Search results for: statistical methods
4883 Statistical Analysis of First Order Plus Dead-time System using Operational Matrix
Authors: Pham Luu Trung Duong, Moonyong Lee
Abstract:
To increase precision and reliability of automatic control systems, we have to take into account of random factors affecting the control system. Thus, operational matrix technique is used for statistical analysis of first order plus time delay system with uniform random parameter. Examples with deterministic and stochastic disturbance are considered to demonstrate the validity of the method. Comparison with Monte Carlo method is made to show the computational effectiveness of the method.
Keywords: First order plus dead-time, Operational matrix, Statistical analysis, Walsh function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13664882 Kinetic Spectrophotometric Determination of Ramipril in Commercial Dosage Forms
Authors: Nafisur Rahman, Habibur Rahman, Syed Najmul Hejaz Azmi
Abstract:
This paper presents a simple and sensitive kinetic spectrophotometric method for the determination of ramipril in commercial dosage forms. The method is based on the reaction of the drug with 1-chloro-2,4-dinitrobenzene (CDNB) in dimethylsulfoxide (DMSO) at 100 ± 1ºC. The reaction is followed spectrophotometrically by measuring the rate of change of the absorbance at 420 nm. Fixed-time (ΔA) and equilibrium methods are adopted for constructing the calibration curves. Both the calibration curves were found to be linear over the concentration ranges 20 - 220 μg/ml. The regression analysis of calibration data yielded the linear equations: Δ A = 6.30 × 10-4 + 1.54 × 10-3 C and A = 3.62 × 10-4 + 6.35 × 10-3 C for fixed time (Δ A) and equilibrium methods, respectively. The limits of detection (LOD) for fixed time and equilibrium methods are 1.47 and 1.05 μg/ml, respectively. The method has been successfully applied to the determination of ramipril in commercial dosage forms. Statistical comparison of the results shows that there is no significant difference between the proposed methods and Abdellatef-s spectrophotometric method.Keywords: Equilibrium method, Fixed-time (ΔA) method, Ramipril, Spectrophotometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23024881 Generation Expansion Planning Strategies on Power System: A Review
Authors: V. Phupha, T. Lantharthong, N. Rugthaicharoencheep
Abstract:
The problem of generation expansion planning (GEP) has been extensively studied for many years. This paper presents three topics in GEP as follow: statistical model, models for generation expansion, and expansion problem. In the topic of statistical model, the main stages of the statistical modeling are briefly explained. Some works on models for GEP are reviewed in the topic of models for generation expansion. Finally for the topic of expansion problem, the major issues in the development of a longterm expansion plan are summarized.Keywords: Generation expansion planning, strategies, power system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32164880 A Novel Approach to Optimal Cutting Tool Replacement
Authors: Cem Karacal, Sohyung Cho, William Yu
Abstract:
In metal cutting industries, mathematical/statistical models are typically used to predict tool replacement time. These off-line methods usually result in less than optimum replacement time thereby either wasting resources or causing quality problems. The few online real-time methods proposed use indirect measurement techniques and are prone to similar errors. Our idea is based on identifying the optimal replacement time using an electronic nose to detect the airborne compounds released when the tool wear reaches to a chemical substrate doped into tool material during the fabrication. The study investigates the feasibility of the idea, possible doping materials and methods along with data stream mining techniques for detection and monitoring different phases of tool wear.Keywords: Tool condition monitoring, cutting tool replacement, data stream mining, e-Nose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18824879 Analytical and Statistical Study of the Parameters of Expansive Soil
Authors: A. Medjnoun, R. Bahar
Abstract:
The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.
Keywords: Analysis, estimated model, parameter identification, Swelling of clay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12894878 Complex Condition Monitoring System of Aircraft Gas Turbine Engine
Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev
Abstract:
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25454877 Prediction of Research Topics Using Ensemble of Best Predictors from Similar Dataset
Authors: Indra Budi, Rizal Fathoni Aji, Agus Widodo
Abstract:
Prediction of future research topics by using time series analysis either statistical or machine learning has been conducted previously by several researchers. Several methods have been proposed to combine the forecasting results into single forecast. These methods use fixed combination of individual forecast to get the final forecast result. In this paper, quite different approach is employed to select the forecasting methods, in which every point to forecast is calculated by using the best methods used by similar validation dataset. The dataset used in the experiment is time series derived from research report in Garuda, which is an online sites belongs to the Ministry of Education in Indonesia, over the past 20 years. The experimental result demonstrates that the proposed method may perform better compared to the fix combination of predictors. In addition, based on the prediction result, we can forecast emerging research topics for the next few years.
