Search results for: Cooperative/Collaborative Learning and Environments.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2830

Search results for: Cooperative/Collaborative Learning and Environments.

1930 Learning Human-Like Color Categorization through Interaction

Authors: Rinaldo Christian Tanumara, Ming Xie, Chi Kit Au

Abstract:

Human perceives color in categories, which may be identified using color name such as red, blue, etc. The categorization is unique for each human being. However despite the individual differences, the categorization is shared among members in society. This allows communication among them, especially when using color name. Sociable robot, to live coexist with human and become part of human society, must also have the shared color categorization, which can be achieved through learning. Many works have been done to enable computer, as brain of robot, to learn color categorization. Most of them rely on modeling of human color perception and mathematical complexities. Differently, in this work, the computer learns color categorization through interaction with humans. This work aims at developing the innate ability of the computer to learn the human-like color categorization. It focuses on the representation of color categorization and how it is built and developed without much mathematical complexity.

Keywords: Color categorization, color learning, machinelearning, color naming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
1929 Conceptual Model for Massive Open Online Blended Courses Based on Disciplines’ Concepts Capitalization and Obstacles’ Detection

Authors: N. Hammid, F. Bouarab-Dahmani, T. Berkane

Abstract:

Since its appearance, the MOOC (massive open online course) is gaining more and more intention of the educational communities over the world. Apart from the current MOOCs design and purposes, the creators of MOOC focused on the importance of the connection and knowledge exchange between individuals in learning. In this paper, we present a conceptual model for massive open online blended courses where teachers over the world can collaborate and exchange their experience to get a common efficient content designed as a MOOC opened to their students to live a better learning experience. This model is based on disciplines’ concepts capitalization and the detection of the obstacles met by their students when faced with problem situations (exercises, projects, case studies, etc.). This detection is possible by analyzing the frequently of semantic errors committed by the students. The participation of teachers in the design of the course and the attendance by their students can guarantee an efficient and extensive participation (an important number of participants) in the course, the learners’ motivation and the evaluation issues, in the way that the teachers designing the course assess their students. Thus, the teachers review, together with their knowledge, offer a better assessment and efficient connections to their students.

Keywords: MOOC, Massive Open Online Courses, Online learning, E-learning, Blended learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
1928 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30d B SNR as a reference for voice activity.

Keywords: Atomic Decomposition, Gabor, Gammatone, Matching Pursuit, Voice Activity Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
1927 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
1926 A Metametadata Architecture forPedagogic Data Description

Authors: A. Ismail, M. S. Joy, J. E. Sinclair, M. I. Hamzah

Abstract:

This paper focuses on a novel method for semantic searching and retrieval of information about learning materials. Metametadata encapsulate metadata instances by using the properties and attributes provided by ontologies rather than describing learning objects. A novel metametadata taxonomy has been developed which provides the basis for a semantic search engine to extract, match and map queries to retrieve relevant results. The use of ontological views is a foundation for viewing the pedagogical content of metadata extracted from learning objects by using the pedagogical attributes from the metametadata taxonomy. Using the ontological approach and metametadata (based on the metametadata taxonomy) we present a novel semantic searching mechanism.These three strands – the taxonomy, the ontological views, and the search algorithm – are incorporated into a novel architecture (OMESCOD) which has been implemented.

Keywords: Metadata, metametadata, semantic, ontologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
1925 A Competitive Replica Placement Methodology for Ad Hoc Networks

Authors: Samee Ullah Khan, C. Ardil

Abstract:

In this paper, a mathematical model for data object replication in ad hoc networks is formulated. The derived model is general, flexible and adaptable to cater for various applications in ad hoc networks. We propose a game theoretical technique in which players (mobile hosts) continuously compete in a non-cooperative environment to improve data accessibility by replicating data objects. The technique incorporates the access frequency from mobile hosts to each data object, the status of the network connectivity, and communication costs. The proposed technique is extensively evaluated against four well-known ad hoc network replica allocation methods. The experimental results reveal that the proposed approach outperforms the four techniques in both the execution time and solution quality

