Search results for: pulse frequency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1965

Search results for: pulse frequency

1065 Fatigue Life Consumption for Turbine Blades-Vanes Accelerated by Erosion-Contour Modification

Authors: Julio C. Gómez-Mancilla, Luis M. Palacios-Pineda, Yunuén López-Grijalba

Abstract:

A new mechanism responsible for structural life consumption due to resonant fatigue in turbine blades, or vanes, is presented and explained. A rotating blade or vane in a gas turbine can change its contour due to erosion and/or material build up, in any of these instances, the surface pressure distribution occurring on the suction and pressure sides of blades-vanes can suffer substantial modification of their pressure and temperatures envelopes and flow characteristics. Meanwhile, the relative rotation between the blade and duct vane while the pressurized gas flows and the consequent wake crossings, will induce a fluctuating thrust force or lift that will excite the blade. An actual totally used up set of vane-blade components in a HP turbine power stage in a gas turbine is analyzed. The blade suffered some material erosion mostly at the trailing edge provoking a peculiar surface pressure envelope which evolved as the relative position between the vane and the blade passed in front of each other. Interestingly preliminary modal analysis for this eroded blade indicates several natural frequencies within the aeromechanic power spectrum, moreover, the highest frequency component is 94% of one natural frequency indicating near resonant condition. Independently of other simultaneously occurring fatigue cycles (such as thermal, centrifugal stresses).

Keywords: Aeromechanic induced vibration, potential flowinteraction, turbine unsteady flow, rotor/stator interaction, turbinevane-blade aerodynamic interaction, airfoil clocking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
1064 Analyzing Microblogs: Exploring the Psychology of Political Leanings

Authors: Meaghan Bowman

Abstract:

Microblogging has become increasingly popular for commenting on current events, spreading gossip, and encouraging individualism--which favors its low-context communication channel. These social media (SM) platforms allow users to express opinions while interacting with a wide range of populations. Hashtags allow immediate identification of like-minded individuals worldwide on a vast array of topics. The output of the analytic tool, Linguistic Inquiry and Word Count (LIWC)--a program that associates psychological meaning with the frequency of use of specific words--may suggest the nature of individuals’ internal states and general sentiments. When applied to groupings of SM posts unified by a hashtag, such information can be helpful to community leaders during periods in which the forming of public opinion happens in parallel with the unfolding of political, economic, or social events. This is especially true when outcomes stand to impact the well-being of the group. Here, we applied the online tools, Google Translate and the University of Texas’s LIWC, to a 90-posting sample from a corpus of Colombian Spanish microblogs. On translated disjoint sets, identified by hashtag as being authored by advocates of voting “No,” advocates voting “Yes,” and entities refraining from hashtag use, we observed the value of LIWC’s Tone feature as distinguishing among the categories and the word “peace,” as carrying particular significance, due to its frequency of use in the data.

Keywords: Colombia peace referendum, FARC, hashtags, linguistics, microblogging, social media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
1063 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI

Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova

Abstract:

The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.

Keywords: Mechatronic systems, Matlab GUI, sensitivity, tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
1062 A Questionnaire-Based Survey: Therapist’s Response towards the Upper Limb Disorder Learning Tool

Authors: Noor Ayuni Che Zakaria, Takashi Komeda, Cheng Yee Low, Kaoru Inoue, Fazah Akhtar Hanapiah

Abstract:

Previous studies have shown that there are arguments regarding the reliability and validity of the Ashworth and Modified Ashworth Scale towards evaluating patients diagnosed with upper limb disorders. These evaluations depended on the raters’ experiences. This initiated us to develop an upper limb disorder part-task trainer that is able to simulate consistent upper limb disorders, such as spasticity and rigidity signs, based on the Modified Ashworth Scale to improve the variability occurring between raters and intra-raters themselves. By providing consistent signs, novice therapists would be able to increase training frequency and exposure towards various levels of signs. A total of 22 physiotherapists and occupational therapists participated in the study. The majority of the therapists agreed that with current therapy education, they still face problems with inter-raters and intra-raters variability (strongly agree 54%; n = 12/22, agree 27%; n = 6/22) in evaluating patients’ conditions. The therapists strongly agreed (72%; n = 16/22) that therapy trainees needed to increase their frequency of training; therefore believe that our initiative to develop an upper limb disorder training tool will help in improving the clinical education field (strongly agree and agree 63%; n = 14/22).

