Search results for: difference of feature
1211 Totally Integrated Smart Energy System through Data Acquisition via Remote Location
Authors: Muhammad Tahir Qadri, M. Irfan Anis, M. Nawaz Irshad Khan
Abstract:
This paper discusses the approach of real-time controlling of the energy management system using the data acquisition tool of LabVIEW. The main idea of this inspiration was to interface the Station (PC) with the system and publish the data on internet using LabVIEW. In this venture, controlling and switching of 3 phase AC loads are effectively and efficiently done. The phases are also sensed through devices. In case of any failure the attached generator starts functioning automatically. The computer sends command to the system and system respond to the request. The modern feature is to access and control the system world-wide using world wide web (internet). This controlling can be done at any time from anywhere to effectively use the energy especially in developing countries where energy management is a big problem. In this system totally integrated devices are used to operate via remote location.Keywords: VI-server, Remote Access, Telemetry, Data Acquisition, web server.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18791210 Optimal Multilayer Perceptron Structure For Classification of HIV Sub-Type Viruses
Authors: Zeyneb Kurt, Oguzhan Yavuz
Abstract:
The feature of HIV genome is in a wide range because of it is highly heterogeneous. Hence, the infection ability of the virus changes related with different chemokine receptors. From this point, R5 and X4 HIV viruses use CCR5 and CXCR5 coreceptors respectively while R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the coreceptors of HIV genome. The aim of this study is to develop the optimal Multilayer Perceptron (MLP) for high classification accuracy of HIV sub-type viruses. To accomplish this purpose, the unit number in hidden layer was incremented one by one, from one to a particular number. The statistical data of R5X4, R5 and X4 viruses was preprocessed by the signal processing methods. Accessible residues of these virus sequences were extracted and modeled by Auto-Regressive Model (AR) due to the dimension of residues is large and different from each other. Finally the pre-processed dataset was used to evolve MLP with various number of hidden units to determine R5X4 viruses. Furthermore, ROC analysis was used to figure out the optimal MLP structure.Keywords: Multilayer Perceptron, Auto-Regressive Model, HIV, ROC Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14411209 Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier
Authors: Hassan Jassim Motlak
Abstract:
A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to the symmetrical input stage. P-Spice simulation results are obtained using 0.18μm MIETEC CMOS process parameters and supply voltage of ±1.2V, 50μA biasing current. The p-spice simulation shows excellent improvement of the proposed CFOA over existing CMOS CFOA. Some of these performance parameters, for example, are DC gain of 62. dB, openloop gain bandwidth product of 108 MHz, slew rate (SR+) of +71.2V/μS, THD of -63dB and DC consumption power (PC) of 2mW.
Keywords: Pseudo-OTA used CMOS CFOA, low power CFOA, high-performance CFOA, novel CFOA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28541208 Event Template Generation for News Articles
Authors: A. Kowcika, E. Umamaheswari, T.V. Geetha
Abstract:
In this paper we focus on event extraction from Tamil news article. This system utilizes a scoring scheme for extracting and grouping event-specific sentences. Using this scoring scheme eventspecific clustering is performed for multiple documents. Events are extracted from each document using a scoring scheme based on feature score and condition score. Similarly event specific sentences are clustered from multiple documents using this scoring scheme. The proposed system builds the Event Template based on user specified query. The templates are filled with event specific details like person, location and timeline extracted from the formed clusters. The proposed system applies these methodologies for Tamil news articles that have been enconverted into UNL graphs using a Tamil to UNL-enconverter. The main intention of this work is to generate an event based template.Keywords: Event Extraction, Score based Clustering, Segmentation, Template Generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17001207 Local Mesh Co-Occurrence Pattern for Content Based Image Retrieval
Authors: C. Yesubai Rubavathi, R. Ravi
Abstract:
This paper presents the local mesh co-occurrence patterns (LMCoP) using HSV color space for image retrieval system. HSV color space is used in this method to utilize color, intensity and brightness of images. Local mesh patterns are applied to define the local information of image and gray level co-occurrence is used to obtain the co-occurrence of LMeP pixels. Local mesh co-occurrence pattern extracts the local directional information from local mesh pattern and converts it into a well-mannered feature vector using gray level co-occurrence matrix. The proposed method is tested on three different databases called MIT VisTex, Corel, and STex. Also, this algorithm is compared with existing methods, and results in terms of precision and recall are shown in this paper.Keywords: Content-based image retrieval system, HSV color space, gray level co-occurrence matrix, local mesh pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22231206 Automatic Discrimimation of the Modes of Permanent Flow of a Liquid Simulating Blood
