Search results for: Induction Hardening Machine.
608 Analysis of Modified Heap Sort Algorithm on Different Environment
Authors: Vandana Sharma, Parvinder S. Sandhu, Satwinder Singh, Baljit Saini
Abstract:
In field of Computer Science and Mathematics, sorting algorithm is an algorithm that puts elements of a list in a certain order i.e. ascending or descending. Sorting is perhaps the most widely studied problem in computer science and is frequently used as a benchmark of a system-s performance. This paper presented the comparative performance study of four sorting algorithms on different platform. For each machine, it is found that the algorithm depends upon the number of elements to be sorted. In addition, as expected, results show that the relative performance of the algorithms differed on the various machines. So, algorithm performance is dependent on data size and there exists impact of hardware also.Keywords: Algorithm, Analysis, Complexity, Sorting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412607 Path Planning of a Robot Manipulator using Retrieval RRT Strategy
Authors: K. Oh, J. P. Hwang, E. Kim, H. Lee
Abstract:
This paper presents an algorithm which extends the rapidly-exploring random tree (RRT) framework to deal with change of the task environments. This algorithm called the Retrieval RRT Strategy (RRS) combines a support vector machine (SVM) and RRT and plans the robot motion in the presence of the change of the surrounding environment. This algorithm consists of two levels. At the first level, the SVM is built and selects a proper path from the bank of RRTs for a given environment. At the second level, a real path is planned by the RRT planners for the given environment. The suggested method is applied to the control of KUKA™,, a commercial 6 DOF robot manipulator, and its feasibility and efficiency are demonstrated via the cosimulatation of MatLab™, and RecurDyn™,.Keywords: Path planning, RRT, 6 DOF manipulator, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531606 Effect of Genotype, Explant Type and Growth Regulators on The Accumulation of Flavonoides of (Silybum marianum L.) in In vitro Culture
Authors: A. Pourjabar, S.A. Mohammadi, R. Ghahramanzadeh, Gh. Salimi
Abstract:
The extract of milk thistle contains a mix of flavonolignans termed silymarine.. In order to analysis influence of growth regulators, genotype, explant and subculture on the accumulation of flavonolignans, a study was carried out by using two genotype (Budakalszi and Noor abad moghan cultivars), cotyledon and hypocotyle explants, solid media of MS supplemented by different combinations of two growth regulators; Kinetin (0.1, 1 mg/l) and 2,4-D (1, 2 mg/l). Seeds of the plant were germinated in MS media whitout growth regulators in growth chamber at 26°C and darkness condition. In order to callus induction, the culture media was supplemented whit different concentrations of 2,4-D and kinetin. Calli obtained from explants were sub-cultured four times into the fresh media of the first experiment. flavonoides was extracted from calli in four subcultures. The flavonoid components were determined by high- performance liquid choromatography (HPLC) and separated into Taxifolin, Silydianin+Silychristin, Silybin A+B and Isosilybin A+B. Results showed that with increasing callus age, increased accumulation of silybin A+B, but reduced Isosilybin A+B content. Highest accumulation of Taxifolin was observed at first calli. Calli produced from cotyledon explant of Budakalszi cultivar were superior for Silybin A+B, where calli from hypocotyl explant produced higher amount of Taxifolin and Silydianin+Silychristin. The best cultivar for Silymarin production in this study was Budakalszi cultivar. High amount of SBN A+B and TXF were obtained from hypocotil explant.