Keywords: Upper limb disorders, Clinical education tool, Inter/intra-raters variability, Spasticity, Modified Ashworth Scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
1061 Design and Performance Comparison of Metamaterial Based Antenna for 4G/5G Mobile Devices

Authors: Jalal Khan, Daniyal Ali Sehrai, Shakeel Ahmad

Abstract:

This paper presents the design and performance evaluation of multiband metamaterial based antenna operating in the 3.6 GHz (4G), 14.33 GHz, and 28.86 GHz (5G) frequency bands, for future mobile and handheld devices. The radiating element of the proposed design is made up of a conductive material supported by a 1.524 mm thicker Rogers-4003 substrate, having a relative dielectric constant and loss tangent of 3.55 and 0.0027, respectively. The substrate is backed by truncated ground plane. The future mobile communication system is based on higher frequencies, which are highly affected by the atmospheric conditions. Therefore, to overcome the path loss problem, essential enhancements and improvements must be made in the overall performance of the antenna. The traditional ground plane does not provide the in-phase reflection and surface wave suppression due to which side and back lobes are produced. This will affect the antenna performance in terms of gain and efficiency. To enhance the overall performance of the antenna, a metamaterial acting as a high impedance surface (HIS) is used as a reflector in the proposed design. The simulated gain of the metamaterial based antenna is enhanced from {2.76-6.47, 4.83-6.71 and 7.52-7.73} dB at 3.6, 14.33 and 28.89 GHz, respectively relative to the gain of the antenna backed by a traditional ground plane. The proposed antenna radiated efficiently with a radiated efficiency (>85 %) in all the three frequency bands with and without metamaterial surface. The total volume of the antenna is (L x W x h=45 x 40 x 1.524) mm3. The antenna can be potentially used for wireless handheld devices and mobile terminal. All the simulations have been performed using the Computer Simulation Technology (CST) software.

Keywords: Multiband, fourth generation (4G), fifth generation (5G), metamaterial, CST MWS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
1060 SUPAR: System for User-Centric Profiling of Association Rules in Streaming Data

Authors: Sarabjeet Kaur Kochhar

Abstract:

With a surge of stream processing applications novel techniques are required for generation and analysis of association rules in streams. The traditional rule mining solutions cannot handle streams because they generally require multiple passes over the data and do not guarantee the results in a predictable, small time. Though researchers have been proposing algorithms for generation of rules from streams, there has not been much focus on their analysis. We propose Association rule profiling, a user centric process for analyzing association rules and attaching suitable profiles to them depending on their changing frequency behavior over a previous snapshot of time in a data stream. Association rule profiles provide insights into the changing nature of associations and can be used to characterize the associations. We discuss importance of characteristics such as predictability of linkages present in the data and propose metric to quantify it. We also show how association rule profiles can aid in generation of user specific, more understandable and actionable rules. The framework is implemented as SUPAR: System for Usercentric Profiling of Association Rules in streaming data. The proposed system offers following capabilities: i) Continuous monitoring of frequency of streaming item-sets and detection of significant changes therein for association rule profiling. ii) Computation of metrics for quantifying predictability of associations present in the data. iii) User-centric control of the characterization process: user can control the framework through a) constraint specification and b) non-interesting rule elimination.

Keywords: Data Streams, User subjectivity, Change detection, Association rule profiles, Predictability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
1059 Design of Ka-Band Satellite Links in Indonesia

Authors: Zulfajri Basri Hasanuddin

Abstract:

There is an increasing demand for broadband services in Indonesia. Therefore, the answer is the use of Ka-Band which has some advantages such as wider bandwidth, the higher transmission speeds, and smaller size of antenna in the ground. However, rain attenuation is the primary factor in the degradation of signal at the Kaband. In this paper, the author will determine whether the Ka-band frequency can be implemented in Indonesia which has high intensity of rainfall.

