Search results for: Recognition of Prior Learning
2167 Annotations of Gene Pathways Images in Biomedical Publications Using Siamese Network
Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu
Abstract:
As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Manually annotating pathway diagrams is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.
Keywords: Biological pathway, gene identification, object detection, Siamese network, ResNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472166 A Robust Method for Hand Tracking Using Mean-shift Algorithm and Kalman Filter in Stereo Color Image Sequences
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Robert Niese, Bernd Michaelis
Abstract:
Real-time hand tracking is a challenging task in many computer vision applications such as gesture recognition. This paper proposes a robust method for hand tracking in a complex environment using Mean-shift analysis and Kalman filter in conjunction with 3D depth map. The depth information solve the overlapping problem between hands and face, which is obtained by passive stereo measuring based on cross correlation and the known calibration data of the cameras. Mean-shift analysis uses the gradient of Bhattacharyya coefficient as a similarity function to derive the candidate of the hand that is most similar to a given hand target model. And then, Kalman filter is used to estimate the position of the hand target. The results of hand tracking, tested on various video sequences, are robust to changes in shape as well as partial occlusion.Keywords: Computer Vision and Image Analysis, Object Tracking, Gesture Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29192165 The Students' Learning Effects on Dance Domain of Arts Education
Authors: Sheng-Min Cheng
Abstract:
The purpose of this study was to explore the learning effects on dance domain in Arts Curriculum at junior and senior high levels. A total of 1,366 students from 9th to 11th grade of different areas from Taiwan were administered a self-designed dance achievement test. Data were analyzed through descriptive analysis, independent sample t test, one-way ANOVA and Post hoc comparison analysis using Scheffé Test. The results showed (1) female studentsKeywords: arts education, dance learning effects, secondary level students, dance talented students
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21102164 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing
Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä
Abstract:
Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.Keywords: Feature recognition, automation, sheet metal manufacturing, CAM, CAD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11502163 A Study of the Problems and Demands of Community Leaders- Training in the Upper Northeastern Region
Authors: Teerawach Khamkorn, Laongtip Mathurasa, Savittree Rochanasmita Arnold, Witthaya Mekhum
Abstract:
This research is aimed at studying the nature of problems and demands of the training for community leaders in the upper northeastern region of Thailand. Population and group samplings are based on 360 community leaders in the region who have experienced prior training from the Udonthani Rajabhat University. Stratified random samplings have been drawn upon 186 participants. The research tools is questionnaires. The frequency, percentage and standard deviation are employed in data analysis. The findings indicate that most of community leaders are males and senior adults. The problems in training are associated with the inconveniences of long-distance travelling to training locations, inadequacy of learning centers and training sites and high training costs. The demand of training is basically motivated by a desire for self-development in modern knowledge in keeping up-to-date with the changing world and the need for technological application and facilitation in shortening the distance to training locations and in limiting expensive training costs.Keywords: Community leaders, Distance Training, Management, Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13552162 The Content Based Objective Metrics for Video Quality Evaluation
Authors: Michal Mardiak, Jaroslav Polec
Abstract:
In this paper we proposed comparison of four content based objective metrics with results of subjective tests from 80 video sequences. We also include two objective metrics VQM and SSIM to our comparison to serve as “reference” objective metrics because their pros and cons have already been published. Each of the video sequence was preprocessed by the region recognition algorithm and then the particular objective video quality metric were calculated i.e. mutual information, angular distance, moment of angle and normalized cross-correlation measure. The Pearson coefficient was calculated to express metrics relationship to accuracy of the model and the Spearman rank order correlation coefficient to represent the metrics relationship to monotonicity. The results show that model with the mutual information as objective metric provides best result and it is suitable for evaluating quality of video sequences.
Keywords: Objective quality metrics, mutual information, region recognition, content based metrics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15062161 A Primer to the Learning Readiness Assessment to Raise the Sharing of e-Health Knowledge amongst Libyan Nurses
Authors: Mohamed Elhadi M. Sharif, Mona Masood
Abstract:
The usage of e-health facilities is seen to be the first priority by the Libyan government. As such this paper focuses on how the key factors or elements of working size in terms of technological availability, structural environment, and other competence-related matters may affect nurses’ sharing of knowledge in e-health. Hence, this paper investigates learning readiness assessment to raise e-health for Libyan regional hospitals by using ehealth services in nursing education.
