Search results for: Analysis of image processing
9837 A Moving Human-Object Detection for Video Access Monitoring
Authors: Won-Ho Kim, Nuwan Sanjeewa Rajasooriya
Abstract:
In this paper, a simple moving human detection method is proposed for video surveillance system or access monitoring system. The frame difference and noise threshold are used for initial detection of a moving human-object, and simple labeling method is applied for final human-object segmentation. The simulated results show that the applied algorithm is fast to detect the moving human-objects by performing 95% of correct detection rate. The proposed algorithm has confirmed that can be used as an intelligent video access monitoring system.
Keywords: Moving human-object detection, Video access monitoring, Image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25129836 Morpho-Phonological Modelling in Natural Language Processing
Authors: Eleni Galiotou, Angela Ralli
Abstract:
In this paper we propose a computational model for the representation and processing of morpho-phonological phenomena in a natural language, like Modern Greek. We aim at a unified treatment of inflection, compounding, and word-internal phonological changes, in a model that is used for both analysis and generation. After discussing certain difficulties cuase by well-known finitestate approaches, such as Koskenniemi-s two-level model [7] when applied to a computational treatment of compounding, we argue that a morphology-based model provides a more adequate account of word-internal phenomena. Contrary to the finite state approaches that cannot handle hierarchical word constituency in a satisfactory way, we propose a unification-based word grammar, as the nucleus of our strategy, which takes into consideration word representations that are based on affixation and [stem stem] or [stem word] compounds. In our formalism, feature-passing operations are formulated with the use of the unification device, and phonological rules modeling the correspondence between lexical and surface forms apply at morpheme boundaries. In the paper, examples from Modern Greek illustrate our approach. Morpheme structures, stress, and morphologically conditioned phoneme changes are analyzed and generated in a principled way.
Keywords: Morpho-Phonology, Natural Language Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21339835 Complex Energy Signal Model for Digital Human Fingerprint Matching
Authors: Jason Zalev, Reza Sedaghat
Abstract:
This paper describes a complex energy signal model that is isomorphic with digital human fingerprint images. By using signal models, the problem of fingerprint matching is transformed into the signal processing problem of finding a correlation between two complex signals that differ by phase-rotation and time-scaling. A technique for minutiae matching that is independent of image translation, rotation and linear-scaling, and is resistant to missing minutiae is proposed. The method was tested using random data points. The results show that for matching prints the scaling and rotation angles are closely estimated and a stronger match will have a higher correlation.Keywords: Affine Invariant, Fingerprint Recognition, Matching, Minutiae.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13249834 Analysis of Heart Beat Dynamics through Singularity Spectrum
Authors: Harish Kumar, Hussein Yahia, Oriol Pont, Michel Haissaguerre, Nicolas Derval, Meleze Hocini
Abstract:
The analysis to detect arrhythmias and life-threatening conditions are highly essential in today world and this analysis can be accomplished by advanced non-linear processing methods for accurate analysis of the complex signals of heartbeat dynamics. In this perspective, recent developments in the field of multiscale information content have lead to the Microcanonical Multiscale Formalism (MMF). We show that such framework provides several signal analysis techniques that are especially adapted to the study of heartbeat dynamics. In this paper, we just show first hand results of whether the considered heartbeat dynamics signals have the multiscale properties by computing local preticability exponents (LPEs) and the Unpredictable Points Manifold (UPM), and thereby computing the singularity spectrum.Keywords: Microcanonical Multiscale Formalism (MMF), UnpredictablePoints Manifold (UPM), Heartbeat Dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15229833 Standard and Processing of Photodegradable Polyethylene
Authors: Nurul-Akidah M. Yusak, Rahmah Mohamed, Noor Zuhaira Abd Aziz
Abstract:
The introduction of degradable plastic materials into agricultural sectors has represented a promising alternative to promote green agriculture and environmental friendly of modern farming practices. Major challenges of developing degradable agricultural films are to identify the most feasible types of degradation mechanisms, composition of degradable polymers and related processing techniques. The incorrect choice of degradable mechanisms to be applied during the degradation process will cause premature losses of mechanical performance and strength. In order to achieve controlled process of agricultural film degradation, the compositions of degradable agricultural film also important in order to stimulate degradation reaction at required interval of time and to achieve sustainability of the modern agricultural practices. A set of photodegradable polyethylene based agricultural film was developed and produced, following the selective optimization of processing parameters of the agricultural film manufacturing system. Example of agricultural films application for oil palm seedlings cultivation is presented.