Keywords: Ka-Band, Link Budget, Link Availability, BER, Eb/No, C/N.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3675
1058 The Effect of Electrical Stimulation Intensity on VEGF Expression and Biomechanical Properties during Wound

Authors: M R Asadi, G Torkaman, M Hedayati

Abstract:

We evaluated the effect of sensory (direct current (DC), 600μA) and motor (monophasic current, pulse duration 300μs, 100 Hz, 2.5-3mA) intensities of cathodal electrical stimulation (ES) current to release VEGF and biomechanical properties of wound. 54 male Sprague-dawley rats were randomly assigned into one control and two experimental groups. A full thickness skin incision was made on animals- dorsal region. The experimental groups received ES for 1h/day and every other day. VEGF expression was measured in skin on the 7th day after surgical incision and tensile strength was measured on 21st day. On the 7th day, the values of skin VEGF in the sensory group were significantly greater than those of the other groups (p < 0.05). Sensory and Motor intensity stimulation, can not improve the biomechanical properties of the repaired wounds. It seems the mechanical environment induced by sensory and motor intensity of electrical stimulation, could not simulate the role of normal daily stress and strain to maturation of collagen fibers and their cross links. Further work is needed to determine the relationship between VEGF expression after ES and its effect on tensile strength of healed wound.

Keywords: Biomechanical properties Direct current, Monophasic current, Skin, VEGF

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
1057 Implication and Genetic Variations on Lipid Profile of the Fasting Respondent

Authors: Rohayu Izanwati M. R., Muhamad Ridhwan M. R., Abbe Maleyki M. J., Ahmad Zubaidi A. L., Zahri M. K.

Abstract:

PPARs function as regulators of lipid and lipoprotein metabolism. The aim of the study was to compare the lipid profile between two phases of fasting and to examine the frequency and relationship of peroxisome proliferator-activated receptor, PPARα gene polymorphisms to lipid profile in fasting respondents. We conducted a case-control study protocol, which included 21 healthy volunteers without gender discrimination at the age of 18 years old. 3 ml of blood sample was drawn before the fasting phase and during the fasting phase (in Ramadhan month). 1ml of serum for the lipid profile was analyzed by using the automated chemistry analyser (Olympus, AU 400) and the data were analysed using the Paired T-Test (SPSS ver.20). DNA was extracted and PCR was conducted utilising 6 sets of primer. Primers were designed within 6 exons of interest in PPARα gene. Genetic and metabolic characteristics of fasting respondents and controls were estimated and compared. Fasting respondents were significantly have lowered the LDL levels (p=0.03). There were no polymorphisms detected except in exon 1 with 5% of this population study respectively. The polymorphisms in exon 1 of the PPARα gene were found in low frequency. Regarding the 1375G/T and 1386G/T polymorphisms in the exon 1 of the PPARα gene, the T-allele in fasting phase had no association with the decreased LDL levels (Fisher Exact Test). However this association is more promising when the sample size is larger in order to elucidate the precise impact of the polymorphisms on lipid profile in the population. In conclusion, the PPARα gene polymorphisms do not appear to affect the LDL of fasting respondents.

Keywords: Fasting, LDL, Peroxisome proliferator activated receptor alpha (PPAR-α), Polymorphisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
1056 Classification of Acoustic Emission Based Partial Discharge in Oil Pressboard Insulation System Using Wavelet Analysis

Authors: Prasanta Kundu, N.K. Kishore, A.K. Sinha

Abstract:

Insulation used in transformer is mostly oil pressboard insulation. Insulation failure is one of the major causes of catastrophic failure of transformers. It is established that partial discharges (PD) cause insulation degradation and premature failure of insulation. Online monitoring of PDs can reduce the risk of catastrophic failure of transformers. There are different techniques of partial discharge measurement like, electrical, optical, acoustic, opto-acoustic and ultra high frequency (UHF). Being non invasive and non interference prone, acoustic emission technique is advantageous for online PD measurement. Acoustic detection of p.d. is based on the retrieval and analysis of mechanical or pressure signals produced by partial discharges. Partial discharges are classified according to the origin of discharges. Their effects on insulation deterioration are different for different types. This paper reports experimental results and analysis for classification of partial discharges using acoustic emission signal of laboratory simulated partial discharges in oil pressboard insulation system using three different electrode systems. Acoustic emission signal produced by PD are detected by sensors mounted on the experimental tank surface, stored on an oscilloscope and fed to computer for further analysis. The measured AE signals are analyzed using discrete wavelet transform analysis and wavelet packet analysis. Energy distribution in different frequency bands of discrete wavelet decomposed signal and wavelet packet decomposed signal is calculated. These analyses show a distinct feature useful for PD classification. Wavelet packet analysis can sort out any misclassification arising out of DWT in most cases.

Keywords: Acoustic emission, discrete wavelet transform, partial discharge, wavelet packet analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2980
1055 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network

Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You

Abstract:

With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.

Keywords: Artificial neural network, ANN, chromatic dispersion, delay-tap sampling, optical signal-to-noise ratio, OSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
1054 A Numerical Study of Seismic Response of Shallow Square Tunnels in Two-Layered Ground

Authors: Mahmoud Hassanlourad, Mehran Naghizadehrokni, Vahid Molaei

Abstract:

In this study, the seismic behavior of a shallow tunnel with square cross section is investigated in a two layered and elastic heterogeneous environment using numerical method. To do so, FLAC finite difference software was used. Behavioral model of the ground and tunnel structure was assumed linear elastic. Dynamic load was applied to the model for 0.2 seconds from the bottom in form of a square pulse with maximum acceleration of 1 m/s2. The interface between the two layers was considered at three different levels of crest, middle, and bottom of the tunnel. The stiffness of the two upper and lower layers was considered to be varied from 10 MPa to 1000 MPa. Deformation of cross section of the tunnel due to dynamic load propagation, as well as the values of axial force and bending moment created in the tunnel structure, were examined in the three states mentioned above. The results of analyses show that heterogeneity of the environment, its stratification, and positioning of the interface of the two layers with respect to tunnel height and the stiffness ratio of the two layers have significant effects on the value of bending moment, axial force, and distortion of tunnel cross-section.

Keywords: Dynamic analysis, shallow-buried tunnel, two-layered ground.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
1053 Deployment of Beyond 4G Wireless Communication Networks with Carrier Aggregation

Authors: Bahram Khan, Anderson Rocha Ramos, Rui R. Paulo, Fernando J. Velez

Abstract:

With the growing demand for a new blend of applications, the users dependency on the internet is increasing day by day. Mobile internet users are giving more attention to their own experiences, especially in terms of communication reliability, high data rates and service stability on move. This increase in the demand is causing saturation of existing radio frequency bands. To address these challenges, researchers are investigating the best approaches, Carrier Aggregation (CA) is one of the newest innovations, which seems to fulfill the demands of the future spectrum, also CA is one the most important feature for Long Term Evolution - Advanced (LTE-Advanced). For this purpose to get the upcoming International Mobile Telecommunication Advanced (IMT-Advanced) mobile requirements (1 Gb/s peak data rate), the CA scheme is presented by 3GPP, which would sustain a high data rate using widespread frequency bandwidth up to 100 MHz. Technical issues such as aggregation structure, its implementations, deployment scenarios, control signal techniques, and challenges for CA technique in LTE-Advanced, with consideration of backward compatibility, are highlighted in this paper. Also, performance evaluation in macro-cellular scenarios through a simulation approach is presented, which shows the benefits of applying CA, low-complexity multi-band schedulers in service quality, system capacity enhancement and concluded that enhanced multi-band scheduler is less complex than the general multi-band scheduler, which performs better for a cell radius longer than 1800 m (and a PLR threshold of 2%).