Keywords: Combination, emerging topics, ensemble, forecasting, machine learning, prediction, research topics, similarity measure, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21274876 A Cross-Gender Statistical Analysis of Tuvinian Intonation Features in Comparison With Uzbek and Azerbaijani
Authors: D. Beziakina, E. Bulgakova
Abstract:
The paper deals with cross-gender and cross-linguistic comparison of pitch characteristics for Tuvinian with two other Turkic languages - Uzbek and Azerbaijani, based on the results of statistical analysis of pitch parameter values and intonation patterns used by male and female speakers.
The main goal of our work is to obtain the ranges of pitch parameter values typical for Tuvinian speakers for the purpose of automatic language identification. We also propose a cross-gender analysis of declarative intonation in the poorly studied Tuvinian language.
The ranges of pitch parameter values were obtained by means of specially developed software that deals with the distribution of pitch values and allows us to obtain statistical language-specific pitch intervals.
Keywords: Speech analysis, Statistical analysis, Speaker recognition, Identification of person.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18494875 Statistical Measures and Optimization Algorithms for Gene Selection in Lung and Ovarian Tumor
Authors: C. Gunavathi, K. Premalatha
Abstract:
Microarray technology is universally used in the study of disease diagnosis using gene expression levels. The main shortcoming of gene expression data is that it includes thousands of genes and a small number of samples. Abundant methods and techniques have been proposed for tumor classification using microarray gene expression data. Feature or gene selection methods can be used to mine the genes that directly involve in the classification and to eliminate irrelevant genes. In this paper statistical measures like T-Statistics, Signal-to-Noise Ratio (SNR) and F-Statistics are used to rank the genes. The ranked genes are used for further classification. Particle Swarm Optimization (PSO) algorithm and Shuffled Frog Leaping (SFL) algorithm are used to find the significant genes from the top-m ranked genes. The Naïve Bayes Classifier (NBC) is used to classify the samples based on the significant genes. The proposed work is applied on Lung and Ovarian datasets. The experimental results show that the proposed method achieves 100% accuracy in all the three datasets and the results are compared with previous works.
Keywords: Microarray, T-Statistics, Signal-to-Noise Ratio, FStatistics, Particle Swarm Optimization, Shuffled Frog Leaping, Naïve Bayes Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19454874 Recognition of Isolated Speech Signals using Simplified Statistical Parameters
Authors: Abhijit Mitra, Bhargav Kumar Mitra, Biswajoy Chatterjee
Abstract:
We present a novel scheme to recognize isolated speech signals using certain statistical parameters derived from those signals. The determination of the statistical estimates is based on extracted signal information rather than the original signal information in order to reduce the computational complexity. Subtle details of these estimates, after extracting the speech signal from ambience noise, are first exploited to segregate the polysyllabic words from the monosyllabic ones. Precise recognition of each distinct word is then carried out by analyzing the histogram, obtained from these information.Keywords: Isolated speech signals, Block overlapping technique, Positive peaks, Histogram analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14294873 A Thought on Exotic Statistical Distributions
Authors: R K Sinha
Abstract:
The statistical distributions are modeled in explaining nature of various types of data sets. Although these distributions are mostly uni-modal, it is quite common to see multiple modes in the observed distribution of the underlying variables, which make the precise modeling unrealistic. The observed data do not exhibit smoothness not necessarily due to randomness, but could also be due to non-randomness resulting in zigzag curves, oscillations, humps etc. The present paper argues that trigonometric functions, which have not been used in probability functions of distributions so far, have the potential to take care of this, if incorporated in the distribution appropriately. A simple distribution (named as, Sinoform Distribution), involving trigonometric functions, is illustrated in the paper with a data set. The importance of trigonometric functions is demonstrated in the paper, which have the characteristics to make statistical distributions exotic. It is possible to have multiple modes, oscillations and zigzag curves in the density, which could be suitable to explain the underlying nature of select data set.Keywords: Exotic Statistical Distributions, Kurtosis, Mixture Distributions, Multi-modal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16274872 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.
Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18704871 Data Mining Classification Methods Applied in Drug Design
Authors: Mária Stachová, Lukáš Sobíšek
Abstract:
Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.Keywords: data mining, classification, drug design, QSAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28504870 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods
Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim
Abstract:
Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.