Keywords: Data replication, auctions, static allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
1924 The Use of Chlorophyll Meter Readings for the Selection of Maize Inbred Lines under Drought Stress

Authors: F. Gekas, C. Pankou, I. Mylonas, E. Ninou, E. Sinapidou, A. Lithourgidis, F. Papathanasiou, J. –K. Petrevska, F. Papadopoulou, P. Zouliamis, G. Tsaprounis, I. Tokatlidis, C. Dordas

Abstract:

The present study aimed to investigate whether chlorophyll meter readings (SPAD) can be used as criterion of singleplant selection in maize breeding. Experimentation was performed at the ultra-low density of 0.74 plants/m2 in order the potential yield per plant to be fully expressed. R-31 honeycomb experiments were conducted in three different areas in Greece (Thessaloniki, Giannitsa and Florina) using 30 inbred lines at well-watered and water-stressed conditions during the 2012 growing season. The chlorophyll meter readings had higher rates at dry conditions, except location of Giannitsa where differences were not significant. Genotypes of highest chlorophyll meter readings were consistent across areas, emphasizing on the character’s stability. A positive correlation between the chlorophyll meter readings and grain yield was strengthening over time and culminated at the physiological maturity stage. There was a clear sign that the chlorophyll meter readings has the potential to be used for the selection of stress-adaptive genotypes and may permit modern maize to be grown at wider range of environments addressing the climate change scenarios.

Keywords: Drought-prone environments, honeycomb breeding, SPAD, Zea mays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839
1923 Multi-Context Recurrent Neural Network for Time Series Applications

Authors: B. Q. Huang, Tarik Rashid, M-T. Kechadi

Abstract:

this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.

Keywords: Gradient descent method, recurrent neural network, learning algorithms, time series, BP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3043
1922 Promoting Complex Systems Learning through the use of Computer Modeling

Authors: Kamel Hashem, David Mioduser

Abstract:

This paper describes part of a project about Learningby- Modeling (LbM). Studying complex systems is increasingly important in teaching and learning many science domains. Many features of complex systems make it difficult for students to develop deep understanding. Previous research indicates that involvement with modeling scientific phenomena and complex systems can play a powerful role in science learning. Some researchers argue with this view indicating that models and modeling do not contribute to understanding complexity concepts, since these increases the cognitive load on students. This study will investigate the effect of different modes of involvement in exploring scientific phenomena using computer simulation tools, on students- mental model from the perspective of structure, behavior and function. Quantitative and qualitative methods are used to report about 121 freshmen students that engaged in participatory simulations about complex phenomena, showing emergent, self-organized and decentralized patterns. Results show that LbM plays a major role in students' concept formation about complexity concepts.

Keywords: Complexity, Educational technology, Learning by modeling, Mental models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
1921 Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model

Authors: Kavita Burse, Manish Manoria, Vishnu P. S. Kirar

Abstract:

The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of the back propagation algorithm. We have applied the three term back propagation to multiplicative neural network learning. The algorithm is tested on XOR and parity problem and compared with the standard back propagation training algorithm.

Keywords: Three term back propagation, multiplicative neuralnetwork, proportional factor, local minima.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2815
1920 Meta Random Forests

Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti

Abstract:

Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.

Keywords: Random Forests [RF], ensembles, UCI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711
1919 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images

Authors: I. Oloyede

Abstract:

The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.

Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
1918 Peer Corrective Feedback on Written Errors in Computer-Mediated Communication

Authors: S. H. J. Liu

Abstract:

This paper aims to explore the role of peer Corrective Feedback (CF) in improving written productions by English-as-a- foreign-language (EFL) learners who work together via Wikispaces. It attempted to determine the effect of peer CF on form accuracy in English, such as grammar and lexis. Thirty-four EFL learners at the tertiary level were randomly assigned into the experimental (with peer feedback) or the control (without peer feedback) group; each group was subdivided into small groups of two or three. This resulted in six and seven small groups in the experimental and control groups, respectively. In the experimental group, each learner played a role as an assessor (providing feedback to others), as well as an assessee (receiving feedback from others). Each participant was asked to compose his/her written work and revise it based on the feedback. In the control group, on the other hand, learners neither provided nor received feedback but composed and revised their written work on their own. Data collected from learners’ compositions and post-task interviews were analyzed and reported in this study. Following the completeness of three writing tasks, 10 participants were selected and interviewed individually regarding their perception of collaborative learning in the Computer-Mediated Communication (CMC) environment. Language aspects to be analyzed included lexis (e.g., appropriate use of words), verb tenses (e.g., present and past simple), prepositions (e.g., in, on, and between), nouns, and articles (e.g., a/an). Feedback types consisted of CF, affective, suggestive, and didactic. Frequencies of feedback types and the accuracy of the language aspects were calculated. The results first suggested that accurate items were found more in the experimental group than in the control group. Such results entail that those who worked collaboratively outperformed those who worked non-collaboratively on the accuracy of linguistic aspects. Furthermore, the first type of CF (e.g., corrections directly related to linguistic errors) was found to be the most frequently employed type, whereas affective and didactic were the least used by the experimental group. The results further indicated that most participants perceived that peer CF was helpful in improving the language accuracy, and they demonstrated a favorable attitude toward working with others in the CMC environment. Moreover, some participants stated that when they provided feedback to their peers, they tended to pay attention to linguistic errors in their peers’ work but overlook their own errors (e.g., past simple tense) when writing. Finally, L2 or FL teachers or practitioners are encouraged to employ CMC technologies to train their students to give each other feedback in writing to improve the accuracy of the language and to motivate them to attend to the language system.

Keywords: Peer corrective feedback, computer-mediated communication, second or foreign language learning, Wikispaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
1917 The System for Root Canal Length Measurement Based on Multifrequency Impedance Method

Authors: Zheng Zhang, Xin Chen, Guoqing Ding

Abstract:

Electronic apex locators (EAL) has been widely used clinically for measuring root canal working length with high accuracy, which is crucial for successful endodontic treatment. In order to maintain high accuracy in different measurement environments, this study presented a system for root canal length measurement based on multifrequency impedance method. This measuring system can generate a sweep current with frequencies from 100 Hz to 1 MHz through a direct digital synthesizer. Multiple impedance ratios with different combinations of frequencies were obtained and transmitted by an analog-to-digital converter and several of them with representatives will be selected after data process. The system analyzed the functional relationship between these impedance ratios and the distance between the file and the apex with statistics by measuring plenty of teeth. The position of the apical foramen can be determined by the statistical model using these impedance ratios. The experimental results revealed that the accuracy of the system based on multifrequency impedance ratios method to determine the position of the apical foramen was higher than the dual-frequency impedance ratio method. Besides that, for more complex measurement environments, the performance of the system was more stable.

Keywords: Root canal length, apex locator, multifrequency impedance, sweep frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
1916 The PARADIGMA Approach for Cooperative Work in the Medical Domain

Authors: Antonio Di Leva, Carla Reyneri, Michele Sonnessa

Abstract:

PARADIGMA (PARticipative Approach to DIsease Global Management) is a pilot project which aims to develop and demonstrate an Internet based reference framework to share scientific resources and findings in the treatment of major diseases. PARADIGMA defines and disseminates a common methodology and optimised protocols (Clinical Pathways) to support service functions directed to patients and individuals on matters like prevention, posthospitalisation support and awareness. PARADIGMA will provide a platform of information services - user oriented and optimised against social, cultural and technological constraints - supporting the Health Care Global System of the Euro-Mediterranean Community in a continuous improvement process.