Keywords: Component carrier, carrier aggregation, LTE-Advanced, scheduling, spectrum management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 551
1052 Investigation of I/Q Imbalance in Coherent Optical OFDM System

Authors: R. S. Fyath, Mustafa A. B. Al-Qadi

Abstract:

The inphase/quadrature (I/Q) amplitude and phase imbalance effects are studied in coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. An analytical model for the I/Q imbalance is developed and supported by simulation results. The results indicate that the I/Q imbalance degrades the BER performance considerably.

Keywords: Coherent detection, I/Q imbalance, OFDM, optical communications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
1051 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: Feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 613
1050 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4 × 4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4 × 4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4 × 4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: Chirp signals, Image multiplexing, Image transformation, Linear canonical transform, Polynomial approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
1049 Evaluation of Efficient CSI Based Channel Feedback Techniques for Adaptive MIMO-OFDM Systems

Authors: Muhammad Rehan Khalid, Muhammad Haroon Siddiqui, Danish Ilyas

Abstract:

This paper explores the implementation of adaptive coding and modulation schemes for Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) feedback systems. Adaptive coding and modulation enables robust and spectrally-efficient transmission over time-varying channels. The basic premise is to estimate the channel at the receiver and feed this estimate back to the transmitter, so that the transmission scheme can be adapted relative to the channel characteristics. Two types of codebook based channel feedback techniques are used in this work. The longterm and short-term CSI at the transmitter is used for efficient channel utilization. OFDM is a powerful technique employed in communication systems suffering from frequency selectivity. Combined with multiple antennas at the transmitter and receiver, OFDM proves to be robust against delay spread. Moreover, it leads to significant data rates with improved bit error performance over links having only a single antenna at both the transmitter and receiver. The coded modulation increases the effective transmit power relative to uncoded variablerate variable-power MQAM performance for MIMO-OFDM feedback system. Hence proposed arrangement becomes an attractive approach to achieve enhanced spectral efficiency and improved error rate performance for next generation high speed wireless communication systems.

Keywords: Adaptive Coded Modulation, MQAM, MIMO, OFDM, Codebooks, Feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
1048 Bone Mineral Density and Frequency of Low-Trauma Fractures in Ukrainian Women with Metabolic Syndrome

Authors: Vladyslav Povoroznyuk, Larysa Martynyuk, Iryna Syzonenko, Liliya Martynyuk

Abstract:

Osteoporosis is one of the important problems in postmenopausal women due to an increased risk of sudden and unexpected fractures. This study is aimed to determine the connection between bone mineral density (BMD) and trabecular bone score (TBS) in Ukrainian women suffering from metabolic syndrome. Participating in the study, 566 menopausal women aged 50-79 year-old were examined and divided into two groups: Group A included 336 women with no obesity (BMI ≤ 29.9 kg/m2), and Group B – 230 women with metabolic syndrome (diagnosis according to IDF criteria, 2005). Dual-energy X-ray absorptiometry was used for measuring of lumbar spine (L1-L4), femoral neck, total body and forearm BMD and bone quality indexes (last according to Med-Imaps installation). Data were analyzed using Statistical Package 6.0. A significant increase of lumbar spine (L1-L4), femoral neck, total body and ultradistal radius BMD was found in women with metabolic syndrome compared to those without obesity (p < 0.001) both in their totality and in groups of 50-59 years, 60-69 years, and 70-79 years. TBS was significantly higher in non-obese women compared to metabolic syndrome patients of 50-59 years and in the general sample (p < 0.05). Analysis showed significant positive correlation between body mass index (BMI) and BMD at all levels. Significant negative correlation between BMI and TBS (L1-L4) was established. Despite the fact that BMD indexes were significantly higher in women with metabolic syndrome, the frequency of vertebral and non-vertebral fractures did not differ significantly in the groups of patients.