Keywords: Economical analysis, probability of failure, retaining walls, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10254869 Pattern Recognition of Partial Discharge by Using Simplified Fuzzy ARTMAP
Authors: S. Boonpoke, B. Marungsri
Abstract:
This paper presents the effectiveness of artificial intelligent technique to apply for pattern recognition and classification of Partial Discharge (PD). Characteristics of PD signal for pattern recognition and classification are computed from the relation of the voltage phase angle, the discharge magnitude and the repeated existing of partial discharges by using statistical and fractal methods. The simplified fuzzy ARTMAP (SFAM) is used for pattern recognition and classification as artificial intelligent technique. PDs quantities, 13 parameters from statistical method and fractal method results, are inputted to Simplified Fuzzy ARTMAP to train system for pattern recognition and classification. The results confirm the effectiveness of purpose technique.Keywords: Partial discharges, PD Pattern recognition, PDClassification, Artificial intelligent, Simplified Fuzzy ARTMAP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30844868 Various Advanced Statistical Analyses of Index Values Extracted from Outdoor Agricultural Workers Motion Data
Authors: Shinji Kawakura, Ryosuke Shibasaki
Abstract:
We have been grouping and developing various kinds of practical, promising sensing applied systems concerning agricultural advancement and technical tradition (guidance). These include advanced devices to secure real-time data related to worker motion, and we analyze by methods of various advanced statistics and human dynamics (e.g. primary component analysis, Ward system based cluster analysis, and mapping). What is more, we have been considering worker daily health and safety issues. Targeted fields are mainly common farms, meadows, and gardens. After then, we observed and discussed time-line style, changing data. And, we made some suggestions. The entire plan makes it possible to improve both the aforementioned applied systems and farms.
Keywords: Advanced statistical analysis, wearable sensing system, tradition of skill, supporting for workers, detecting crisis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16354867 Optimized Calculation of Hourly Price Forward Curve (HPFC)
Authors: Ahmed Abdolkhalig
Abstract:
This paper examines many mathematical methods for molding the hourly price forward curve (HPFC); the model will be constructed by numerous regression methods, like polynomial regression, radial basic function neural networks & a furrier series. Examination the models goodness of fit will be done by means of statistical & graphical tools. The criteria for choosing the model will depend on minimize the Root Mean Squared Error (RMSE), using the correlation analysis approach for the regression analysis the optimal model will be distinct, which are robust against model misspecification. Learning & supervision technique employed to determine the form of the optimal parameters corresponding to each measure of overall loss. By using all the numerical methods that mentioned previously; the explicit expressions for the optimal model derived and the optimal designs will be implemented.Keywords: Forward curve, furrier series, regression, radial basic function neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42314866 Electricity Generation from Renewables and Targets: An Application of Multivariate Statistical Techniques
Authors: Filiz Ersoz, Taner Ersoz, Tugrul Bayraktar
Abstract:
Renewable energy is referred to as "clean energy" and common popular support for the use of renewable energy (RE) is to provide electricity with zero carbon dioxide emissions. This study provides useful insight into the European Union (EU) RE, especially, into electricity generation obtained from renewables, and their targets. The objective of this study is to identify groups of European countries, using multivariate statistical analysis and selected indicators. The hierarchical clustering method is used to decide the number of clusters for EU countries. The conducted statistical hierarchical cluster analysis is based on the Ward’s clustering method and squared Euclidean distances. Hierarchical cluster analysis identified eight distinct clusters of European countries. Then, non-hierarchical clustering (k-means) method was applied. Discriminant analysis was used to determine the validity of the results with data normalized by Z score transformation. To explore the relationship between the selected indicators, correlation coefficients were computed. The results of the study reveal the current situation of RE in European Union Member States.Keywords: Share of electricity generation, CO2 emission, targets, multivariate methods, hierarchical clustering, K-means clustering, discriminant analyzed, correlation, EU member countries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12484865 A New Heuristic Statistical Methodology for Optimizing Queuing Networks Using Discreet Event Simulation
Authors: Mohamad Mahdavi
Abstract:
Most of the real queuing systems include special properties and constraints, which can not be analyzed directly by using the results of solved classical queuing models. Lack of Markov chains features, unexponential patterns and service constraints, are the mentioned conditions. This paper represents an applied general algorithm for analysis and optimizing the queuing systems. The algorithm stages are described through a real case study. It is consisted of an almost completed non-Markov system with limited number of customers and capacities as well as lots of common exception of real queuing networks. Simulation is used for optimizing this system. So introduced stages over the following article include primary modeling, determining queuing system kinds, index defining, statistical analysis and goodness of fit test, validation of model and optimizing methods of system with simulation.
