mobile robots. In this paper, in order to realize optimal motion planning strategy, the cost function in ACO is designed based on gravity gradient inversion algorithm. The obstacles around mobile robot can cause gravity gradient anomalies; the gradiometer is installed on the mobile robot to detect the gravity gradient anomalies. After obtaining the anomalies, gravity gradient inversion algorithm is employed to calculate relative distance and orientation between mobile robot and obstacles. The relative distance and orientation deduced from gravity gradient inversion algorithm is employed as cost function in ACO algorithm to realize motion planning. The proposed strategy is validated by the simulation and experiment results.

Keywords: Motion planning, gravity gradient inversion algorithm, ant colony optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
307 A Robust Extrapolation Method for Curtailed Aperture Reconstruction in Acoustic Imaging

Authors: R. Bremananth

Abstract:

Acoustic Imaging based sound localization using microphone array is a challenging task in digital-signal processing. Discrete Fourier transform (DFT) based near-field acoustical holography (NAH) is an important acoustical technique for sound source localization and provide an efficient solution to the ill-posed problem. However, in practice, due to the usage of small curtailed aperture and its consequence of significant spectral leakage, the DFT could not reconstruct the active-region-of-sound (AROS) effectively, especially near the edges of aperture. In this paper, we emphasize the fundamental problems of DFT-based NAH, provide a solution to spectral leakage effect by the extrapolation based on linear predictive coding and 2D Tukey windowing. This approach has been tested to localize the single and multi-point sound sources. We observe that incorporating extrapolation technique increases the spatial resolution, localization accuracy and reduces spectral leakage when small curtail aperture with a lower number of sensors accounts.

Keywords: Acoustic Imaging, Discrete Fourier Transform (DFT), k-space wavenumber, Near-Field Acoustical Holography (NAH), Source Localization, Spectral Leakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
306 Authentication Protocol for Wireless Sensor Networks

Authors: Sunil Gupta, Harsh Kumar Verma, AL Sangal

Abstract:

Wireless sensor networks can be used to measure and monitor many challenging problems and typically involve in monitoring, tracking and controlling areas such as battlefield monitoring, object tracking, habitat monitoring and home sentry systems. However, wireless sensor networks pose unique security challenges including forgery of sensor data, eavesdropping, denial of service attacks, and the physical compromise of sensor nodes. Node in a sensor networks may be vanished due to power exhaustion or malicious attacks. To expand the life span of the sensor network, a new node deployment is needed. In military scenarios, intruder may directly organize malicious nodes or manipulate existing nodes to set up malicious new nodes through many kinds of attacks. To avoid malicious nodes from joining the sensor network, a security is required in the design of sensor network protocols. In this paper, we proposed a security framework to provide a complete security solution against the known attacks in wireless sensor networks. Our framework accomplishes node authentication for new nodes with recognition of a malicious node. When deployed as a framework, a high degree of security is reachable compared with the conventional sensor network security solutions. A proposed framework can protect against most of the notorious attacks in sensor networks, and attain better computation and communication performance. This is different from conventional authentication methods based on the node identity. It includes identity of nodes and the node security time stamp into the authentication procedure. Hence security protocols not only see the identity of each node but also distinguish between new nodes and old nodes.

Keywords: Authentication, Key management, Wireless Sensornetwork, Elliptic curve cryptography (ECC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3824
305 Counterpropagation Neural Network for Solving Power Flow Problem

Authors: Jayendra Krishna, Laxmi Srivastava

Abstract:

Power flow (PF) study, which is performed to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state operating condition of a system, is very important and is the most frequently carried out study by power utilities for power system planning, operation and control. In this paper, a counterpropagation neural network (CPNN) is proposed to solve power flow problem under different loading/contingency conditions for computing bus voltage magnitudes and angles of the power system. The counterpropagation network uses a different mapping strategy namely counterpropagation and provides a practical approach for implementing a pattern mapping task, since learning is fast in this network. The composition of the input variables for the proposed neural network has been selected to emulate the solution process of a conventional power flow program. The effectiveness of the proposed CPNN based approach for solving power flow is demonstrated by computation of bus voltage magnitudes and voltage angles for different loading conditions and single line-outage contingencies in IEEE 14-bus system.

