Search results for: Bayesian class
220 Generalized Mathematical Description and Simulation of Grid-Tied Thyristor Converters
Authors: V. S. Klimash, Ye Min Thu
Abstract:
Thyristor rectifiers, inverters grid-tied, and AC voltage regulators are widely used in industry, and on electrified transport, they have a lot in common both in the power circuit and in the control system. They have a common mathematical structure and switching processes. At the same time, the rectifier, but the inverter units and thyristor regulators of alternating voltage are considered separately both theoretically and practically. They are written about in different books as completely different devices. The aim of this work is to combine them into one class based on the unity of the equations describing electromagnetic processes, and then, to show this unity on the mathematical model and experimental setup. Based on research from mathematics to the product, a conclusion is made about the methodology for the rapid conduct of research and experimental design work, preparation for production and serial production of converters with a unified bundle. In recent years, there has been a transition from thyristor circuits and transistor in modular design. Showing the example of thyristor rectifiers and AC voltage regulators, we can conclude that there is a unity of mathematical structures and grid-tied thyristor converters.Keywords: Direct current, alternating current, rectifier, AC voltage regulator, generalized mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009219 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data
Authors: Hyun-Woo Cho
Abstract:
Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.
Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746218 An Adaptive Virtual Desktop Service in Cloud Computing Platform
Authors: Shuen-Tai Wang, Hsi-Ya Chang
Abstract:
Cloud computing is becoming more and more matured over the last few years and consequently the demands for better cloud services is increasing rapidly. One of the research topics to improve cloud services is the desktop computing in virtualized environment. This paper aims at the development of an adaptive virtual desktop service in cloud computing platform based on our previous research on the virtualization technology. We implement cloud virtual desktop and application software streaming technology that make it possible for providing Virtual Desktop as a Service (VDaaS). Given the development of remote desktop virtualization, it allows shifting the user’s desktop from the traditional PC environment to the cloud-enabled environment, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the platform maintenances and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible remote desktop service represents the next significant step to the mobile workplace, and it lets users access their desktop environments from virtually anywhere.
Keywords: Cloud Computing, Virtualization, Virtual Desktop, VDaaS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487217 Numerical Modeling of Wave Run-Up in Shallow Water Flows Using Moving Wet/Dry Interfaces
Authors: Alia Alghosoun, Michael Herty, Mohammed Seaid
Abstract:
We present a new class of numerical techniques to solve shallow water flows over dry areas including run-up. Many recent investigations on wave run-up in coastal areas are based on the well-known shallow water equations. Numerical simulations have also performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of coastal areas. In all these simulations the shallow water equations are solved in entire domain including dry areas and special treatments are used for numerical solution of singularities at these dry regions. In the present study we propose a new method to deal with these difficulties by reformulating the shallow water equations into a new system to be solved only in the wetted domain. The system is obtained by a change in the coordinates leading to a set of equations in a moving domain for which the wet/dry interface is the reconstructed using the wave speed. To solve the new system we present a finite volume method of Lax-Friedrich type along with a modified method of characteristics. The method is well-balanced and accurately resolves dam-break problems over dry areas.Keywords: Run-up waves, Shallow water equations, finite volume method, wet/dry interface, dam-break problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709216 Dynamic-Stochastic Influence Diagrams: Integrating Time-Slices IDs and Discrete Event Systems Modeling
Authors: Xin Zhao, Yin-fan Zhu, Wei-ping Wang, Qun Li
Abstract:
The Influence Diagrams (IDs) is a kind of Probabilistic Belief Networks for graphic modeling. The usage of IDs can improve the communication among field experts, modelers, and decision makers, by showing the issue frame discussed from a high-level point of view. This paper enhances the Time-Sliced Influence Diagrams (TSIDs, or called Dynamic IDs) based formalism from a Discrete Event Systems Modeling and Simulation (DES M&S) perspective, for Exploring Analysis (EA) modeling. The enhancements enable a modeler to specify times occurred of endogenous events dynamically with stochastic sampling as model running and to describe the inter- influences among them with variable nodes in a dynamic situation that the existing TSIDs fails to capture. The new class of model is named Dynamic-Stochastic Influence Diagrams (DSIDs). The paper includes a description of the modeling formalism and the hiberarchy simulators implementing its simulation algorithm, and shows a case study to illustrate its enhancements.