Keywords: Callus culture, Flavonolignans, Silimarine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935605 Data Preprocessing for Supervised Leaning
Authors: S. B. Kotsiantis, D. Kanellopoulos, P. E. Pintelas
Abstract:
Many factors affect the success of Machine Learning (ML) on a given task. The representation and quality of the instance data is first and foremost. If there is much irrelevant and redundant information present or noisy and unreliable data, then knowledge discovery during the training phase is more difficult. It is well known that data preparation and filtering steps take considerable amount of processing time in ML problems. Data pre-processing includes data cleaning, normalization, transformation, feature extraction and selection, etc. The product of data pre-processing is the final training set. It would be nice if a single sequence of data pre-processing algorithms had the best performance for each data set but this is not happened. Thus, we present the most well know algorithms for each step of data pre-processing so that one achieves the best performance for their data set.Keywords: Data mining, feature selection, data cleaning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6091604 A Study of Cooperative Co-evolutionary Genetic Algorithm for Solving Flexible Job Shop Scheduling Problem
Authors: Lee Yih Rou, Hishammuddin Asmuni
Abstract:
Flexible Job Shop Problem (FJSP) is an extension of classical Job Shop Problem (JSP). The FJSP extends the routing flexibility of the JSP, i.e assigning machine to an operation. Thus it makes it more difficult than the JSP. In this study, Cooperative Coevolutionary Genetic Algorithm (CCGA) is presented to solve the FJSP. Makespan (time needed to complete all jobs) is used as the performance evaluation for CCGA. In order to test performance and efficiency of our CCGA the benchmark problems are solved. Computational result shows that the proposed CCGA is comparable with other approaches.Keywords: Co-evolution, Genetic Algorithm (GA), Flexible JobShop Problem(FJSP)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788603 Continuous Text Translation Using Text Modeling in the Thetos System
Authors: Nina Suszczanska, Przemyslaw Szmal, Slawomir Kulikow
Abstract:
In the paper a method of modeling text for Polish is discussed. The method is aimed at transforming continuous input text into a text consisting of sentences in so called canonical form, whose characteristic is, among others, a complete structure as well as no anaphora or ellipses. The transformation is lossless as to the content of text being transformed. The modeling method has been worked out for the needs of the Thetos system, which translates Polish written texts into the Polish sign language. We believe that the method can be also used in various applications that deal with the natural language, e.g. in a text summary generator for Polish.Keywords: anaphora, machine translation, NLP, sign language, text syntax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656602 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling
Authors: Prof. Chokri SLIM
Abstract:
A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.
Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16687601 Symbolic Model Checking of Interactions in Sequence Diagrams with Combined Fragments by SMV
Authors: Yuka Kawakami, Tomoyuki Yokogawa, Hisashi Miyazaki, Sousuke Amasaki, Yoichiro Sato, Michiyoshi Hayase
Abstract:
In this paper, we proposed a method for detecting consistency violation between state machine diagrams and a sequence diagram defined in UML 2.0 using SMV. We extended a method expressing these diagrams defined in UML 1.0 with boolean formulas so that it can express a sequence diagram with combined fragments introduced in UML 2.0. This extension made it possible to represent three types of combined fragment: alternative, option and parallel. As a result of experiment, we confirmed that the proposed method could detect consistency violation correctly with SMV.
Keywords: UML, model checking, SMV, sequence diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469600 Performance of BLDC Motor under Kalman Filter Sensorless Drive
Authors: Yuri Boiko, Ci Lin, Iluju Kiringa, Tet Yeap
Abstract:
The performance of a permanent magnet brushless direct current (BLDC) motor controlled by the Kalman filter based position-sensorless drive is studied in terms of its dependence from the system’s parameters variations. The effects of the system’s parameters changes on the dynamic behavior of state variables are verified. Simulated is the closed loop control scheme with Kalman filter in the feedback line. Distinguished are two separate data sampling modes in analyzing feedback output from the BLDC motor: (1) equal angular separation and (2) equal time intervals. In case (1), the data are collected via equal intervals of rotor’s angular position i, i.e. keeping = const. In case (2), the data collection time points ti are separated by equal sampling time intervals t = const. Demonstrated are the effects of the parameters changes on the sensorless control flow, in particular, reduction of the instability torque ripples, switching spikes, and torque load balancing. It is specifically shown that an efficient suppression of commutation induced instability torque ripples is an achievable selection of the sampling rate in the Kalman filter settings above a certain critical value. The computational cost of such suppression is shown to be higher for the motors with lower induction values of the windings.