Keywords: Admittance matrix, counterpropagation neural network, line outage contingency, power flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430
304 Lessons to Management from the Control Loop Phenomenon

Authors: Raied Salman, Nazar Younis

Abstract:

In a none-super-competitive environment the concepts of closed system, management control remains to be the dominant guiding concept to management. The merits of closed loop have been the sources of most of the management literature and culture for many decades. It is a useful exercise to investigate and poke into the dynamics of the control loop phenomenon and draws some lessons to use for refining the practice of management. This paper examines the multitude of lessons abstracted from the behavior of the Input /output /feedback control loop model, which is the core of control theory. There are numerous lessons that can be learned from the insights this model would provide and how it parallels the management dynamics of the organization. It is assumed that an organization is basically a living system that interacts with the internal and external variables. A viable control loop is the one that reacts to the variation in the environment and provide or exert a corrective action. In managing organizations this is reflected in organizational structure and management control practices. This paper will report findings that were a result of examining several abstract scenarios that are exhibited in the design, operation, and dynamics of the control loop and how they are projected on the functioning of the organization. Valuable lessons are drawn in trying to find parallels and new paradigms, and how the control theory science is reflected in the design of the organizational structure and management practices. The paper is structured in a logical and perceptive format. Further research is needed to extend these findings.

Keywords: Management theory, control theory, feed back, input/output, strategy, change, information technology, informationsystems, IS, organizational environment, organizations, opensystems, closed systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
303 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Authors: Fawaz S. Al-Anzi, Dia AbuZeina

Abstract:

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

Keywords: Speech recognition, acoustic features, Mel Frequency Cepstral Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
302 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations

Authors: Yehjune Heo

Abstract:

Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.

Keywords: Anti-spoofing, CNN, fingerprint recognition, GAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
301 Controller Design and Experimental Evaluation of a Motorized Assistance for a Patient Transfer Floor Lift

Authors: Donatien Callon, Ian Lalonde, Mathieu Nadeau, Alexandre Girard

Abstract:

Patient transfer is a challenging, critical task because it exposes caregivers to injury risks. Available transfer devices, like floor lifts, lead to improvements but are far from perfect. They do not eliminate the caregivers’ risk of musculoskeletal disorders, and they can be burdensome to use due to their poor maneuverability. This paper presents a motorized floor lift with a single central motorized wheel connected to an instrumented handle. Admittance controllers are designed to 1) improve the device maneuverability, 2) reduce the required caregiver effort, and 3) ensure the security and comfort of patients. Two controller designs, one with a linear admittance law and a non-linear admittance law with variable damping, were developed and implemented on a prototype. Tests were performed on seven participants to evaluate the performance of the assistance system and the controllers. The experimental results show that 1) the motorized assistance with the variable damping controller improves maneuverability by 28%, 2) reduces the amount of effort required to push the lift by 66% and 3) provides the same level of patient comfort compared to a standard unassisted floor lift.

Keywords: Floor lift, human robot interaction, admittance controller, variable admittance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53
300 Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications

Authors: Kanthida Kusonmano, Michael Netzer, Bernhard Pfeifer, Christian Baumgartner, Klaus R. Liedl, Armin Graber

Abstract:

Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.

Keywords: Classification, High dimensional data, Machine learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
299 The Use of SD Bioline TB AgMPT64® Detection Assay for Rapid Characterization of Mycobacteria in Nigeria

Authors: S. Ibrahim, U. B. Abubakar, S. Danbirni, A. Usman, F. M. Ballah, C. A. Kudi, L. Lawson, G. H. Abdulrazak, I. A. Abdulkadir

Abstract:

Performing culture and characterization of mycobacteria in low resource settings like Nigeria is a very difficult task to undertake because of the very few and limited laboratories carrying out such an experiment; this is a largely due to stringent and laborious nature of the tests. Hence, a rapid, simple and accurate test for characterization is needed. The “SD BIOLINE TB Ag MPT 64 Rapid ®” is a simple and rapid immunochromatographic test used in differentiating Mycobacteria into Mycobacterium tuberculosis (NTM). The 100 sputa were obtained from patients suspected to be infected with tuberculosis and presented themselves to hospitals for check-up and treatment were involved in the study. The samples were cultured in a class III Biosafety cabinet and level III biosafety practices were followed. Forty isolates were obtained from the cultured sputa, and there were identified as Acid-fast bacilli (AFB) using Zeihl-Neelsen acid-fast stain. All the isolates (AFB positive) were then subjected to the SD BIOLINE Analyses. A total of 31 (77.5%) were characterized as MTBC, while nine (22.5%) were NTM. The total turnaround time for the rapid assay was just 30 minutes as compared to a few days of phenotypic and genotypic method. It was simple, rapid and reliable test to differentiate MTBC from NTM.