Keywords: Time-sliced influence diagrams, discrete event systems, dynamic-stochastic influence diagrams, modeling formalism, simulation algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432215 The Ability of Forecasting the Term Structure of Interest Rates Based On Nelson-Siegel and Svensson Model
Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović
Abstract:
Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector autoregressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is Neural networks using Nelson-Siegel estimation of yield curves.
Keywords: Nelson-Siegel model, Neural networks, Svensson model, Vector autoregressive model, Yield curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3248214 Developing a Sustainable Educational Portal for the D-Grid Community
Authors: Viktor Achter, Sebastian Breuers, Marc Seifert, Ulrich Lang, Joachim Götze, Bernd Reuther, Paul Müller
Abstract:
Within the last years, several technologies have been developed to help building e-learning portals. Most of them follow approaches that deliver a vast amount of functionalities, suitable for class-like learning. The SuGI project, as part of the D-Grid (funded by the BMBF), targets on delivering a highly scalable and sustainable learning solution to provide materials (e.g. learning modules, training systems, webcasts, tutorials, etc.) containing knowledge about Grid computing to the D-Grid community. In this article, the process of the development of an e-learning portal focused on the requirements of this special user group is described. Furthermore, it deals with the conceptual and technical design of an e-learning portal, addressing the special needs of heterogeneous target groups. The main focus lies on the quality management of the software development process, Web templates for uploading new contents, the rich search and filter functionalities which will be described from a conceptual as well as a technical point of view. Specifically, it points out best practices as well as concepts to provide a sustainable solution to a relatively unknown and highly heterogeneous community.
Keywords: D-Grid, e-learning, e-science, Grid computing, SuGI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345213 Kinematic Hardening Parameters Identification with Respect to Objective Function
Authors: Marina Franulovic, Robert Basan, Bozidar Krizan
Abstract:
Constitutive modeling of material behavior is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behavior of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behavior modeling.
Keywords: Genetic algorithm, kinematic hardening, material model, objective function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3801212 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland
Authors: Sotirios Raptis
Abstract:
Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.
Keywords: Class, cohorts, data frames, grouping, prediction, probabilities, services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460211 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining
Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar
Abstract:
The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.
Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3308210 Investigation of Water Deficit Stress on Agronomical Traits of Soybean Cultivars in Temperate Climate
Authors: Jahanfar Daneshian, P. Jonoubi, D. Barari Tari
Abstract:
In order to investigate water deficit stress on 24 of soybean (Glycine Max. L) cultivars and lines in temperate climate, an experiment was conducted in Iran Seed and Plant Improvement Institute. Stress levels were irrigation after evaporation of 50, 100, 150 mm water from pan, class A. Randomized Completely Block Design was arranged for each stress levels. Some traits such as, node number, plant height, pod number per area, grain number per pod, grain number per area, 1000 grains weight, grain yield and harvest index were measured. Results showed that water deficit stress had significant effect on node number, plant height, pod number per area, grain number per pod, grain number per area, 1000 grains weight and harvest index. Also all of agronomic traits except harvest index influenced significantly by cultivars and lines. The least and most grain yield was belonged to Ronak X Williams and M41 x Clark respectively.Keywords: Soybean, water deficit stress, Agronomic traits, Yield
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652209 Indoor Localization by Pattern Matching Method Based On Extended Database
Authors: Gyumin Hwang, Jihong Lee
Abstract:
This paper studied the CSS-based indoor localization system which is easy to implement, inexpensive to compose the systems, additionally CSS-based indoor localization system covers larger area than other system. However, this system has problem which is affected by reflected distance data. This problem in localization is caused by the multi-path effect. Error caused by multi-path is difficult to be corrected because the indoor environment cannot be described. In this paper, in order to solve the problem by multi-path, we have supplemented the localization system by using pattern matching method based on extended database. Thereby, this method improves precision of estimated. Also this method is verified by experiments in gymnasium. Database was constructed by 1m intervals, and 16 sample data were collected from random position inside the region of DB points. As a result, this paper shows higher accuracy than existing method through graph and table.