Keywords: Libyan nurses, e-Learning readiness, e-Health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21722160 An Organizational Strategic Analysis for Dynamics of Generating Firms- Alliance Networks
Authors: Takao Sakakura, Kazunori Fujimoto
Abstract:
This paper proposes an analytical method for the dynamics of generating firms- alliance networks along with business phases. Dynamics in network developments have previously been discussed in the research areas of organizational strategy rather than in the areas of regional cluster, where the static properties of the networks are often discussed. The analytical method introduces the concept of business phases into innovation processes and uses relationships called prior experiences; this idea was developed in organizational strategy to investigate the state of networks from the viewpoints of tradeoffs between link stabilization and node exploration. This paper also discusses the results of the analytical method using five cases of the network developments of firms. The idea of Embeddedness helps interpret the backgrounds of the analytical results. The analytical method is useful for policymakers of regional clusters to establish concrete evaluation targets and a viewpoint for comparisons of policy programs.Keywords: Regional Clusters, Alliance Networks, Innovation Processes, Prior Experiences, Embeddedness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12712159 The Attitude of Second Year Pharmacy Students towards Lectures, Exams and E-Learning
Authors: Ahmed T. Alahmar
Abstract:
There is an increasing trend toward student-centred interactive e-learning methods and students’ feedback is a valuable tool for improving learning methods. The aim of this study was to explore the attitude of second year pharmacy students at the University of Babylon, Iraq, towards lectures, exams and e-learning. Materials and methods: Ninety pharmacy students were surveyed by paper questionnaire about their preference for lecture format, use of e-files, theoretical lectures versus practical experiments, lecture and lab time. Students were also asked about their predilection for Moodle-based online exams, different types of exam questions, exam time and other extra academic activities. Results: Students prefer to read lectures on paper (73.3%), use of PowerPoint file (76.7%), short lectures of less than 10 pages (94.5%), practical experiments (66.7%), lectures and lab time of less than two hours (89.9% and 96.6 respectively) and intra-lecture discussions (68.9%). Students also like to have paper-based exam (73.3%), short essay (40%) or MCQ (34.4%) questions and also prefer to do extra activities like reports (22.2%), seminars (18.6%) and posters (10.8%). Conclusion: Second year pharmacy students have different attitudes toward traditional and electronic leaning and assessment methods. Using multimedia, e-learning and Moodle are increasingly preferred methods among some students.
Keywords: Pharmacy, students, lecture, exam, e-learning, Moodle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14322158 Development and Structural Performance Evaluation on Slit Circular Shear Panel Damper
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of slit circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. The main parameters considered are: diameter-to-thickness (D/t) ratio and slit length-to-width ratio (l/w). Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. The susceptible location at which the possible crack is initiated is also identified for selected specimens using rupture index.
Keywords: Slit circular shear panel damper, Hysteresis Characteristics, Slip length-to-width ratio, D/t ratio, FE analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24962157 Machine Learning in Production Systems Design Using Genetic Algorithms
Authors: Abu Qudeiri Jaber, Yamamoto Hidehiko Rizauddin Ramli
Abstract:
To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.Keywords: Genetic algorithms, Layout problem, Machinelearning, Production system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16292156 Iterative Learning Control of Two Coupled Nonlinear Spherical Tanks
Authors: A. R. Tavakolpour-Saleh, A. R. Setoodeh, E. Ansari
Abstract:
This paper presents modeling and control of a highly nonlinear system including, non-interacting two spherical tanks using iterative learning control (ILC). Consequently, the objective of the paper is to control the liquid levels in the nonlinear tanks. First, a proportional-integral-derivative (PID) controller is applied to the plant model as a suitable benchmark for comparison. Then, dynamic responses of the control system corresponding to different step inputs are investigated. It is found that the conventional PID control is not able to fulfill the design criteria such as desired time constant. Consequently, an iterative learning controller is proposed to accurately control the coupled nonlinear tanks system. The simulation results clearly demonstrate the superiority of the presented ILC approach over the conventional PID controller to cope with the nonlinearities presented in the dynamic system.Keywords: Iterative learning control, spherical tanks, nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12492155 Improving Learning Abilities and Inclusion through Movement: The Movi-Mente© Method
Authors: Ivan Traina, Luigi Sangalli, Fabio Tognon, Angelo Lascioli
Abstract:
Currently, challenges regarding preschooler children are mainly focused on a sedentary lifestyle. Also, motor activity in infancy is seen as a tool for the separate acquisition of cognitive and socio-emotional skills rather than considering neuromotor development as a tool for improving learning abilities. The paper utilized an observational research method to shed light on the results of practicing neuromotor exercises in preschool children with disability as well as provide implications for practice.