Keywords: Culture, mycobacteria, non-tuberculous mycobacteria, SD bioline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
298 Modeling the Hybrid Battery/Super-Storage System for a Solar Standalone Microgrid

Authors: Astiaj Khoramshahi, Hossein Ahmadi Danesh Ashtiani, Ahmad Khoshgard, Hamidreza Damghani, Leila Damghani

Abstract:

Solar energy systems using various storages are required to be evaluated based on energy requirements and applications. Also, modeling and analysis of storage systems are necessary to increase the effectiveness of combinations of these systems. In this paper, analysis based on the MATLAB software has been analyzed to evaluate the response of the hybrid energy system considering various technologies of renewable energy and energy storage. In the present study, three different simulation scenarios are presented. Simulation output results using software for the first scenario show that the battery is effective in smoothing the overall power demand to the consumer studied during a day, but temporary loads on the grid with high frequencies, effectively cannot be canceled due to the limited response speed of battery control. Simulation outputs for the second scenario using the energy storage system show that sudden changes in demand power are paved by super saving. The majority of these sudden changes in power demand are caused by sewing consumers and receiving variable solar power (due to clouds passing through the solar array). Simulation outputs for the third scenario show the effects of the hybrid system for the same consumer and the output of the solar array, leading to the smallest amount of power demand fed into the grid, as well as demand at peak times. According to the "battery only" scenario, the displacement technique of the peak load has been significantly reduced.

Keywords: Storage system, super storage, standalone, microgrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 335
297 The Effects of Visual Elements and Cognitive Styles on Students Learning in Hypermedia Environment

Authors: Rishi Ruttun

Abstract:

One of the major features of hypermedia learning is its non-linear structure, allowing learners, the opportunity of flexible navigation to accommodate their own needs. Nevertheless, such flexibility can also cause problems such as insufficient navigation and disorientation for some learners, especially those with Field Dependent cognitive styles. As a result students learning performance can be deteriorated and in turn, they can have negative attitudes with hypermedia learning systems. It was suggested that visual elements can be used to compensate dilemmas. However, it is unclear whether these visual elements improve their learning or whether problems still exist. The aim of this study is to investigate the effect of students cognitive styles and visual elements on students learning performance and attitudes in hypermedia learning environment. Cognitive Style Analysis (CSA), Learning outcome in terms of pre and post-test, practical task, and Attitude Questionnaire (AQ) were administered to a sample of 60 university students. The findings revealed that FD students preformed equally to those of FI. Also, FD students experienced more disorientation in the hypermedia learning system where they depend a lot on the visual elements for navigation and orientation purposes. Furthermore, they had more positive attitudes towards the visual elements which escape them from experiencing navigation and disorientation dilemmas. In contrast, FI students were more comfortable, did not get disturbed or did not need some of the visual elements in the hypermedia learning system.

Keywords: Hypermedia learning, cognitive styles, visual elements, support, learning performance, attitudes and perceptions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
296 Mining Correlated Bicluster from Web Usage Data Using Discrete Firefly Algorithm Based Biclustering Approach

Authors: K. Thangavel, R. Rathipriya

Abstract:

For the past one decade, biclustering has become popular data mining technique not only in the field of biological data analysis but also in other applications like text mining, market data analysis with high-dimensional two-way datasets. Biclustering clusters both rows and columns of a dataset simultaneously, as opposed to traditional clustering which clusters either rows or columns of a dataset. It retrieves subgroups of objects that are similar in one subgroup of variables and different in the remaining variables. Firefly Algorithm (FA) is a recently-proposed metaheuristic inspired by the collective behavior of fireflies. This paper provides a preliminary assessment of discrete version of FA (DFA) while coping with the task of mining coherent and large volume bicluster from web usage dataset. The experiments were conducted on two web usage datasets from public dataset repository whereby the performance of FA was compared with that exhibited by other population-based metaheuristic called binary Particle Swarm Optimization (PSO). The results achieved demonstrate the usefulness of DFA while tackling the biclustering problem.

Keywords: Biclustering, Binary Particle Swarm Optimization, Discrete Firefly Algorithm, Firefly Algorithm, Usage profile Web usage mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
295 A Monte Carlo Method to Data Stream Analysis

Authors: Kittisak Kerdprasop, Nittaya Kerdprasop, Pairote Sattayatham

Abstract:

Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.

Keywords: Data Stream, Monte Carlo, Sampling, DensityEstimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417