Keywords: BLDC motor, Kalman filter, sensorless drive, state variables, instability torque ripples reduction, sampling rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729599 Building Relationship Network for Machine Analysis from Wear Debris Measurements
Authors: Qurban A Memon, Mohammad S. Laghari
Abstract:
Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear debris analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self-organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear debris. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.Keywords: Relationship Network, Relationship Measurement, Self-organizing Clusters, Wear Debris Analysis, Kohonen Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940598 Steady-State Performance of a New Model for UPFC Applied to Multi-Machines System with Nonlinear Load
Authors: S.Ali Al-Mawsawi
Abstract:
In this paper, a new developed construction model of the UPFC is proposed. The construction of this model consists of one shunt compensation block and two series compensation blocks. In this case, the UPFC with the new construction model will be investigated when it is installed in multi-machine systems with nonlinear load model. In addition, the steady–state performance of the new model operating as impedance compensation will be presented and compared with that obtained from the system without compensation.Keywords: UPFC, PWM, Nonlinear load, Multi-Machines system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823597 Ranking - Convex Risk Minimization
Authors: Wojciech Rejchel
Abstract:
The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.
Keywords: Convex loss function, empirical risk minimization, empirical process, U-process, boosting, euclidean family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414596 Quantitative Analysis of PCA, ICA, LDA and SVM in Face Recognition
Authors: Liton Jude Rozario, Mohammad Reduanul Haque, Md. Ziarul Islam, Mohammad Shorif Uddin
Abstract:
Face recognition is a technique to automatically identify or verify individuals. It receives great attention in identification, authentication, security and many more applications. Diverse methods had been proposed for this purpose and also a lot of comparative studies were performed. However, researchers could not reach unified conclusion. In this paper, we are reporting an extensive quantitative accuracy analysis of four most widely used face recognition algorithms: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) using AT&T, Sheffield and Bangladeshi people face databases under diverse situations such as illumination, alignment and pose variations.
Keywords: PCA, ICA, LDA, SVM, face recognition, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431595 The Ballistics Case Study of the Enrica Lexie Incident
Authors: Diego Abbo
Abstract:
On February 15, 2012 off the Indian coast of Kerala, in position 091702N-0760180E by the oil tanker Enrica Lexie, flying the Italian flag, bursts of 5.56 x45 caliber shots were fired from assault rifles AR/70 Italian-made Beretta towards the Indian fisher boat St. Anthony. The shots that hit the St. Anthony fishing boat were six, of which two killed the Indian fishermen Ajesh Pink and Valentine Jelestine. From the analysis concerning the kinematic engagement of the two ships and from the autopsy and ballistic results of the Indian judicial authorities it is possible to reconstruct the trajectories of the six aforementioned shots. This essay reconstructs the trajectories of the six shots that cannot be of direct shooting but have undergone a rebound on the water. The investigation carried out scientifically demonstrates the rebound of the blows on the water, the gyrostatic deviation due to the rebound and the tumbling effect always due to the rebound as regards intermediate ballistics. In consideration of the four shots that directly impacted the fishing vessel, the current examination proves, with scientific value, that the trajectories could not be downwards but upwards. Also, the trajectory of two shots that hit to death the two fishermen could not be downwards but only upwards. In fact, this paper demonstrates, with scientific value: The loss of speed of the projectiles due to the rebound on the water; The tumbling effect in the ballistic medium within the two victims; The permanent cavities subject to the injury ballistics and the related ballistic trauma that prevented homeostasis causing bleeding in one case; The thermo-hardening deformation of the bullet found in Valentine Jelestine's skull; The upward and non-downward trajectories. The paper constitutes a tool in forensic ballistics in that it manages to reconstruct, from the final spot of the projectiles fired, all phases of ballistics like the internal one of the weapons that fired, the intermediate one, the terminal one and the penetrative structural one. In general terms the ballistics reconstruction is based on measurable parameters whose entity is contained with certainty within a lower and upper limit. Therefore, quantities that refer to angles, speed, impact energy and firing position of the shooter can be identified within the aforementioned limits. Finally, the investigation into the internal bullet track, obtained from any autopsy examination, offers a significant “lesson learned” but overall a starting point to contain or mitigate bleeding as a rescue from future gunshot wounds.