Keywords: Decision Support Systems, Ontology, Healt Care, Clinical Pathway

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
1915 Investigation of the Physical Computing in Computational Thinking Practices, Computer Programming Concepts and Self-Efficacy for Crosscutting Ideas in STEM Content Environments

Authors: Sarantos Psycharis

Abstract:

Physical Computing, as an instructional model, is applied in the framework of the Engineering Pedagogy to teach “transversal/cross-cutting ideas” in a STEM content approach. Labview and Arduino were used in order to connect the physical world with real data in the framework of the so called Computational Experiment. Tertiary prospective engineering educators were engaged during their course and Computational Thinking (CT) concepts were registered before and after the intervention across didactic activities using validated questionnaires for the relationship between self-efficacy, computer programming, and CT concepts when STEM content epistemology is implemented in alignment with the Computational Pedagogy model. Results show a significant change in students’ responses for self-efficacy for CT before and after the instruction. Results also indicate a significant relation between the responses in the different CT concepts/practices. According to the findings, STEM content epistemology combined with Physical Computing should be a good candidate as a learning and teaching approach in university settings that enhances students’ engagement in CT concepts/practices.

Keywords: STEM, computational thinking, physical computing, Arduino, Labview, self-efficacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
1914 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4990
1913 Evaluation of Curriculum Quality of Postgraduate Studies of Actuarial Science Field at Public Universities of Iran

Authors: F. Havas Beigi, M. Vafaee Yeganeh, E. Mohammadi

Abstract:

Evaluation and survey of curriculum quality as one of the most important components of universities system is necessary for different levels in higher education. The main purpose of this study was to survey of the curriculum quality of Actuarial science field. Case: University of SHahid Beheshti and Higher education institute of Eco insurance (according to viewpoint of students, alumni, employers and faculty members). Descriptive statistics (mean, tables, percentage, and frequency distribution) and inferential statistics (CHI SQUARE) were used to analyze the data. Six criteria considered for the Quality of curriculum: objectives, content, teaching and learning methods, space and facilities, Time, assessment of learning. Content, teaching and learning methods, space and facilities, assessment of learning criteria were relatively desirable level, objectives and time criterions were desirable level. The quality of curriculum of Actuarial Science field was relatively desirable level.

Keywords: Quality, curriculum, Actuarial science, higher education

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
1912 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities

Authors: Sayed Hadi Sadeghi

Abstract:

This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.

Keywords: Support services, e-network practice, Australian universities, United States universities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987
1911 Study of Aero-thermal Effects with Heat Radiation in Optical Side Window

Authors: Chun-Chi Li, Da-Wei Huang, Yin-Chia Su, Liang-Chih Tasi

Abstract:

In hypersonic environments, the aerothermal effect makes it difficult for the optical side windows of optical guided missiles to withstand high heat. This produces cracking or breaking, resulting in an inability to function. This study used computational fluid mechanics to investigate the external cooling jet conditions of optical side windows. The turbulent models k-ε and k-ω were simulated. To be in better accord with actual aerothermal environments, a thermal radiation model was added to examine suitable amounts of external coolants and the optical window problems of aero-thermodynamics. The simulation results indicate that when there are no external cooling jets, because airflow on the optical window and the tail groove produce vortices, the temperatures in these two locations reach a peak of approximately 1600 K. When the external cooling jets worked at 0.15 kg/s, the surface temperature of the optical windows dropped to approximately 280 K. When adding thermal radiation conditions, because heat flux dissipation was faster, the surface temperature of the optical windows fell from 280 K to approximately 260 K. The difference in influence of the different turbulence models k-ε and k-ω on optical window surface temperature was not significant.

Keywords: aero-optical side window, aerothermal effect, cooling, hypersonic flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3116
1910 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
1909 Investigating Iraqi EFL University Students' Productive Knowledge of Grammatical Collocations in English

Authors: Adnan Z. Mkhelif

Abstract:

Grammatical collocations (GCs) are word combinations containing a preposition or a grammatical structure, such as an infinitive (e.g. smile at, interested in, easy to learn, etc.). Such collocations tend to be difficult for Iraqi EFL university students (IUS) to master. To help address this problem, it is important to identify the factors causing it. This study aims at investigating the effects of L2 proficiency, frequency of GCs and their transparency on IUSs’ productive knowledge of GCs. The study involves 112 undergraduate participants with different proficiency levels, learning English in formal contexts in Iraq. The data collection instruments include (but not limited to) a productive knowledge test (designed by the researcher using the British National Corpus (BNC)), as well as the grammar part of the Oxford Placement Test (OPT). The study findings have shown that all the above-mentioned factors have significant effects on IUSs’ productive knowledge of GCs. In addition to establishing evidence of which factors of L2 learning might be relevant to learning GCs, it is hoped that the findings of the present study will contribute to more effective methods of teaching that can better address and help overcome the problems IUSs encounter in learning GCs. The study is thus hoped to have significant theoretical and pedagogical implications for researchers, syllabus designers as well as teachers of English as a foreign/second language.