Keywords: Children with disability, learning abilities, inclusion, neuromotor development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5792154 Virtual Science Hub: An Open Source Platform to Enrich Science Teaching
Authors: Enrique Barra, Aldo Gordillo, Juan Quemada
Abstract:
This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a videoconference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.
Keywords: E-learning, platform, authoring tool, science teaching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35212153 Composite Kernels for Public Emotion Recognition from Twitter
Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang
Abstract:
The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.
Keywords: Public emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7732152 Ontology-Navigated Tutoring System for Flipped-Mastery Model
Authors: Masao Okabe
Abstract:
Nowadays, in Japan, variety of students get into a university and one of the main roles of introductory courses for freshmen is to make such students well prepared for subsequent intermediate courses. For that purpose, the flipped-mastery model is not enough because videos usually used in a flipped classroom is not adaptive and does not fit all freshmen with different academic performances. This paper proposes an ontology-navigated tutoring system called EduGraph. Using EduGraph, students can prepare for and review a class, in a more flexibly personalizable way than by videos. Structuralizing learning materials by its ontology, EduGraph also helps students integrate what they learn as knowledge, and makes learning materials sharable. EduGraph was used for an introductory course for freshmen. This application suggests that EduGraph is effective.
Keywords: Adaptive e-learning, flipped classroom, mastery learning, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9952151 An Expert System for Assessment of Learning Outcomes for ABET Accreditation
Authors: M. H. Imam, Imran A. Tasadduq, Abdul-Rahim Ahmad, Fahd M. Aldosari
Abstract:
Learning outcomes of a course (CLOs) and the abilities at the time of graduation referred to as Student Outcomes (SOs) are required to be assessed for ABET accreditation. A question in an assessment must target a CLO as well as an SO and must represent a required level of competence. This paper presents the idea of an Expert System (ES) to select a proper question to satisfy ABET accreditation requirements. For ES implementation, seven attributes of a question are considered including the learning outcomes and Bloom’s Taxonomy level. A database contains all the data about a course including course content topics, course learning outcomes and the CLO-SO relationship matrix. The knowledge base of the presented ES contains a pool of questions each with tags of the specified attributes. Questions and the attributes represent expert opinions. With implicit rule base the inference engine finds the best possible question satisfying the required attributes. It is shown that the novel idea of such an ES can be implemented and applied to a course with success. An application example is presented to demonstrate the working of the proposed ES.
Keywords: Expert system, student outcomes, course learning outcomes, question attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15002150 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: Intrusion prevention, network security, optimal policy, Q-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10222149 Image Haze Removal Using Scene Depth Based Spatially Varying Atmospheric Light in Haar Lifting Wavelet Domain
Authors: Prabh Preet Singh, Harpreet Kaur
Abstract:
This paper presents a method for single image dehazing based on dark channel prior (DCP). The property that the intensity of the dark channel gives an approximate thickness of the haze is used to estimate the transmission and atmospheric light. Instead of constant atmospheric light, the proposed method employs scene depth to estimate spatially varying atmospheric light as it truly occurs in nature. Haze imaging model together with the soft matting method has been used in this work to produce high quality haze free image. Experimental results demonstrate that the proposed approach produces better results than the classic DCP approach as color fidelity and contrast of haze free image are improved and no over-saturation in the sky region is observed. Further, lifting Haar wavelet transform is employed to reduce overall execution time by a factor of two to three as compared to the conventional approach.