Keywords: Impact physics, intermediate ballistics, terminal ballistics, tumbling effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840594 Optimization of Structure of Section-Based Automated Lines
Authors: R. Usubamatov, M. Z. Abdulmuin
Abstract:
Automated production lines with so called 'hard structures' are widely used in manufacturing. Designers segmented these lines into sections by placing a buffer between the series of machine tools to increase productivity. In real production condition the capacity of a buffer system is limited and real production line can compensate only some part of the productivity losses of an automated line. The productivity of such production lines cannot be readily determined. This paper presents mathematical approach to solving the structure of section-based automated production lines by criterion of maximum productivity.
Keywords: optimization production line, productivity, sections
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325593 A Novel Fuzzy-Neural Based Medical Diagnosis System
Authors: S. Moein, S. A. Monadjemi, P. Moallem
Abstract:
In this paper, application of artificial neural networks in typical disease diagnosis has been investigated. The real procedure of medical diagnosis which usually is employed by physicians was analyzed and converted to a machine implementable format. Then after selecting some symptoms of eight different diseases, a data set contains the information of a few hundreds cases was configured and applied to a MLP neural network. The results of the experiments and also the advantages of using a fuzzy approach were discussed as well. Outcomes suggest the role of effective symptoms selection and the advantages of data fuzzificaton on a neural networks-based automatic medical diagnosis system.Keywords: Artificial Neural Networks, Fuzzy Logic, MedicalDiagnosis, Symptoms, Fuzzification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260592 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.
Keywords: DNA microarray, feature selection, missing data, bioinformatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791591 Classification Influence Index and its Application for k-Nearest Neighbor Classifier
Authors: Sejong Oh
Abstract:
Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.Keywords: accuracy, classification, dataset, data preprocessing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495590 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels
Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery
Abstract:
The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.
Keywords: Interstitial free, miniaturized tensile specimen, plastic anisotropy, rapid alloy prototyping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145589 An Efficient Feature Extraction Algorithm for the Recognition of Handwritten Arabic Digits
Authors: Ahmad T. Al-Taani
Abstract:
In this paper, an efficient structural approach for recognizing on-line handwritten digits is proposed. After reading the digit from the user, the slope is estimated and normalized for adjacent nodes. Based on the changing of signs of the slope values, the primitives are identified and extracted. The names of these primitives are represented by strings, and then a finite state machine, which contains the grammars of the digits, is traced to identify the digit. Finally, if there is any ambiguity, it will be resolved. Experiments showed that this technique is flexible and can achieve high recognition accuracy for the shapes of the digits represented in this work.Keywords: Digits Recognition, Pattern Recognition, FeatureExtraction, Structural Primitives, Document Processing, Handwritten Recognition, Primitives Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642588 Concurrent Approach to Data Parallel Model using Java
Authors: Bala Dhandayuthapani Veerasamy
Abstract:
Parallel programming models exist as an abstraction of hardware and memory architectures. There are several parallel programming models in commonly use; they are shared memory model, thread model, message passing model, data parallel model, hybrid model, Flynn-s models, embarrassingly parallel computations model, pipelined computations model. These models are not specific to a particular type of machine or memory architecture. This paper expresses the model program for concurrent approach to data parallel model through java programming.Keywords: Concurrent, Data Parallel, JDK, Parallel, Thread
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097587 Clinical Signs of Neonatal Calves in Experimental Colisepticemia
Authors: Samad Lotfollahzadeh
Abstract:
Escherichia coli (E. coli) is the most isolated bacteria from blood circulation of septicemic calves. Given the prevalence of septicemia in animals and its economic importance in veterinary practice, better understanding of changes in clinical signs following disease, may contribute to early detection of disorder. The present study has been carried out to detect changes of clinical signs in induced sepsis in calves with E. coli. Colisepticemia has been induced in 10 twenty-day old healthy Holstein- Frisian calves with intravenous injection of 1.5 X 109 colony forming units (cfu) of O111:H8 strain of E. coli. Clinical signs including rectal temperature, heart rate, respiratory rate, shock, appetite, sucking reflex, feces consistency, general behavior, dehydration and standing ability were recorded in experimental calves during 24 hours after induction of colisepticemia. Blood culture was also carried out from calves four times during experiment. ANOVA with repeated measure is used to see changes of calves’ clinical signs to experimental colisepticemia, and values of P≤ 0.05 was considered statistically significant. Mean values of rectal temperature and heart rate as well as median values of respiratory rate, appetite, suckling reflex, standing ability and feces consistency of experimental calves increased significantly during study (P<0.05). In the present study median value of shock score was not significantly increased in experimental calves (P> 0.05). The results of present study showed that total score of clinical signs in calves with experimental colisepticemia increased significantly, although score of some clinical signs such as shock did not change significantly.Keywords: Calves, Clinical signs scoring, E. coli O111:H8, Experimental colisepticemia,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104586 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.
Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594585 PSS and SVC Controller Design by Chaos and PSO Algorithms to Enhancing the Power System Stability
Authors: Saeed jalilzadeh, Mohammad Reza Safari Tirtashi, Mohsen Sadeghi
Abstract:
this paper focuses on designing of PSS and SVC controller based on chaos and PSO algorithms to improve the stability of power system. Single machine infinite bus (SMIB) system with SVC located at the terminal of generator has been considered to evaluate the proposed controllers where both SVC and PSS have the same controller. The coefficients of PSS and SVC controller have been optimized by chaos and PSO algorithms. Finally the system with proposed controllers has been simulated for the special disturbance in input power of generator, and then the dynamic responses of generator have been presented. The simulation results showed that the system composed with recommended controller has outstanding operation in fast damping of oscillations of power system.Keywords: PSS, CHAOS, PSO, Stability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655584 Tool Path Generation and Manufacturing Process for Blades of a Compressor Rotor
Abstract:
This paper presents a complete procedure for tool path planning and blade machining in 5-axis manufacturing. The actual cutting contact and cutter locations can be determined by lead and tilt angles. The tool path generation is implemented by piecewise curved approximation and chordal deviation detection. An application about drive surface method promotes flexibility of tool control and stability of machine motion. A real manufacturing process is proposed to separate the operation into three regions with five stages and to modify the local tool orientation with an interactive algorithm.Keywords: 5-axis machining, tool orientation, lead and tilt angles, tool path generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266583 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity
Authors: Hoda A. Abdel Hafez
Abstract:
Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.Keywords: Mining Big Data, Big Data, Machine learning, Data Streams, Telecommunication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480582 A Design of Supply Chain Management System with Flexible Planning Capability
Authors: Chia-Hui Huang, Han-Ying Kao
Abstract:
In production planning (PP) periods with excess capacity and growing demand, the manufacturers have two options to use the excess capacity. First, it could do more changeovers and thus reduce lot sizes, inventories, and inventory costs. Second, it could produce in excess of demand in the period and build additional inventory that can be used to satisfy future demand increments, thus delaying the purchase of the next machine that is required to meet the growth in demand. In this study we propose an enhanced supply chain planning model with flexible planning capability. In addition, a 3D supply chain planning system is illustrated.Keywords: Supply chain, capacity expansion, inventory management, planning system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561581 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection
Authors: Taiwo. M. Akinmuyisitan, John Cosmas
Abstract:
This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.
Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 284580 GIS-based Approach for Land-Use Analysis: A Case Study
Authors: M. Giannopoulou, I. Roukounis, A. Roukouni.
Abstract:
Geographical Information Systems are an integral part of planning in modern technical systems. Nowadays referred to as Spatial Decision Support Systems, as they allow synergy database management systems and models within a single user interface machine and they are important tools in spatial design for evaluating policies and programs at all levels of administration. This work refers to the creation of a Geographical Information System in the context of a broader research in the area of influence of an under construction station of the new metro in the Greek city of Thessaloniki, which included statistical and multivariate data analysis and diagrammatic representation, mapping and interpretation of the results.Keywords: Databases, Geographical information systems (GIS), Land-use planning, Metro stations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604579 On Improving Breast Cancer Prediction Using GRNN-CP
Authors: Kefaya Qaddoum
Abstract:
The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.
Keywords: Neural network, conformal prediction, cancer classification, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839