Keywords: Estimation, queuing system, simulation model, probability distribution, non-Markov chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16204864 Observations about the Principal Components Analysis and Data Clustering Techniques in the Study of Medical Data
Authors: Cristina G. Dascâlu, Corina Dima Cozma, Elena Carmen Cotrutz
Abstract:
The medical data statistical analysis often requires the using of some special techniques, because of the particularities of these data. The principal components analysis and the data clustering are two statistical methods for data mining very useful in the medical field, the first one as a method to decrease the number of studied parameters, and the second one as a method to analyze the connections between diagnosis and the data about the patient-s condition. In this paper we investigate the implications obtained from a specific data analysis technique: the data clustering preceded by a selection of the most relevant parameters, made using the principal components analysis. Our assumption was that, using the principal components analysis before data clustering - in order to select and to classify only the most relevant parameters – the accuracy of clustering is improved, but the practical results showed the opposite fact: the clustering accuracy decreases, with a percentage approximately equal with the percentage of information loss reported by the principal components analysis.Keywords: Data clustering, medical data, principal components analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15024863 Simple Procedure for Probability Calculation of Tensile Crack Occurring in Rigid Pavement – Case Study
Authors: Aleš Florian, Lenka Ševelová, Jaroslav Žák
Abstract:
Formation of tensile cracks in concrete slabs of rigid pavement can be (among others) the initiation point of the other, more serious failures which can ultimately lead to complete degradation of the concrete slab and thus the whole pavement. Two measures can be used for reliability assessment of this phenomenon - the probability of failure and/or the reliability index. Different methods can be used for their calculation. The simple ones are called moment methods and simulation techniques. Two methods - FOSM Method and Simple Random Sampling Method - are verified and their comparison is performed. The influence of information about the probability distribution and the statistical parameters of input variables as well as of the limit state function on the calculated reliability index and failure probability are studied in three points on the lower surface of concrete slabs of the older type of rigid pavement formerly used in the Czech Republic.
Keywords: Failure, pavement, probability, reliability index, simulation, tensile crack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23074862 Statistical Analysis of Different Configurations of Hybrid Doped Fiber Amplifiers
Authors: Inderpreet Kaur, Neena Gupta
Abstract:
Wavelength multiplexing (WDM) technology along with optical amplifiers is used for optical communication systems in S-band, C-band and L-band. To improve the overall system performance Hybrid amplifiers consisting of cascaded TDFA and EDFA with different gain bandwidths are preferred for long haul wavelength multiplexed optical communication systems. This paper deals with statistical analysis of different configuration of hybrid amplifier i.e. analysis of TDFA-EDFA configuration and EDFA – TDFA configuration. In this paper One-Way ANOVA method is used for statistical analysis.Keywords: WDM, EDFA, TDFA, hybrid amplifier, One-wayANOVA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18624861 Multistage Condition Monitoring System of Aircraft Gas Turbine Engine
Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev
Abstract:
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows drawing conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stageby- stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15704860 Analysis of Differences between Public and Experts’ Views Regarding Sustainable Development of Developing Cities: A Case Study in the Iraqi Capital Baghdad
Authors: Marwah Mohsin, Thomas Beach, Alan Kwan, Mahdi Ismail
Abstract:
This paper describes the differences in views on sustainable development between the general public and experts in a developing country, Iraq. This paper will answer the question: How do the views of the public differ from the generally accepted view of experts in the context of sustainable urban development in Iraq? In order to answer this question, the views of both the public and the experts will be analysed. These results are taken from a public survey and a Delphi questionnaire. These will be analysed using statistical methods in order to identify the significant differences. This will enable investigation of the different perceptions between the public perceptions and the experts’ views towards urban sustainable development factors. This is important due to the fact that different viewpoints between policy-makers and the public will impact on the acceptance by the public of any future sustainable development work that is undertaken. The brief findings of the statistical analysis show that the views of both the public and the experts are considered different in most of the variables except six variables show no differences. Those variables are ‘The importance of establishing sustainable cities in Iraq’, ‘Mitigate traffic congestion’, ‘Waste recycling and separating’, ‘Use wastewater recycling’, ‘Parks and green spaces’, and ‘Promote investment’.