Keywords: Chirp Spread Spectrum (CSS), Indoor Localization, Pattern-Matching, Time of Arrival (ToA), Multi-Path, Mahalanobis Distance, Reception Rate, Simultaneous Localization and Mapping (SLAM), Laser Range Finder (LRF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891208 Evolving a Fuzzy Rule-Base for Image Segmentation
Abstract:
A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noiseKeywords: Comprehensive learning Particle Swarmoptimization, fuzzy classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956207 Importance of Mobile Technology in Successful Adoption and Sustainability of a Chronic Disease Support System
Authors: Reza Ariaeinejad, Norm Archer
Abstract:
Self-management is becoming a new emphasis for healthcare systems around the world. But there are many different problems with adoption of new health-related intervention systems. The situation is even more complicated for chronically ill patients with disabilities, illiteracy, and impairment in judgment in addition to their conditions, or having multiple co-morbidities. Providing online decision support to manage patient health and to provide better support for chronically ill patients is a new way of dealing with chronic disease management. In this study, the importance of mobile technology through an m-Health system that supports self-management interventions including the care provider, family and social support, education and training, decision support, recreation, and ongoing patient motivation to promote adherence and sustainability of the intervention are discussed. A proposed theoretical model for adoption and sustainability of system use is developed, based on UTAUT2 and IS Continuance of Use models, both of which have been pre-validated through longitudinal studies. The objective of this paper is to show the importance of using mobile technology in adoption and sustainability of use of an m-Health system which will result in commercially sustainable self-management support for chronically ill patients.
Keywords: M-health, e-health, self-management, disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830206 Near-Field Robust Adaptive Beamforming Based on Worst-Case Performance Optimization
Authors: Jing-ran Lin, Qi-cong Peng, Huai-zong Shao
Abstract:
The performance of adaptive beamforming degrades substantially in the presence of steering vector mismatches. This degradation is especially severe in the near-field, for the 3-dimensional source location is more difficult to estimate than the 2-dimensional direction of arrival in far-field cases. As a solution, a novel approach of near-field robust adaptive beamforming (RABF) is proposed in this paper. It is a natural extension of the traditional far-field RABF and belongs to the class of diagonal loading approaches, with the loading level determined based on worst-case performance optimization. However, different from the methods solving the optimal loading by iteration, it suggests here a simple closed-form solution after some approximations, and consequently, the optimal weight vector can be expressed in a closed form. Besides simplicity and low computational cost, the proposed approach reveals how different factors affect the optimal loading as well as the weight vector. Its excellent performance in the near-field is confirmed via a number of numerical examples.Keywords: Robust adaptive beamforming (RABF), near-field, steering vector mismatches, diagonal loading, worst-case performanceoptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881205 Head of the Class: A Study of What United States Journalism School Administrators Consider the Most Valuable Educational Tenets for Their Graduates Seeking Careers at U.S. Legacy Newspapers
Authors: Adam Pitluk
Abstract:
In a time period populated by legacy newspaper readers who throw around the term “fake news” as though it has long been a part of the lexicon, journalism schools must convince would-be students that their degree is still viable and that they are not teaching a curriculum of deception. As such, journalism schools’ academic administrators tasked with creating and maintaining conversant curricula must stay ahead of legacy newspaper industry trends – both in the print and online products – and ensure that what is being taught in the classroom is both fresh and appropriate to the demands of the evolving legacy newspaper industry. This study examines the information obtained from the result of interviews of journalism academic administrators in order to identify institutional pedagogy for recent journalism school graduates interested in pursuing careers at legacy newspapers. This research also explores the existing relationship between journalism school academic administrators and legacy newspaper editors. The results indicate the value administrators put on various academy teachings, and they also highlight a perceived disconnect between journalism academic administrators and legacy newspaper hiring editors.