Authors: Malika.D Kedir-Talha, Mohamed Mehenni
Abstract:
In order to be able to automatically differentiate between two modes of permanent flow of a liquid simulating blood, it was imperative to put together a data bank. Thus, the acquisition of the various amplitude spectra of the Doppler signal of this liquid in laminar flow and other spectra in turbulent flow enabled us to establish an automatic difference between the two modes. According to the number of parameters and their nature, a comparative study allowed us to choose the best classifier.Keywords: Doppler spectrum, flow mode, pattern recognition, permanent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12071205 Adaptive Bidirectional Flow for Image Interpolation and Enhancement
Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang
Abstract:
Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually the effects of blurred edges and jagged artifacts in the image to some extent. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to sharpen edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (“jaggies") along the tangent directions. In order to preserve image features such as edges, corners and textures, the nonlinear diffusion coefficients are locally adjusted according to the directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.
Keywords: anisotropic diffusion, bidirectional flow, directional derivatives, edge enhancement, image interpolation, inverse flow, shock filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15401204 Rational Points on Elliptic Curves 2 3 3y = x + a inF , where p 5(mod 6) is Prime
Authors: Gokhan Soydan, Musa Demirci, Nazli Yildiz Ikikardes, Ismail Naci Cangul
Abstract:
In this work, we consider the rational points on elliptic curves over finite fields Fp where p ≡ 5 (mod 6). We obtain results on the number of points on an elliptic curve y2 ≡ x3 + a3(mod p), where p ≡ 5 (mod 6) is prime. We give some results concerning the sum of the abscissae of these points. A similar case where p ≡ 1 (mod 6) is considered in [5]. The main difference between two cases is that when p ≡ 5 (mod 6), all elements of Fp are cubic residues.
Keywords: Elliptic curves over finite fields, rational points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22521203 Accurate Fault Classification and Section Identification Scheme in TCSC Compensated Transmission Line using SVM
Authors: Pushkar Tripathi, Abhishek Sharma, G. N. Pillai, Indira Gupta
Abstract:
This paper presents a new approach for the protection of Thyristor-Controlled Series Compensator (TCSC) line using Support Vector Machine (SVM). One SVM is trained for fault classification and another for section identification. This method use three phase current measurement that results in better speed and accuracy than other SVM based methods which used single phase current measurement. This makes it suitable for real-time protection. The method was tested on 10,000 data instances with a very wide variation in system conditions such as compensation level, source impedance, location of fault, fault inception angle, load angle at source bus and fault resistance. The proposed method requires only local current measurement.Keywords: Fault Classification, Section Identification, Feature Selection, Support Vector Machine (SVM), Thyristor-Controlled Series Compensator (TCSC)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25281202 A New Approach to Workforce Planning
Authors: M. Othman, N. Bhuiyan, G. J. Gouw
Abstract:
In today-s global and competitive market, manufacturing companies are working hard towards improving their production system performance. Most companies develop production systems that can help in cost reduction. Manufacturing systems consist of different elements including production methods, machines, processes, control and information systems. Human issues are an important part of manufacturing systems, yet most companies do not pay sufficient attention to them. In this paper, a workforce planning (WP) model is presented. A non-linear programming model is developed in order to minimize the hiring, firing, training and overtime costs. The purpose is to determine the number of workers for each worker type, the number of workers trained, and the number of overtime hours. Moreover, a decision support system (DSS) based on the proposed model is introduced using the Excel-Lingo software interfacing feature. This model will help to improve the interaction between the workers, managers and the technical systems in manufacturing.Keywords: Decision Support System, Human Factors, Manufacturing System, Workforce Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25491201 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: A. Appe, B. Poluparthi, L. Kasivajjula, U. Mv, S. Bagadi, P. Modi, A. Singh, H. Gunupudi, S. Troiano, J. Paul, J. Stovall, J. Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data are considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP (SHapley Additive exPlanations), to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since it is data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for e.g., quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP, a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.