Keywords: Bone mineral density, trabecular bone score, metabolic syndrome, fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
1047 Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite

Authors: Zheng Dian Xun, Cheng Bo, Lin Hetong

Abstract:

This paper focuses on the orbit avoidance strategy of the optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. This paper explores the strategy of satellite avoidance to protect the CCD camera and also the satellite. The satellite could evasive to several target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. In addition, the fuel consumption is optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite.

Keywords: Optical remote sensing satellite, satellite avoidance, virtual satellite, avoid target-point, avoid maneuver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
1046 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: Wetting, acoustic reflectometry, gigahertz, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
1045 Cardiac Function and Morphological Adaptations in Endurance and Resistance Athletes: Evaluation using a new Method

Authors: K. Hosseini, MD., R. Mazaheri, MD., H.R. Khoddami Vishteh, MD., M.A. Mansournia, MD., H. Angoorani, MD

Abstract:

Background: Tissue Doppler Echocardiography (TDE) assesses diastolic function more accurately than routine pulse Doppler echo. Assessment of the effects of dynamic and static exercises on the heart by using TDE can provides new information about the athlete-s heart syndrome. Methods: This study was conducted on 20 elite wrestlers, 14 endurance runners at national level and 21 non-athletes as the control group. Participants underwent two-dimensional echocardiography, standard Doppler and TDE. Results: Wrestlers had the highest left ventricular mass index, enddiastolic inter-ventricular septum thickness and left ventricular Posterior wall thickness. Runners had the highest Left ventricular end-diastolic volume, LV ejection fraction, stroke volume and cardiac output. In TDE, the early diastolic velocity of mitral annulus to the late diastolic velocity ratio in athletic groups was greater than the controls with no significant difference. Conclusion: In spite of cardiac morphological changes in athletes, TDE shows that cardiac diastolic function won-t be adversely affected.

Keywords: Tissue Doppler Echocardiography, Diastolic function, Athlete's heart syndrome, Static exercise, Dynamic exercise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
1044 Issues in Spectral Source Separation Techniques for Plant-wide Oscillation Detection and Diagnosis

Authors: A.K. Tangirala, S. Babji

Abstract:

In the last few years, three multivariate spectral analysis techniques namely, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) have emerged as effective tools for oscillation detection and isolation. While the first method is used in determining the number of oscillatory sources, the latter two methods are used to identify source signatures by formulating the detection problem as a source identification problem in the spectral domain. In this paper, we present a critical drawback of the underlying linear (mixing) model which strongly limits the ability of the associated source separation methods to determine the number of sources and/or identify the physical source signatures. It is shown that the assumed mixing model is only valid if each unit of the process gives equal weighting (all-pass filter) to all oscillatory components in its inputs. This is in contrast to the fact that each unit, in general, acts as a filter with non-uniform frequency response. Thus, the model can only facilitate correct identification of a source with a single frequency component, which is again unrealistic. To overcome this deficiency, an iterative post-processing algorithm that correctly identifies the physical source(s) is developed. An additional issue with the existing methods is that they lack a procedure to pre-screen non-oscillatory/noisy measurements which obscure the identification of oscillatory sources. In this regard, a pre-screening procedure is prescribed based on the notion of sparseness index to eliminate the noisy and non-oscillatory measurements from the data set used for analysis.

Keywords: non-negative matrix factorization, PCA, source separation, plant-wide diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
1043 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing

Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca De Marchi

Abstract:

This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes a larger monitored area available. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary, the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.

Keywords: Data compression, ultrasonic communication, guided waves, FEM analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 362
1042 Feasibility Study of MongoDB and Radio Frequency Identification Technology in Asset Tracking System

Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Sharul T. Tajuddin, Hartiny Md Azmi

Abstract:

Taking into consideration the real time situation specifically the higher academic institutions, small, medium to large companies, public to private sectors and the remaining sectors, do experience the inventory or asset shrinkages due to theft, loss or even inventory tracking errors. This happening is due to a zero or poor security systems and measures being taken and implemented in their organizations. Henceforth, implementing the Radio Frequency Identification (RFID) technology into any manual or existing web-based system or web application can simply deter and will eventually solve certain major issues to serve better data retrieval and data access. Having said, this manual or existing system can be enhanced into a mobile-based system or application. In addition to that, the availability of internet connections can aid better services of the system. Such involvement of various technologies resulting various privileges to individuals or organizations in terms of accessibility, availability, mobility, efficiency, effectiveness, real-time information and also security. This paper will look deeper into the integration of mobile devices with RFID technologies with the purpose of asset tracking and control. Next, it is to be followed by the development and utilization of MongoDB as the main database to store data and its association with RFID technology. Finally, the development of a web based system which can be viewed in a mobile based formation with the aid of Hypertext Preprocessor (PHP), MongoDB, Hyper-Text Markup Language 5 (HTML5), Android, JavaScript and AJAX programming language.

Keywords: RFID, asset tracking system, MongoDB, NoSQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
1041 Optimization of Control Parameters for EWR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece

Authors: M. S. Reza, M. Hamdi, S. H. Tomadi, A. R. Ismail

Abstract:

The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece using copper tools are being optimized according to its individual machining characteristic i.e. Electrode Wear Ratio (EWR). Higher EWR would give bad dimensional precision for the EDM machined workpiece because of high electrode wear. Hence, the quality characteristic for EWR is set to lower-the-better to achieve the optimum dimensional precision for the machined workpiece. Taguchi method has been used for the construction, layout and analysis of the experiment for EWR machining characteristic. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that negative polarity machining parameter setting will decreases EWR.

Keywords: ANOVA, EDM, Injection Flushing, L18Orthogonal Array, EWR, Stainless Steel 304

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
1040 A Model to Determine Atmospheric Stability and its Correlation with CO Concentration

Authors: Kh. Ashrafi, Gh. A. Hoshyaripour

Abstract:

Atmospheric stability plays the most important role in the transport and dispersion of air pollutants. Different methods are used for stability determination with varying degrees of complexity. Most of these methods are based on the relative magnitude of convective and mechanical turbulence in atmospheric motions. Richardson number, Monin-Obukhov length, Pasquill-Gifford stability classification and Pasquill–Turner stability classification, are the most common parameters and methods. The Pasquill–Turner Method (PTM), which is employed in this study, makes use of observations of wind speed, insolation and the time of day to classify atmospheric stability with distinguishable indices. In this study, a model is presented to determination of atmospheric stability conditions using PTM. As a case study, meteorological data of Mehrabad station in Tehran from 2000 to 2005 is applied to model. Here, three different categories are considered to deduce the pattern of stability conditions. First, the total pattern of stability classification is obtained and results show that atmosphere is 38.77%, 27.26%, 33.97%, at stable, neutral and unstable condition, respectively. It is also observed that days are mostly unstable (66.50%) while nights are mostly stable (72.55%). Second, monthly and seasonal patterns are derived and results indicate that relative frequency of stable conditions decrease during January to June and increase during June to December, while results for unstable conditions are exactly in opposite manner. Autumn is the most stable season with relative frequency of 50.69% for stable condition, whilst, it is 42.79%, 34.38% and 27.08% for winter, summer and spring, respectively. Hourly stability pattern is the third category that points out that unstable condition is dominant from approximately 03-15 GTM and 04-12 GTM for warm and cold seasons, respectively. Finally, correlation between atmospheric stability and CO concentration is achieved.

Keywords: Atmospheric stability, Pasquill-Turner classification, convective turbulence, mechanical turbulence, Tehran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6443
1039 Effect of Silica Fume on the Properties of Steel-Fiber Reinforced Self-compacting Concrete

Authors: Ahmed Fathi Mohamed, Nasir Shafiq, M. F. Nuruddin, Ali Elheber

Abstract:

Implementing significant advantages in the supply of self-compacting concrete (SCC) is necessary because of the, negative features of SCC. Examples of these features are the ductility problem along with the very high cost of its constituted materials. Silica fume with steel fiber can fix this matter by improving the ductility and decreasing the total cost of SCC by varying the cement ingredients. Many different researchers have found that there have not been enough research carried out on the steel fiber-reinforced self-compacting concrete (SFRSCC) produced with silica fume. This paper inspects both the fresh and the mechanical properties of SFRSCC with silica fume, the fresh qualities where slump flow, slump T50 and V- funnel. While, the mechanical characteristics were the compressive strength, ultrasound pulse velocity (UPV) and elastic modulus of the concrete samples. The experimental results have proven that steel fiber can enhance the mechanical features. In addition, the silica fume within the entire hybrid mix may possibly adapt the fiber dispersion and strengthen deficits due to the fibers. It could also improve the strength plus the bond between the fiber and the matrix with a dense calcium silicate-hydrate gel in SFRSCC. The concluded result was predicted using linear mathematical models and was found to be in great agreement with the experimental results.

Keywords: Self-compacting concrete, silica fume, steel fiber, fresh and mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3266
1038 Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors

Authors: Moiz S. Vohra, Nagalingam Arun Prasanth, Wei L. Tan, S. H. Yeo

Abstract:

The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.

Keywords: Ultrasonic cavitation, bubble collapse, pressure mapping sensor, impact load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1133
1037 Selective Harmonic Elimination of PWM AC/AC Voltage Controller Using Hybrid RGA-PS Approach

Authors: A. K. Al-Othman, Nabil A. Ahmed, A. M. Al-Kandari, H. K. Ebraheem

Abstract:

Selective harmonic elimination-pulse width modulation techniques offer a tight control of the harmonic spectrum of a given voltage waveform generated by a power electronic converter along with a low number of switching transitions. Traditional optimization methods suffer from various drawbacks, such as prolonged and tedious computational steps and convergence to local optima; thus, the more the number of harmonics to be eliminated, the larger the computational complexity and time. This paper presents a novel method for output voltage harmonic elimination and voltage control of PWM AC/AC voltage converters using the principle of hybrid Real-Coded Genetic Algorithm-Pattern Search (RGA-PS) method. RGA is the primary optimizer exploiting its global search capabilities, PS is then employed to fine tune the best solution provided by RGA in each evolution. The proposed method enables linear control of the fundamental component of the output voltage and complete elimination of its harmonic contents up to a specified order. Theoretical studies have been carried out to show the effectiveness and robustness of the proposed method of selective harmonic elimination. Theoretical results are validated through simulation studies using PSIM software package.

Keywords: PWM, AC/AC voltage converters, selectiveharmonic elimination, direct search method, pattern search method, Real-coded Genetic algorithms, evolutionary algorithms andoptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3311
1036 Efficiency Enhancement of PWM Controlled Water Electrolysis Cells

Authors: S.K. Mazloomi, Nasri b. Sulaiman

Abstract:

By analyzing the sources of energy and power loss in PWM (Pulse Width Modulation) controlled drivers of water electrolysis cells, it is possible to reduce the power dissipation and enhance the efficiency of such hydrogen production units. A PWM controlled power driver is based on a semiconductor switching element where its power dissipation might be a remarkable fraction of the total power demand of an electrolysis system. Power dissipation in a semiconductor switching element is related to many different parameters which could be fitted into two main categories: switching losses and conduction losses. Conduction losses are directly related to the built, structure and capabilities of a switching device itself and indeed the conditions in which the element is handling the switching application such as voltage, current, temperature and of course the fabrication technology. On the other hand, switching losses have some other influencing variables other than the mentioned such as control system, switching method and power electronics circuitry of the PWM power driver. By analyzings the characteristics of recently developed power switching transistors from different families of Bipolar Junction Transistors (BJT), Metal Oxide Semiconductor Field Effect Transistors (MOSFET) and Insulated Gate Bipolar Transistors (IGBT), some recommendations are made in this paper which are able to lead to achieve higher hydrogen production efficiency by utilizing PWM controlled water electrolysis cells.

Keywords: Power switch, PWM, Semiconductor switch, Waterelectrolysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3465