Keywords: Academic administration, education, journalism, media management, newspapers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460204 The Use of SD Bioline TB AgMPT64® Detection Assay for Rapid Characterization of Mycobacteria in Nigeria
Authors: S. Ibrahim, U. B. Abubakar, S. Danbirni, A. Usman, F. M. Ballah, C. A. Kudi, L. Lawson, G. H. Abdulrazak, I. A. Abdulkadir
Abstract:
Performing culture and characterization of mycobacteria in low resource settings like Nigeria is a very difficult task to undertake because of the very few and limited laboratories carrying out such an experiment; this is a largely due to stringent and laborious nature of the tests. Hence, a rapid, simple and accurate test for characterization is needed. The “SD BIOLINE TB Ag MPT 64 Rapid ®” is a simple and rapid immunochromatographic test used in differentiating Mycobacteria into Mycobacterium tuberculosis (NTM). The 100 sputa were obtained from patients suspected to be infected with tuberculosis and presented themselves to hospitals for check-up and treatment were involved in the study. The samples were cultured in a class III Biosafety cabinet and level III biosafety practices were followed. Forty isolates were obtained from the cultured sputa, and there were identified as Acid-fast bacilli (AFB) using Zeihl-Neelsen acid-fast stain. All the isolates (AFB positive) were then subjected to the SD BIOLINE Analyses. A total of 31 (77.5%) were characterized as MTBC, while nine (22.5%) were NTM. The total turnaround time for the rapid assay was just 30 minutes as compared to a few days of phenotypic and genotypic method. It was simple, rapid and reliable test to differentiate MTBC from NTM.
Keywords: Culture, mycobacteria, non-tuberculous mycobacteria, SD bioline.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198203 An Agri-food Supply Chain Model for Cultivating the Capabilities of Farmers Accessing Market Using Corporate Social Responsibility Program
Authors: W. Sutopo, M. Hisjam, Yuniaristanto
Abstract:
In general, small-scale vegetables farmers experience problems in improving the safety and quality of vegetables supplied to high-class consumers in modern retailers. They also lack of information to access market. The farmers group and/or cooperative (FGC) should be able to assist its members by providing training in handling and packing vegetables and enhancing marketing capabilities to sell commodities to the modern retailers. This study proposes an agri-food supply chain (ASC) model that involves the corporate social responsibility (CSR) activities to cultivate the capabilities of farmers to access market. Multi period ASC model is formulated as Weighted Goal Programming (WGP) to analyze the impacts of CSR programs to empower the FGCs in managing the small-scale vegetables farmers. The results show that the proposed model can be used to determine the priority of programs in order to maximize the four goals to be achieved in the CSR programs.Keywords: agri-food supply chain, corporate social responsibility, small-scale vegetables farmers, weighted goal programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671202 Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition
Authors: Mohammed Rziza, Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Driss Aboutajdine
Abstract:
In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis LDA, and independent component Analysis (ICA). Two different muti-resolution transforms, Wavelet (DWT) and Contourlet, were also compared against the Block Based Curvelet-LDA algorithm. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies.Keywords: Curvelet, Linear Discriminant Analysis (LDA) , Contourlet, Discreet Wavelet Transform, DWT, Block-based analysis, face recognition (FR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808201 Structural and Optical Properties of Ce3+ Doped YPO4: Nanophosphors Synthesis by Sol Gel Method
Authors: B. Kahouadji, L. Guerbous, L. Lamiri, A. Mendoud
Abstract:
Recently, nanomaterials are developed in the form of nano-films, nano-crystals and nano-pores. Lanthanide phosphates as a material find extensive application as laser, ceramic, sensor, phosphor, and also in optoelectronics, medical and biological labels, solar cells and light sources. Among the different kinds of rare-earth orthophosphates, yttrium orthophosphate has been shown to be an efficient host lattice for rare earth activator ions, which have become a research focus because of their important role in the field of light display systems, lasers, and optoelectronic devices. It is in this context that the 4fn- « 4fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies .Though there has been a few reports on Eu3+, Nd3+, Pr3+,Er3+, Ce3+, Tm3+ doped YPO4. The 4fn- « 4fn-1 5d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggesting to study on a very specific class of inorganic material that are orthophosphate doped with rare earth ions. This study focused on the effect of Ce3+ concentration on the structural and optical properties of Ce3+ doped YPO4 yttrium orthophosphate with powder form prepared by the Sol Gel method.