Keywords: Competition, DAGs, hospital, healthcare, machine learning, market share, random forest, SHAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901200 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. In nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.
Keywords: Authentication, iris recognition, Adaboost, local binary pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19381199 Theory of Fractions in College Algebra Course
Authors: Alexander Y. Vaninsky
Abstract:
The paper compares the treatment of fractions in a typical undergraduate college curriculum and in abstract algebra textbooks. It stresses that the main difference is that the undergraduate curriculum treats equivalent fractions as equal, and this treatment eventually leads to paradoxes and impairs the students- ability to perceive ratios, proportions, radicals and rational exponents adequately. The paper suggests a simplified version of rigorous theory of fractions suitable for regular college curriculum.Keywords: Fractions, mathematics curriculum, mathematics education, teacher preparation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16681198 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Y. A. Adla, R. Soubra, M. Kasab, M. O. Diab, A. Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals out of which 11 were chosen based on their Intraclass Correlation Coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, five features were introduced to the Linear Discriminant Analysis classifier and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90% respectively.
Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4561197 Characterization of Three Photodetector Types for Computed Tomography Dosimetry
Authors: C. M. M. Paschoal, D. do N. Souza, L. A. P. Santos
Abstract:
In this study three commercial semiconductor devices were characterized in the laboratory for computed tomography dosimetry: one photodiode and two phototransistors. It was evaluated four responses to the irradiation: dose linearity, energy dependence, angular dependence and loss of sensitivity after X ray exposure. The results showed that the three devices have proportional response with the air kerma; the energy dependence displayed for each device suggests that some calibration factors would be applied for each one; the angular dependence showed a similar pattern among the three electronic components. In respect to the fourth parameter analyzed, one phototransistor has the highest sensitivity however it also showed the greatest loss of sensitivity with the accumulated dose. The photodiode was the device with the smaller sensitivity to radiation, on the other hand, the loss of sensitivity after irradiation is negligible. Since high accuracy is a desired feature for a dosimeter, the photodiode can be the most suitable of the three devices for dosimetry in tomography. The phototransistors can also be used for CT dosimetry, however it would be necessary a correction factor due to loss of sensitivity with accumulated dose.Keywords: Dosimetry, computed tomography, phototransistor, photodiode
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22791196 Frame Texture Classification Method (FTCM) Applied on Mammograms for Detection of Abnormalities
Authors: Kjersti Engan, Karl Skretting, Jostein Herredsvela, Thor Ole Gulsrud
Abstract:
Texture classification is an important image processing task with a broad application range. Many different techniques for texture classification have been explored. Using sparse approximation as a feature extraction method for texture classification is a relatively new approach, and Skretting et al. recently presented the Frame Texture Classification Method (FTCM), showing very good results on classical texture images. As an extension of that work the FTCM is here tested on a real world application as detection of abnormalities in mammograms. Some extensions to the original FTCM that are useful in some applications are implemented; two different smoothing techniques and a vector augmentation technique. Both detection of microcalcifications (as a primary detection technique and as a last stage of a detection scheme), and soft tissue lesions in mammograms are explored. All the results are interesting, and especially the results using FTCM on regions of interest as the last stage in a detection scheme for microcalcifications are promising.Keywords: detection, mammogram, texture classification, dictionary learning, FTCM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13951195 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment
Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi
Abstract:
Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.