Keywords: Depth based atmospheric light, dark channel prior, lifting wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5532148 High Wire Act: the Perils, Pitfalls and Possibilities of Online Discussions
Authors: Karen Armstrong
Abstract:
Online discussions are an important component of both blended and online courses. This paper examines the varieties of online discussions and the perils, pitfalls and possibilities of this rather new technological tool for enhanced learning. The discussion begins with possible perils and pitfalls inherent in this educational tool and moves to a consideration of the advantages of the varieties of online discussions feasible for use in teacher education programs.Keywords: online discussions, computer-mediatedcommunication (CMC), computer-supported collaborative learning(CSCL), e-learning, teacher education
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25992147 Describing Learning Features of Reusable Resources: A Proposal
Authors: Serena Alvino, Paola Forcheri, Maria Grazia Ierardi, Luigi Sarti
Abstract:
One of the main advantages of the LO paradigm is to allow the availability of good quality, shareable learning material through the Web. The effectiveness of the retrieval process requires a formal description of the resources (metadata) that closely fits the user-s search criteria; in spite of the huge international efforts in this field, educational metadata schemata often fail to fulfil this requirement. This work aims to improve the situation, by the definition of a metadata model capturing specific didactic features of shareable learning resources. It classifies LOs into “teacher-oriented" and “student-oriented" categories, in order to describe the role a LO is to play when it is integrated into the educational process. This article describes the model and a first experimental validation process that has been carried out in a controlled environment.Keywords: Learning object, pedagogical metadata, experimental validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15452146 Signature Recognition and Verification using Hybrid Features and Clustered Artificial Neural Network(ANN)s
Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma, Hirendra Das
Abstract:
Signature represents an individual characteristic of a person which can be used for his / her validation. For such application proper modeling is essential. Here we propose an offline signature recognition and verification scheme which is based on extraction of several features including one hybrid set from the input signature and compare them with the already trained forms. Feature points are classified using statistical parameters like mean and variance. The scanned signature is normalized in slant using a very simple algorithm with an intention to make the system robust which is found to be very helpful. The slant correction is further aided by the use of an Artificial Neural Network (ANN). The suggested scheme discriminates between originals and forged signatures from simple and random forgeries. The primary objective is to reduce the two crucial parameters-False Acceptance Rate (FAR) and False Rejection Rate (FRR) with lesser training time with an intension to make the system dynamic using a cluster of ANNs forming a multiple classifier system.Keywords: offline, algorithm, FAR, FRR, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17802145 Aliveness Detection of Fingerprints using Multiple Static Features
Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim
Abstract:
Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19262144 Designing Social Media into Higher Education Courses
Authors: Thapanee Seechaliao
Abstract:
This research paper presents guiding on how to design social media into higher education courses. The research methodology used a survey approach. The research instrument was a questionnaire about guiding on how to design social media into higher education courses. Thirty-one lecturers completed the questionnaire. The data were scored by frequency and percentage. The research results were the lecturers’ opinions concerning the designing social media into higher education courses as follows: 1) Lecturers deem that the most suitable learning theory is Collaborative Learning. 2) Lecturers consider that the most important learning and innovation Skill in the 21st century is communication and collaboration skills. 3) Lecturers think that the most suitable evaluation technique is authentic assessment. 4) Lecturers consider that the most appropriate portion used as blended learning should be 70% in the classroom setting and 30% online.Keywords: Instructional design, social media, courses, higher education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20472143 Decision Support Framework in Managerial Learning Environment for Organization
Authors: M. Mazhar Manzoor, Nasar.A, A. Sattar
Abstract:
In the open space of decision support system the mental impression of a manager-s decision has been the subject of large importance than the ordinary famous one, when helped by decision support system. Much of this study is an attempt to realize the relation of decision support system usage and decision outcomes that governs the system. For example, several researchers have proposed so many different models to analyze the linkage between decision support system processes and results of decision making. This study draws the important relation of manager-s mental approach with the use of decision support system. The findings of this paper are theoretical attempts to provide Decision Support System (DSS) in a way to exhibit and promote the learning in semi structured area. The proposed model shows the points of one-s learning improvements and maintains a theoretical approach in order to explore the DSS contribution in enhancing the decision forming and governing the system.Keywords: Decision Support System , Learning Organization,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14622142 The Efficacy of Neurological Impress Method and Repeated Reading on Reading Fluency of Children with Learning Disabilities in Oyo State, Nigeria
Authors: A. O. Oladele
Abstract:
The purpose of this study was to find out the effectiveness of neurological impress method and repeated reading technique on reading fluency of children with learning disabilities. Thirty primary four pupils in three public primary schools participated in the study. There were two experimental groups and a control. This research employed a 3 by 2 factorial matrix and the participants were taught for one session. Two hypotheses were formulated to guide the research. T-test was used to analyse the data gathered, and data analysis revealed that pupils exposed to the two treatment strategies had improvement in their reading fluency. It was recommended that the two strategies used in the study can be used to intervene in reading fluency problems in children with learning disabilities.Keywords: Learning disabilities, neurological impress method, repeated reading, reading fluency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38002141 Enhancing Human-Computer Interaction and Feedback in Touchscreen Icon
Authors: Hsinfu Huang Li-Hao Chen
Abstract:
In order to enhance the usability of the human computer interface (HCI) on the touchscreen, this study explored the optimal tactile depth and effect of visual cues on the user-s tendency to touch the touchscreen icons. The experimental program was designed on the touchscreen in this study. Results indicated that the ratio of the icon size to the tactile depth was 1:0.106. There were significant effects of experienced users and novices on the tactile feedback depth (p < 0.01). In addition, the results proved that the visual cues provided a feedback that helped to guide the user-s touch icons accurately and increased the capture efficiency for a tactile recognition field. This tactile recognition field was 18.6 mm in length. There was consistency between the experienced users and novices under the visual cue effects. Finally, the study developed an applied design with touch feedback for touchscreen icons.