Keywords: YPO4, Ce3+, 4fn- <->4fn-1 5d transitions, scintillator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733200 A Preliminary Study on Factors Determining the Success of High Conservation Value Area in Oil Palm Plantations
Authors: Yanto Santosa, Rozza Tri Kwatrina
Abstract:
High Conservation Value (HCV) is an area with conservation function within oil palm plantation. Despite the important role of HCV area in biodiversity conservation and various studies on HCV, there was a lack of research studying the factors determining its success. A preliminary study was conducted to identify the determinant factor of HCV that affected the diversity. Line transect method was used to calculate the species diversity of butterfly, birds, mammals, and herpetofauna species as well as their richness. Specifically for mammals, camera traps were also used. The research sites comprised of 12 HCV areas in 3 provinces of Indonesia (Central Kalimantan, Riau, and Palembang). The relationship between the HCV biophysical factor with the species number and species diversity for each wildlife class was identified using Chi-Square analysis with Cross tab (contingency table). Results of the study revealed that species diversity varied by research locations. Four factors determining the success of HCV area in relations to the number and diversity of wildlife species are land cover types for mammals, the width of area and distance to rivers for birds, and distance to settlements for butterflies.
Keywords: Ecological factors, high conservation value area, oil palm plantation, wildlife diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508199 Investigating the Relation between Student Engagement and Attainment in a Flexible Learning Environment
Authors: Y. Bi, T. Anderson, M. Huang
Abstract:
The use of technology is increasingly adopted to support flexible learning in Higher Education institutions. The adoption of more sophisticated technologies offers a broad range of facilities for communication and resource sharing, thereby creating a flexible learning environment that facilitates and even encourages students not to physically attend classes. However this emerging trend seems to contradict class attendance requirements within universities, inevitably leading to a dilemma between amending traditional regulations and creating new policies for the higher education institutions. This study presents an investigation into student engagement in a technology enhanced/driven flexible environment along with its relationship to attainment. We propose an approach to modelling engagement from different perspectives in terms of indicators and then consider what impact these indicators have on student academic performance. We have carried out a case study on the relation between attendance and attainment in a flexible environment. Although our preliminary results show attendance is quantitatively correlated with successful student development and learning outcomes, our results also indicate there is a cohort that did not follow such a pattern. Nevertheless the preliminary results could provide an insight into pilot studies in the wider deployment of new technology to support flexible learning.Keywords: Engagement, flexible leaning, attendance and attainment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795198 Classroom Incivility Behaviours among Medical Students: A Comparative Study in Pakistan
Authors: Manal Rauf
Abstract:
Trained medical practitioners are produced from medical colleges serving in public and private sectors. Prime responsibility of teaching faculty is to inculcate required work ethic among the students by serving as role models for them. It is an observed fact that classroom incivility behaviours are providing a friction in achieving these targets. Present study aimed at identification of classroom incivility behaviours observed by teachers and students of public and private medical colleges as per Glasser’s Choice Theory, making a comparison and investigating the strategies being adopted by teachers of both sectors to control undesired class room behaviours. Findings revealed that a significant difference occurs between teacher and student incivility behaviours. Public sector teacher focussed on survival as a strong factor behind in civil behaviours whereas private sector teachers considered power as the precedent for incivility. Teachers of both sectors are required to use verbal as well as non-verbal immediacy to reach a healthy leaning environment.
Keywords: Classroom incivility behaviour, Glasser choice theory, Mehrabian immediacy theory, medical student.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364197 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.