Keywords: Electric power consumption, LED color, LED lighting, plant factory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13491194 A New Approach of Fuzzy Methods for Evaluating of Hydrological Data
Authors: Nasser Shamskia, Seyyed Habib Rahmati, Hassan Haleh , Seyyedeh Hoda Rahmati
Abstract:
The main criteria of designing in the most hydraulic constructions essentially are based on runoff or discharge of water. Two of those important criteria are runoff and return period. Mostly, these measures are calculated or estimated by stochastic data. Another feature in hydrological data is their impreciseness. Therefore, in order to deal with uncertainty and impreciseness, based on Buckley-s estimation method, a new fuzzy method of evaluating hydrological measures are developed. The method introduces triangular shape fuzzy numbers for different measures in which both of the uncertainty and impreciseness concepts are considered. Besides, since another important consideration in most of the hydrological studies is comparison of a measure during different months or years, a new fuzzy method which is consistent with special form of proposed fuzzy numbers, is also developed. Finally, to illustrate the methods more explicitly, the two algorithms are tested on one simple example and a real case study.Keywords: Fuzzy Discharge, Fuzzy estimation, Fuzzy ranking method, Hydrological data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17141193 Loop Heat Pipe: Simple Thermodynamic
Authors: Mohammad Hamdan, Emad Elnajjar
Abstract:
The LHP is a two-phase device with extremely high effective thermal conductivity that utilizes the thermodynamic pressure difference to circulate a cooling fluid. A thermodynamics analytical model is developed to explore different parameters effects on a Loop Heat Pipe (LHP).. The effects of pipe length, pipe diameter, condenser temperature, and heat load are reported. As pipe length increases and/or pipe diameter decreases, a higher temperature is expected in the evaporator.Keywords: Loop Heat Pipe, LHP, Passive Cooling, CapillaryForce.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28141192 Research on Urban Point of Interest Generalization Method Based on Mapping Presentation
Authors: Chengming Li, Yong Yin, Peipei Guo, Xiaoli Liu
Abstract:
Without taking account of the attribute richness of POI (point of interest) data and spatial distribution limited by roads, a POI generalization method considering both attribute information and spatial distribution has been proposed against the existing point generalization algorithm merely focusing on overall information of point groups. Hierarchical characteristic of urban POI information expression has been firstly analyzed to point out the measurement feature of the corresponding hierarchy. On this basis, an urban POI generalizing strategy has been put forward: POIs urban road network have been divided into three distribution pattern; corresponding generalization methods have been proposed according to the characteristic of POI data in different distribution patterns. Experimental results showed that the method taking into account both attribute information and spatial distribution characteristics of POI can better implement urban POI generalization in the mapping presentation.
Keywords: POI, Road network, spatial information expression, selection method, distribution pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10391191 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains
Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi
Abstract:
In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.
Keywords: Face recognition, Binary vector quantization (BVQ), Local Binary Patterns (LBP), DCT coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16211190 Resource Discovery in Web-Services Based Grids
Authors: Damandeep Kaur, Jyotsna Sengupta
Abstract:
A Web-services based grid infrastructure is evolving to be readily available in the near future. In this approach, the Web services are inherited (encapsulated or functioned) into the same existing Grid services class. In practice there is not much difference between the existing Web and grid infrastructure. Grid services emerged as stateful web services. In this paper, we present the key components of web-services based grid and also how the resource discovery is performed on web-services based grid considering resource discovery, as a critical service, to be provided by any type of grid.