Keywords: Corpus linguistics, frequency, grammatical collocations, L2 vocabulary learning, productive knowledge, proficiency, transparency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
1908 Architecting a Knowledge Theatre

Authors: David C. White

Abstract:

This paper describes the architectural design considerations for building a new class of application, a Personal Knowledge Integrator and a particular example a Knowledge Theatre. It then supports this description by describing a scenario of a child acquiring knowledge and how this process could be augmented by the proposed architecture and design of a Knowledge Theatre. David Merrill-s first “principles of instruction" are kept in focus to provide a background to view the learning potential.

Keywords: Knowledge, personal, open data, visualization, learning, teaching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
1907 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning

Authors: Yanwen Li, Shuguo Xie

Abstract:

In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.

Keywords: Gradient image, segmentation and extract, mean-shift algorithm, dictionary learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
1906 Injury Prediction for Soccer Players Using Machine Learning

Authors: Amiel Satvedi, Richard Pyne

Abstract:

Injuries in professional sports occur on a regular basis. Some may be minor while others can cause huge impact on a player’s career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player’s number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.

Keywords: Injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
1905 Development Framework Based on Mobile Augmented Reality for Pre-Literacy Kit

Authors: Nazatul Aini Abd Majid, Faridah Yunus, Haslina Arshad, Mohammad Farhan Mohammad Johari

Abstract:

Mobile technology, augmented reality, and game-based learning are some of the key learning technologies that can be fully optimized to promote pre-literacy skills. The problem is how to design an effective pre-literacy kit that utilizes some of the learning technologies. This paper presents a framework based on mobile augmented reality for the development of pre-literacy kit. This pre-literacy kit incorporates three main components which are contents, design, and tools. A prototype of a mobile app based on the three main components was developed for promoting pre-literacy. The results show that the children and teachers gave positive feedbacks after using the mobile app for the pre-literacy.

Keywords: Framework, mobile technology, augmented reality, pre-literacy skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
1904 Deterioration of Groundwater in Arid Environments: What Impact in Oasis Dynamics? Case Study of Tafilalet, Morocco

Authors: W. EL Khoumsi, A. Hammani, M. Kuper, A. Bouaziz

Abstract:

Oases are complex and fragile agro-ecosystems. They have always existed in environments characterized by an arid climate, scarcity of rainfall, high temperatures and high evaporation. These palms have grown up despite the severity of the physical characteristics thanks to the water's existence and irrigation practice. The oases are generally spread along non-perennial rivers (wadis), shallow water table or deep artesian groundwater. However, the sustainability of oasis system is threatened by water scarcity and declining of water table levels particularly in arid areas. Located in the southern east area of Morocco, Tafilalet plain encompasses one of the largest palm groves in the kingdom. In recent years, this area has become increasingly threatened by water shortage and has seen a sharp deterioration under the effect of several combined anthropogenic and climatic factors. The Bayoud disease, successive years of drought, Hassan Addakhil dam construction etc are all factors that have affected both water and phoenicicole heritage of the area. The objective of this study is to understand the interaction between qualitative and quantitative degradation of groundwater resources, and the palm grove dynamics, while reviewing the assumption that groundwater resources contribute in a direct way to the conservation of this oasis agroecosystem. A historical analysis tracing both the oasis dynamics and the groundwater evolution has been established. Data were collected from satellite images, surveys with different actors (farmers, Regional Office for Agricultural Development, Basin agency...). They were complemented by a synthesis of numerous technical reports in the area. The results showed that within 40 years, the thickness of the groundwater table has dropped in 50 %. Along with this, there has been a downsizing of date palm by 50 %. Areas with higher groundwater level were the least affected by the downsizing. So we can say that the shallow groundwater contribute significantly and directly to the water supply of date palm through its root system, and largely ensures the oasis ecosystem sustainability.