Keywords: Classification algorithms; data mining; tourism; knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546196 Effects of Multimedia-based Instructional Designs for Arabic Language Learning among Pupils of Different Achievement Levels
Authors: Aldalalah, M. Osamah, Soon Fook Fong & Ababneh, W. Ziad
Abstract:
The purpose of this study is to investigate the effects of modality principles in instructional software among first grade pupils- achievements in the learning of Arabic Language. Two modes of instructional software were systematically designed and developed, audio with images (AI), and text with images (TI). The quasi-experimental design was used in the study. The sample consisted of 123 male and female pupils from IRBED Education Directorate, Jordan. The pupils were randomly assigned to any one of the two modes. The independent variable comprised the two modes of the instructional software, the students- achievement levels in the Arabic Language class and gender. The dependent variable was the achievements of the pupils in the Arabic Language test. The theoretical framework of this study was based on Mayer-s Cognitive Theory of Multimedia Learning. Four hypotheses were postulated and tested. Analyses of Variance (ANOVA) showed that pupils using the (AI) mode performed significantly better than those using (TI) mode. This study concluded that the audio with images mode was an important aid to learning as compared to text with images mode.Keywords: Cognitive theory of Multimedia Learning, ModalityPrinciple, Multimedia, Arabic Language learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265195 Identification of Author and Reviewer from Single and Double Blind Paper
Authors: Jatinderkumar R. Saini, Nikita R. Sonthalia, Khushbu A. Dodiya
Abstract:
Research leads to the development of science and technology and hence it leads to the betterment of humankind also. Journals and Conferences provide a platform to receive large number of research papers for publications and presentations before the expert and peer-level scientific community. In order to assure quality of such papers, they are also sent to reviewers for their comments. In order to maintain good ethical standards, the research papers are sent to reviewers in such a way authors and reviewers do not know each other’s identity. This technique is called Double-blind Review Process. It is called Single-blind Review Process, if identity of any one party, generally authors’, is disclosed to the other. This paper presents the techniques by which identity of author as well as reviewer could be found even through Double-blind Review process. It is proposed that the characteristics and techniques presented here will help journals and conferences in assuring intentional or un-intentional disclosure of identity revealing information by the either party.
Keywords: Author, Conference, Double Blind Paper, Journal, Reviewer, Single Blind Paper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447194 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack
Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza
Abstract:
In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670193 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle
Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi
Abstract:
The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.
Keywords: RANS Simulation, Multipurpose Amphibious Vehicle, Viscous Flow Structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2962192 Classifying Biomedical Text Abstracts based on Hierarchical 'Concept' Structure
Authors: Rozilawati Binti Dollah, Masaki Aono
Abstract:
Classifying biomedical literature is a difficult and challenging task, especially when a large number of biomedical articles should be organized into a hierarchical structure. In this paper, we present an approach for classifying a collection of biomedical text abstracts downloaded from Medline database with the help of ontology alignment. To accomplish our goal, we construct two types of hierarchies, the OHSUMED disease hierarchy and the Medline abstract disease hierarchies from the OHSUMED dataset and the Medline abstracts, respectively. Then, we enrich the OHSUMED disease hierarchy before adapting it to ontology alignment process for finding probable concepts or categories. Subsequently, we compute the cosine similarity between the vector in probable concepts (in the “enriched" OHSUMED disease hierarchy) and the vector in Medline abstract disease hierarchies. Finally, we assign category to the new Medline abstracts based on the similarity score. The results obtained from the experiments show the performance of our proposed approach for hierarchical classification is slightly better than the performance of the multi-class flat classification.Keywords: Biomedical literature, hierarchical text classification, ontology alignment, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011191 Electronic Nose Based On Metal Oxide Semiconductor Sensors as an Alternative Technique for the Spoilage Classification of Oat Milk
Authors: A. Deswal, N. S. Deora, H. N. Mishra
Abstract:
The aim of the present study was to develop a rapid method for electronic nose for online quality control of oat milk. Analysis by electronic nose and bacteriological measurements were performed to analyze spoilage kinetics of oat milk samples stored at room temperature and refrigerated conditions for up to 15 days. Principal component analysis (PCA), Discriminant Factorial Analysis (DFA) and Soft Independent Modelling by Class Analogy (SIMCA) classification techniques were used to differentiate the samples of oat milk at different days. The total plate count (bacteriological method) was selected as the reference method to consistently train the electronic nose system. The e-nose was able to differentiate between the oat milk samples of varying microbial load. The results obtained by the bacteria total viable countsshowed that the shelf-life of oat milk stored at room temperature and refrigerated conditions were 20hrs and 13 days, respectively. The models built classified oat milk samples based on the total microbial population into “unspoiled” and “spoiled”.
Keywords: Electronic-nose, bacteriological, shelf-life, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3272