Keywords: Photodegradable polyethylene, plasticulture, processing schemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30519832 Medical Image Segmentation Using Deformable Model and Local Fitting Binary: Thoracic Aorta
Authors: B. Bagheri Nakhjavanlo, T. S. Ellis, P.Raoofi, Sh.ziari
Abstract:
This paper presents an application of level sets for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A kernel function in the level set formulation aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets, and are shown to be more effective than other approaches in coping with intensity inhomogeneities. We have applied the Courant Friedrichs Levy (CFL) condition as stability criterion for our algorithm.Keywords: Image segmentation, Level-sets, Local fitting binary, Thoracic aorta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14619831 Language Processing of Seniors with Alzheimer’s Disease: From the Perspective of Temporal Parameters
Authors: Lai Yi-Hsiu
Abstract:
The present paper aims to examine the language processing of Chinese-speaking seniors with Alzheimer’s disease (AD) from the perspective of temporal cues. Twenty healthy adults, 17 healthy seniors, and 13 seniors with AD in Taiwan participated in this study to tell stories based on two sets of pictures. Nine temporal cues were fetched and analyzed. Oral productions in Mandarin Chinese were compared and discussed to examine to what extent and in what way these three groups of participants performed with significant differences. Results indicated that the age effects were significant in filled pauses. The dementia effects were significant in mean duration of pauses, empty pauses, filled pauses, lexical pauses, normalized mean duration of filled pauses and lexical pauses. The findings reported in the current paper help characterize the nature of language processing in seniors with or without AD, and contribute to the interactions between the AD neural mechanism and their temporal parameters.
Keywords: Language processing, Alzheimer’s disease, Mandarin Chinese, temporal cues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10249830 Kalman-s Shrinkage for Wavelet-Based Despeckling of SAR Images
Authors: Mario Mastriani, Alberto E. Giraldez
Abstract:
In this paper, a new probability density function (pdf) is proposed to model the statistics of wavelet coefficients, and a simple Kalman-s filter is derived from the new pdf using Bayesian estimation theory. Specifically, we decompose the speckled image into wavelet subbands, we apply the Kalman-s filter to the high subbands, and reconstruct a despeckled image from the modified detail coefficients. Experimental results demonstrate that our method compares favorably to several other despeckling methods on test synthetic aperture radar (SAR) images.Keywords: Kalman's filter, shrinkage, speckle, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16099829 Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image
Authors: Guo Xiuhua, Sun Tao, Wu Haifeng, He Wen, Liang Zhigang, Zhang Mengxia, Guo Aimin, Wang Wei
Abstract:
Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.Keywords: CT image, Curvelet transform, Small pulmonary nodules, Support vector machines, Texture extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27709828 Digital Image Watermarking in the Wavelet Transform Domain
Authors: Kamran Hameed, Adeel Mumtaz, S.A.M. Gilani
Abstract:
In this paper, we start by first characterizing the most important and distinguishing features of wavelet-based watermarking schemes. We studied the overwhelming amount of algorithms proposed in the literature. Application scenario, copyright protection is considered and building on the experience that was gained, implemented two distinguishing watermarking schemes. Detailed comparison and obtained results are presented and discussed. We concluded that Joo-s [1] technique is more robust for standard noise attacks than Dote-s [2] technique.Keywords: Digital image, Copyright protection, Watermarking, Wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26539827 Finding Sparse Features in Face Detection Using Genetic Algorithms
Authors: H. Sagha, S. Kasaei, E. Enayati, M. Dehghani
Abstract:
Although Face detection is not a recent activity in the field of image processing, it is still an open area for research. The greatest step in this field is the work reported by Viola and its recent analogous is Huang et al. Both of them use similar features and also similar training process. The former is just for detecting upright faces, but the latter can detect multi-view faces in still grayscale images using new features called 'sparse feature'. Finding these features is very time consuming and inefficient by proposed methods. Here, we propose a new approach for finding sparse features using a genetic algorithm system. This method requires less computational cost and gets more effective features in learning process for face detection that causes more accuracy.Keywords: Face Detection, Genetic Algorithms, Sparse Feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15849826 Spatio-Temporal Video Slice Edges Analysis for Shot Transition Detection and Classification
Authors: Aissa Saoudi, Hassane Essafi
Abstract:
In this work we will present a new approach for shot transition auto-detection. Our approach is based on the analysis of Spatio-Temporal Video Slice (STVS) edges extracted from videos. The proposed approach is capable to efficiently detect both abrupt shot transitions 'cuts' and gradual ones such as fade-in, fade-out and dissolve. Compared to other techniques, our method is distinguished by its high level of precision and speed. Those performances are obtained due to minimizing the problem of the boundary shot detection to a simple 2D image partitioning problem.Keywords: Boundary shot detection, Shot transition detection, Video analysis, Video indexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16429825 Multi-Scale Gabor Feature Based Eye Localization
Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Dusik Oh, Jaemin Kim, Seongwon Cho
Abstract:
Eye localization is necessary for face recognition and related application areas. Most of eye localization algorithms reported so far still need to be improved about precision and computational time for successful applications. In this paper, we propose an eye location method based on multi-scale Gabor feature vectors, which is more robust with respect to initial points. The eye localization based on Gabor feature vectors first needs to constructs an Eye Model Bunch for each eye (left or right eye) which consists of n Gabor jets and average eye coordinates of each eyes obtained from n model face images, and then tries to localize eyes in an incoming face image by utilizing the fact that the true eye coordinates is most likely to be very close to the position where the Gabor jet will have the best Gabor jet similarity matching with a Gabor jet in the Eye Model Bunch. Similar ideas have been already proposed in such as EBGM (Elastic Bunch Graph Matching). However, the method used in EBGM is known to be not robust with respect to initial values and may need extensive search range for achieving the required performance, but extensive search ranges will cause much more computational burden. In this paper, we propose a multi-scale approach with a little increased computational burden where one first tries to localize eyes based on Gabor feature vectors in a coarse face image obtained from down sampling of the original face image, and then localize eyes based on Gabor feature vectors in the original resolution face image by using the eye coordinates localized in the coarse scaled image as initial points. Several experiments and comparisons with other eye localization methods reported in the other papers show the efficiency of our proposed method.Keywords: Eye Localization, Gabor features, Multi-scale, Gabor wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18249824 A Robust Salient Region Extraction Based on Color and Texture Features
Authors: Mingxin Zhang, Zhaogan Lu, Junyi Shen
Abstract:
In current common research reports, salient regions are usually defined as those regions that could present the main meaningful or semantic contents. However, there are no uniform saliency metrics that could describe the saliency of implicit image regions. Most common metrics take those regions as salient regions, which have many abrupt changes or some unpredictable characteristics. But, this metric will fail to detect those salient useful regions with flat textures. In fact, according to human semantic perceptions, color and texture distinctions are the main characteristics that could distinct different regions. Thus, we present a novel saliency metric coupled with color and texture features, and its corresponding salient region extraction methods. In order to evaluate the corresponding saliency values of implicit regions in one image, three main colors and multi-resolution Gabor features are respectively used for color and texture features. For each region, its saliency value is actually to evaluate the total sum of its Euclidean distances for other regions in the color and texture spaces. A special synthesized image and several practical images with main salient regions are used to evaluate the performance of the proposed saliency metric and other several common metrics, i.e., scale saliency, wavelet transform modulus maxima point density, and important index based metrics. Experiment results verified that the proposed saliency metric could achieve more robust performance than those common saliency metrics.Keywords: salient regions, color and texture features, image segmentation, saliency metric
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15709823 Improvement of Bit-Error-Rate in Optical Fiber Receivers
Authors: Hadj Bourdoucen, Amer Alhabsi
Abstract:
In this paper, a post processing scheme is suggested for improvement of Bit Error-Rate (BER) in optical fiber transmission receivers. The developed scheme has been tested on optical fiber systems operating with a non-return-to-zero (NRZ) format at transmission rates of up to 10Gbps. The transmission system considered is based on well known transmitters and receivers blocks operating at wavelengths in the region of 1550 nm using a standard single mode fiber. Performance of improved detected signals has been evaluated via the analysis of quality factor and computed bit error rates. Numerical simulations have shown a noticeable improvement of the system BER after implementation of the suggested post processing operation on the detected electrical signals.Keywords: BER improvement, Optical fiber, transmissionperformance, NRZ.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21549822 A New Approach for Counting Passersby Utilizing Space-Time Images
Authors: A. Elmarhomy, S. Karungaru, K. Terada
Abstract:
Understanding the number of people and the flow of the persons is useful for efficient promotion of the institution managements and company-s sales improvements. This paper introduces an automated method for counting passerby using virtualvertical measurement lines. The process of recognizing a passerby is carried out using an image sequence obtained from the USB camera. Space-time image is representing the human regions which are treated using the segmentation process. To handle the problem of mismatching, different color space are used to perform the template matching which chose automatically the best matching to determine passerby direction and speed. A relation between passerby speed and the human-pixel area is used to distinguish one or two passersby. In the experiment, the camera is fixed at the entrance door of the hall in a side viewing position. Finally, experimental results verify the effectiveness of the presented method by correctly detecting and successfully counting them in order to direction with accuracy of 97%.Keywords: counting passersby, virtual-vertical measurement line, passerby speed, space-time image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14169821 A Reliable FPGA-based Real-time Optical-flow Estimation
Authors: M. M. Abutaleb, A. Hamdy, M. E. Abuelwafa, E. M. Saad
Abstract:
Optical flow is a research topic of interest for many years. It has, until recently, been largely inapplicable to real-time applications due to its computationally expensive nature. This paper presents a new reliable flow technique which is combined with a motion detection algorithm, from stationary camera image streams, to allow flow-based analyses of moving entities, such as rigidity, in real-time. The combination of the optical flow analysis with motion detection technique greatly reduces the expensive computation of flow vectors as compared with standard approaches, rendering the method to be applicable in real-time implementation. This paper describes also the hardware implementation of a proposed pipelined system to estimate the flow vectors from image sequences in real time. This design can process 768 x 576 images at a very high frame rate that reaches to 156 fps in a single low cost FPGA chip, which is adequate for most real-time vision applications.Keywords: Optical flow, motion detection, real-time systems, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17499820 Robust Image Transmission Over Time-varying Channels using Hierarchical Joint Source Channel Coding
Authors: Hatem. Elmeddeb, Noureddine, Hamdi, Ammar. Bouallègue
Abstract:
In this paper, a joint source-channel coding (JSCC) scheme for time-varying channels is presented. The proposed scheme uses hierarchical framework for both source encoder and transmission via QAM modulation. Hierarchical joint source channel codes with hierarchical QAM constellations are designed to track the channel variations which yields to a higher throughput by adapting certain parameters of the receiver to the channel variation. We consider the problem of still image transmission over time-varying channels with channel state information (CSI) available at 1) receiver only and 2) both transmitter and receiver being informed about the state of the channel. We describe an algorithm that optimizes hierarchical source codebooks by minimizing the distortion due to source quantizer and channel impairments. Simulation results, based on image representation, show that, the proposed hierarchical system outperforms the conventional schemes based on a single-modulator and channel optimized source coding.Keywords: Channel-optimized VQ (COVQ), joint optimization, QAM, hierarchical systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14279819 A Comparison of Real Valued Transforms for Image Compression
Authors: Shivali D. Kulkarni, Ameya K. Naik, Nitin S. Nagori
Abstract:
In this paper we present simulation results for the application of a bandwidth efficient algorithm (mapping algorithm) to an image transmission system. This system considers three different real valued transforms to generate energy compact coefficients. First results are presented for gray scale and color image transmission in the absence of noise. It is seen that the system performs its best when discrete cosine transform is used. Also the performance of the system is dominated more by the size of the transform block rather than the number of coefficients transmitted or the number of bits used to represent each coefficient. Similar results are obtained in the presence of additive white Gaussian noise. The varying values of the bit error rate have very little or no impact on the performance of the algorithm. Optimum results are obtained for the system considering 8x8 transform block and by transmitting 15 coefficients from each block using 8 bits.Keywords: Additive white Gaussian noise channel, mapping algorithm, peak signal to noise ratio, transform encoding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15069818 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.
Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379817 One Dimensional Object Segmentation and Statistical Features of an Image for Texture Image Recognition System
Authors: Nang Thwe Thwe Oo
Abstract:
Traditional object segmentation methods are time consuming and computationally difficult. In this paper, onedimensional object detection along the secant lines is applied. Statistical features of texture images are computed for the recognition process. Example matrices of these features and formulae for calculation of similarities between two feature patterns are expressed. And experiments are also carried out using these features.