Keywords: HCI, Touchscreen icon, Touch feedback, Optimaltactile depth, Visual cues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22142140 A Probabilistic Reinforcement-Based Approach to Conceptualization
Authors: Hadi Firouzi, Majid Nili Ahmadabadi, Babak N. Araabi
Abstract:
Conceptualization strengthens intelligent systems in generalization skill, effective knowledge representation, real-time inference, and managing uncertain and indefinite situations in addition to facilitating knowledge communication for learning agents situated in real world. Concept learning introduces a way of abstraction by which the continuous state is formed as entities called concepts which are connected to the action space and thus, they illustrate somehow the complex action space. Of computational concept learning approaches, action-based conceptualization is favored because of its simplicity and mirror neuron foundations in neuroscience. In this paper, a new biologically inspired concept learning approach based on the probabilistic framework is proposed. This approach exploits and extends the mirror neuron-s role in conceptualization for a reinforcement learning agent in nondeterministic environments. In the proposed method, instead of building a huge numerical knowledge, the concepts are learnt gradually from rewards through interaction with the environment. Moreover the probabilistic formation of the concepts is employed to deal with uncertain and dynamic nature of real problems in addition to the ability of generalization. These characteristics as a whole distinguish the proposed learning algorithm from both a pure classification algorithm and typical reinforcement learning. Simulation results show advantages of the proposed framework in terms of convergence speed as well as generalization and asymptotic behavior because of utilizing both success and failures attempts through received rewards. Experimental results, on the other hand, show the applicability and effectiveness of the proposed method in continuous and noisy environments for a real robotic task such as maze as well as the benefits of implementing an incremental learning scenario in artificial agents.
Keywords: Concept learning, probabilistic decision making, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15272139 Using Data Mining for Learning and Clustering FCM
Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mohammad Fathian
Abstract:
Fuzzy Cognitive Maps (FCMs) have successfully been applied in numerous domains to show relations between essential components. In some FCM, there are more nodes, which related to each other and more nodes means more complex in system behaviors and analysis. In this paper, a novel learning method used to construct FCMs based on historical data and by using data mining and DEMATEL method, a new method defined to reduce nodes number. This method cluster nodes in FCM based on their cause and effect behaviors.Keywords: Clustering, Data Mining, Fuzzy Cognitive Map(FCM), Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20162138 Predicting Extrusion Process Parameters Using Neural Networks
Authors: Sachin Man Bajimaya, SangChul Park, Gi-Nam Wang
Abstract:
The objective of this paper is to estimate realistic principal extrusion process parameters by means of artificial neural network. Conventionally, finite element analysis is used to derive process parameters. However, the finite element analysis of the extrusion model does not consider the manufacturing process constraints in its modeling. Therefore, the process parameters obtained through such an analysis remains highly theoretical. Alternatively, process development in industrial extrusion is to a great extent based on trial and error and often involves full-size experiments, which are both expensive and time-consuming. The artificial neural network-based estimation of the extrusion process parameters prior to plant execution helps to make the actual extrusion operation more efficient because more realistic parameters may be obtained. And so, it bridges the gap between simulation and real manufacturing execution system. In this work, a suitable neural network is designed which is trained using an appropriate learning algorithm. The network so trained is used to predict the manufacturing process parameters.Keywords: Artificial Neural Network (ANN), Indirect Extrusion, Finite Element Analysis, MES.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368