Keywords: Oasis dynamics, Arid environments, Groundwater deterioration, Date palm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
1903 Design and Performance of Adaptive Polarized MIMO MC-SS-CDMA System for Downlink Mobile Communications

Authors: Joseph V. M. Halim, Hesham El-Badawy, Hadia M. El-Hennawy

Abstract:

In this paper, an adaptive polarized Multiple-Input Multiple-Output (MIMO) Multicarrier Spread Spectrum Code Division Multiple Access (MC-SS-CDMA) system is designed for downlink mobile communications. The proposed system will be examined in Frequency Division Duplex (FDD) mode for both macro urban and suburban environments. For the same transmission bandwidth, a performance comparison between both nonoverlapped and orthogonal Frequency Division Multiplexing (FDM) schemes will be presented. Also, the proposed system will be compared with both the closed loop vertical MIMO MC-SS-CDMA system and the synchronous vertical STBC-MIMO MC-SS-CDMA system. As will be shown, the proposed system introduces a significant performance gain as well as reducing the spatial dimensions of the MIMO system and simplifying the receiver implementation. The effect of the polarization diversity characteristics on the BER performance will be discussed. Also, the impact of excluding the cross-polarization MCSS- CDMA blocks in the base station will be investigated. In addition, the system performance will be evaluated under different Feedback Information (FBI) rates for slowly-varying channels. Finally, a performance comparison for vehicular and pedestrian environments will be presented

Keywords: Closed loop technique, MC-SS-CDMA, Polarized MIMO systems, Transmit diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
1902 3D Multi-User Virtual Environment in Language Teaching

Authors: Hana Maresova, Daniel Ecler, Miroslava Mensikova

Abstract:

This article focuses on the use of 3D multi-user virtual environment in language teaching and presents the results of a four-year research at the Palacky University Olomouc Faculty of Education (Czech Republic). Language teaching was conducted in an experimental form in the 3D virtual worlds of Second Life and Kitely (experimental group) and, in parallel to this, there was also traditional teaching conducted on identical topics in the form of lectures using a textbook (control group). The didactic test, which was presented to both of the groups in an identical form before the start of teaching and after its implementation, verified the effect of teaching in the experimental group by comparing the achieved results of both groups. Out of the three components of mother tongue teaching (grammar, literature, composition and communication education) students achieved partial better results (in the case of points focused on the visualization of the subject matter, these were statistically significant) in literature. Students from the control group performed better in grammar and composition. Based on the achieved results, we can state that the most appropriate use of multi-user virtual environment (MUVE) can be seen in teaching those topics that have the possibility of dramatization, experiential learning and group cooperation.

Keywords: 3D virtual reality, multiuser environments, online education, language education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
1901 A Development of Creative Instruction Model through Digital Media

Authors: Kathaleeya Chanda, Panupong Chanplin, Suppara Charoenpoom

Abstract:

This purposes of the development of creative instruction model through digital media are to: 1) enable learners to learn from instruction media application; 2) help learners implementing instruction media correctly and appropriately; and 3) facilitate learners to apply technology for searching information and practicing skills to implement technology creatively. The sample group consists of 130 cases of secondary students studying in Bo Kluea School, Bo Kluea Nuea Sub-district, Bo Kluea District, Nan Province. The probability sampling was selected through the simple random sampling and the statistics used in this research are percentage, mean, standard deviation and one group pretest – posttest design. The findings are summarized as follows: The congruence index of instruction media for occupation and technology subjects is appropriate. By comparing between learning achievements before implementing the instruction media and learning achievements after implementing the instruction media, it is found that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. For the learning achievements from instruction media implementation, pretest mean is 16.24 while posttest mean is 26.28. Besides, pretest and posttest results are compared and differences of mean are tested, the test results show that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. This can be interpreted that the learners achieve better learning progress.

Keywords: Teaching learning model, digital media, creative instruction model, facilitate learners.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692