Keywords: 1-D object segmentation, secant lines, objectoccurrence(frequency) matrix, contiguity matrix, statistical features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15069816 Effective Image and Video Error Concealment using RST-Invariant Partial Patch Matching Model and Exemplar-based Inpainting
Authors: Shiraz Ahmad, Zhe-Ming Lu
Abstract:
An effective visual error concealment method has been presented by employing a robust rotation, scale, and translation (RST) invariant partial patch matching model (RSTI-PPMM) and exemplar-based inpainting. While the proposed robust and inherently feature-enhanced texture synthesis approach ensures the generation of excellent and perceptually plausible visual error concealment results, the outlier pruning property guarantees the significant quality improvements, both quantitatively and qualitatively. No intermediate user-interaction is required for the pre-segmented media and the presented method follows a bootstrapping approach for an automatic visual loss recovery and the image and video error concealment.Keywords: Exemplar-based image and video inpainting, outlierpruning, RST-invariant partial patch matching model (RSTI-PPMM), visual error concealment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14179815 Medical Image Segmentation Using Deformable Models and Local Fitting Binary
Authors: B. Bagheri Nakhjavanlo, T. J. Ellis, P. Raoofi, J. Dehmeshki
Abstract:
This paper presents a customized deformable model for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic aneurysm is the need to overcome problems associated with intensity inhomogeneities and image noise. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A Gaussian kernel function in the level set formulation, which extracts the local intensity information, aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets. The results indicate the method is more effective than other approaches in coping with intensity inhomogeneities.Keywords: Abdominal and thoracic aortic aneurysms, intensityinhomogeneity, level sets, local fitting binary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18219814 Wrap-around View Equipped on Mobile Robot
Authors: Sun Lim, Sewoong Jun, Il-Kyun Jung
Abstract:
This paper presents a wrap-around view system with 4 smart cameras module and remote motion mobile robot control equipped with smart camera module system. The two-level scheme for remote motion control with smart-pad(IPAD) is introduced on this paper. In the low-level, the wrap-around view system is controlled or operated to keep the reference points lying around top view image plane. On the higher level, a robot image based motion controller is utilized to drive the mobile platform to reach the desired position or track the desired motion planning through image feature feedback. The design wrap-around view system equipped on presents such advantages as follows: 1) a satisfactory solution for the FOV and affine problem; 2) free of any complex and constraint with robot pose. The performance of the wrap-around view equipped on mobile robot remote control is proven by experimental results.Keywords: four smart camera, wrap-around view, remote mobile robot control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18189813 A Real-Time Tracking System Developed for an Interactive Stage Performance
Authors: S. Hu, J. Mortensen, Bernard F. Buxton
Abstract:
A real-time tracking system was built to track performers on an interactive stage. Using an ordinary, up to date, desktop workstation, the performers- silhouette was segmented from the background and parameterized by calculating the normalized central image moments. In the stage system, the silhouette moments were then sent to a parallel workstation, which used them to generate corresponding 3D virtual geometry and projected the generated graphic back onto the stage.
Keywords: Image moment, interactive stage, real-time, silhouette.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12219812 Pineapple Maturity Recognition Using RGB Extraction
Authors: J. I. Asnor, S. Rosnah, Z. W. H. Wan, H. A. B. Badrul
Abstract:
Pineapples can be classified using an index with seven levels of maturity based on the green and yellow color of the skin. As the pineapple ripens, the skin will change from pale green to a golden or yellowish color. The issues that occur in agriculture nowadays are to do with farmers being unable to distinguish between the indexes of pineapple maturity correctly and effectively. There are several reasons for why farmers cannot properly follow the guideline provide by Federal Agriculture Marketing Authority (FAMA) and one of reason is that due to manual inspection done by experts, there are no specific and universal guidelines to be adopted by farmers due to the different points of view of the experts when sorting the pineapples based on their knowledge and experience. Therefore, an automatic system will help farmers to identify pineapple maturity effectively and will become a universal indicator to farmers.Keywords: Artificial Neural Network, Image Processing, Index of Maturity, Pineapple
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34489811 New Approach in Diagnostics Method for Milling Process using Envelope Analysis
Authors: C. Bisu, M. Zapciu, A. Gérard
Abstract:
This paper proposes a method to vibration analysis in order to on-line monitoring and predictive maintenance during the milling process. Adapting envelope method to diagnostics and the analysis for milling tool materials is an important contribution to the qualitative and quantitative characterization of milling capacity and a step by modeling the three-dimensional cutting process. An experimental protocol was designed and developed for the acquisition, processing and analyzing three-dimensional signal. The vibration envelope analysis is proposed to detect the cutting capacity of the tool with the optimization application of cutting parameters. The research is focused on Hilbert transform optimization to evaluate the dynamic behavior of the machine/ tool/workpiece.Keywords: diagnostics, envelope, milling, vibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19389810 Design of a DCT-based Image Compression with Efficient Enhancement Filter
Authors: Yen-Yu Chen, Pao-Ching Chu, Ya-Ling Tsai
Abstract:
The algorithm represents the DCT coefficients to concentrate signal energy and proposes combination and dictator to eliminate the correlation in the same level subband for encoding the DCT-based images. This work adopts DCT and modifies the SPIHT algorithm to encode DCT coefficients. The proposed algorithm also provides the enhancement function in low bit rate in order to improve the perceptual quality. Experimental results indicate that the proposed technique improves the quality of the reconstructed image in terms of both PSNR and the perceptual results close to JPEG2000 at the same bit rate.
Keywords: JPEG 2000, enhancement filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16969809 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.
Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10789808 Time Series Forecasting Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.
Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180