Keywords: Web services, resource discovery, grid computing, OGSA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16421189 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source
Authors: Z. Veselý, M. Honner, J. Mach
Abstract:
The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. Complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.Keywords: Computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20391188 Data Quality Enhancement with String Length Distribution
Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda
Abstract:
Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.Keywords: Data quality, feature selection, probability distribution, string classification, string length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13281187 Signature Recognition and Verification using Hybrid Features and Clustered Artificial Neural Network(ANN)s
Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma, Hirendra Das
Abstract:
Signature represents an individual characteristic of a person which can be used for his / her validation. For such application proper modeling is essential. Here we propose an offline signature recognition and verification scheme which is based on extraction of several features including one hybrid set from the input signature and compare them with the already trained forms. Feature points are classified using statistical parameters like mean and variance. The scanned signature is normalized in slant using a very simple algorithm with an intention to make the system robust which is found to be very helpful. The slant correction is further aided by the use of an Artificial Neural Network (ANN). The suggested scheme discriminates between originals and forged signatures from simple and random forgeries. The primary objective is to reduce the two crucial parameters-False Acceptance Rate (FAR) and False Rejection Rate (FRR) with lesser training time with an intension to make the system dynamic using a cluster of ANNs forming a multiple classifier system.Keywords: offline, algorithm, FAR, FRR, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17811186 Aliveness Detection of Fingerprints using Multiple Static Features
Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim
Abstract:
Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19281185 Key Competences in Economics and Business Field: The Employers’ Side of the Story
Authors: Bruno Škrinjarić
Abstract:
Rapid technological developments and increase in organizations’ interdependence on international scale are changing the traditional workplace paradigm. A key feature of knowledge based economy is that employers are looking for individuals that possess both specific academic skills and knowledge, and also capability to be proactive and respond to problems creatively and autonomously. The focus of this paper is workers with Economics and Business background and its goals are threefold: (1) to explore wide range of competences and identify which are the most important to employers; (2) to investigate the existence and magnitude of gap between required and possessed level of a certain competency; and (3) to inquire how this gap is connected with performance of a company. A study was conducted on a representative sample of Croatian enterprises during the spring of 2016. Results show that generic, rather than specific, competences are more important to employers and the gap between the relative importance of certain competence and its current representation in existing workforce is greater for generic competences than for specific. Finally, results do not support the hypothesis that this gap is correlated with firms’ performance.
Keywords: Competency gap, competency matching, key competences, firm performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14681184 Learning Spatio-Temporal Topology of a Multi-Camera Network by Tracking Multiple People
Authors: Yunyoung Nam, Junghun Ryu, Yoo-Joo Choi, We-Duke Cho
Abstract:
This paper presents a novel approach for representing the spatio-temporal topology of the camera network with overlapping and non-overlapping fields of view (FOVs). The topology is determined by tracking moving objects and establishing object correspondence across multiple cameras. To track people successfully in multiple camera views, we used the Merge-Split (MS) approach for object occlusion in a single camera and the grid-based approach for extracting the accurate object feature. In addition, we considered the appearance of people and the transition time between entry and exit zones for tracking objects across blind regions of multiple cameras with non-overlapping FOVs. The main contribution of this paper is to estimate transition times between various entry and exit zones, and to graphically represent the camera topology as an undirected weighted graph using the transition probabilities.Keywords: Surveillance, multiple camera, people tracking, topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16551183 Infrared Camera-Based Hand Gesture Space Touch System Implementation of Smart Device Environment
Authors: Yang-Keun Ahn, Kwang-Soon Choi, Young-Choong Park, Kwang-Mo Jung
Abstract:
This paper proposes a method to recognize the tip of a finger and space touch hand gesture using an infrared camera in a smart device environment. The proposed method estimates the tip of a finger with a curvature-based ellipse fitting algorithm, and verifies that the estimated object is indeed a finger with an ellipse fitting rectangular area. The feature extracted from the verified finger tip is used to implement the movement of a mouse and clicking gesture. The proposed algorithm was implemented with an actual smart device to test the proposed method. Empirical parameters were obtained from the keypad software and an image analysis tool for the performance optimization, and a comparative analysis with conventional research showed improved performance with the proposed method.
Keywords: Infrared camera, Hand gesture, Smart device, Space touch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23371182 Suitability of Requirements Abstraction Model (RAM) Requirements for High-Level System Testing
Authors: Naeem Muhammad, Yves Vandewoude, Yolande Berbers, Robert Feldt
Abstract:
The Requirements Abstraction Model (RAM) helps in managing abstraction in requirements by organizing them at four levels (product, feature, function and component). The RAM is adaptable and can be tailored to meet the needs of the various organizations. Because software requirements are an important source of information for developing high-level tests, organizations willing to adopt the RAM model need to know the suitability of the RAM requirements for developing high-level tests. To investigate this suitability, test cases from twenty randomly selected requirements were developed, analyzed and graded. Requirements were selected from the requirements document of a Course Management System, a web based software system that supports teachers and students in performing course related tasks. This paper describes the results of the requirements document analysis. The results show that requirements at lower levels in the RAM are suitable for developing executable tests whereas it is hard to develop from requirements at higher levels.
Keywords: Market-driven requirements engineering, requirements abstraction model, requirements abstraction, system testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975