Keywords: Urban sustainable development, experts’ views, public views, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5484859 Advanced Image Analysis Tools Development for the Early Stage Bronchial Cancer Detection
Authors: P. Bountris, E. Farantatos, N. Apostolou
Abstract:
Autofluorescence (AF) bronchoscopy is an established method to detect dysplasia and carcinoma in situ (CIS). For this reason the “Sotiria" Hospital uses the Karl Storz D-light system. However, in early tumor stages the visualization is not that obvious. With the help of a PC, we analyzed the color images we captured by developing certain tools in Matlab®. We used statistical methods based on texture analysis, signal processing methods based on Gabor models and conversion algorithms between devicedependent color spaces. Our belief is that we reduced the error made by the naked eye. The tools we implemented improve the quality of patients' life.Keywords: Bronchoscopy, digital image processing, lung cancer, texture analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14344858 A Novel Approach to Handle Uncertainty in Health System Variables for Hospital Admissions
Authors: Manisha Rathi, Thierry Chaussalet
Abstract:
Hospital staff and managers are under pressure and concerned for effective use and management of scarce resources. The hospital admissions require many decisions that have complex and uncertain consequences for hospital resource utilization and patient flow. It is challenging to predict risk of admissions and length of stay of a patient due to their vague nature. There is no method to capture the vague definition of admission of a patient. Also, current methods and tools used to predict patients at risk of admission fail to deal with uncertainty in unplanned admission, LOS, patients- characteristics. The main objective of this paper is to deal with uncertainty in health system variables, and handles uncertain relationship among variables. An introduction of machine learning techniques along with statistical methods like Regression methods can be a proposed solution approach to handle uncertainty in health system variables. A model that adapts fuzzy methods to handle uncertain data and uncertain relationships can be an efficient solution to capture the vague definition of admission of a patient.Keywords: Admission, Fuzzy, Regression, Uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14204857 Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice
Authors: S. Bangphan, P. Bangphan, T. Boonkang
Abstract:
Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved.
Keywords: Rice polished cylinder, statistical process control, control charts, process capability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37164856 Some Third Order Methods for Solving Systems of Nonlinear Equations
Authors: Janak Raj Sharma, Rajni Sharma
Abstract:
Based on Traub-s methods for solving nonlinear equation f(x) = 0, we develop two families of third-order methods for solving system of nonlinear equations F(x) = 0. The families include well-known existing methods as special cases. The stability is corroborated by numerical results. Comparison with well-known methods shows that the present methods are robust. These higher order methods may be very useful in the numerical applications requiring high precision in their computations because these methods yield a clear reduction in number of iterations.Keywords: Nonlinear equations and systems, Newton's method, fixed point iteration, order of convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22084855 The Recreation Technique Model from the Perspective of Environmental Quality Elements
Authors: G. Gradinaru, S. Olteanu
Abstract:
The quality improvements of the environmental elements could increase the recreational opportunities in a certain area (destination). The technique of the need for recreation focuses on choosing certain destinations for recreational purposes. The basic exchange taken into consideration is the one between the satisfaction gained after staying in that area and the value expressed in money and time allocated. The number of tourists in the respective area, the duration of staying and the money spent including transportation provide information on how individuals rank the place or certain aspects of the area (such as the quality of the environmental elements). For the statistical analysis of the environmental benefits offered by an area through the need of recreation technique, the following stages are suggested: - characterization of the reference area based on the statistical variables considered; - estimation of the environmental benefit through comparing the reference area with other similar areas (having the same environmental characteristics), from the perspective of the statistical variables considered. The model compared in recreation technique faced with a series of difficulties which refers to the reference area and correct transformation of time in money.Keywords: Comparison in recreation technique, the quality of the environmental elements, statistical analysis model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10894854 Temporal Signal Processing by Inference Bayesian Approach for Detection of Abrupt Variation of Statistical Characteristics of Noisy Signals
Authors: Farhad Asadi, Hossein Sadati
Abstract:
In fields such as neuroscience and especially in cognition modeling of mental processes, uncertainty processing in temporal zone of signal is vital. In this paper, Bayesian online inferences in estimation of change-points location in signal are constructed. This method separated the observed signal into independent series and studies the change and variation of the regime of data locally with related statistical characteristics. We give conditions on simulations of the method when the data characteristics of signals vary, and provide empirical evidence to show the performance of method. It is verified that correlation between series around the change point location and its characteristics such as Signal to Noise Ratios and mean value of signal has important factor on fluctuating in finding proper location of change point. And one of the main contributions of this study is related to representing of these influences of signal statistical characteristics for finding abrupt variation in signal. There are two different structures for simulations which in first case one abrupt change in temporal section of signal is considered with variable position and secondly multiple variations are considered. Finally, influence of statistical characteristic for changing the location of change point is explained in details in simulation results with different artificial signals.
Keywords: Time series, fluctuation in statistical characteristics, optimal learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564