Search results for: panel data regression models
9467 Seismic Excitation of Steel Frame Retrofitted by a Multi-Panel PMC Infill Wall
Authors: Bu Seog Ju, Woo Young Jung
Abstract:
A multi-panel PMC infilled system, using polymer matrix composite (PMC) material, was introduced as new conceptual design for seismic retrofitting. A proposed multi panel PMC infilled system was composed of two basic structural components: inner PMC sandwich infills and outer FRP damping panels. The PMC material had high stiffness-to-weight and strength-to-weight ratios. Therefore, the addition of PMC infill panels into existing structures would not significantly alter the weight of the structure, while providing substantial structural enhancement.
In this study, an equivalent linearized dynamic analysis for a proposed multi-panel PMC infilled frame was performed, in order to assess their effectiveness and their responses under the simulated earthquake loading. Upon comparing undamped (without PMC panel) and damped (with PMC panel) structures, numerical results showed that structural damping with passive interface damping layer could significantly enhance the seismic response.
Keywords: Polymer Matrix Composite (PMC), Panel, Piece-wise linear, Earthquake, FRP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23319466 Comparison of Bayesian and Regression Schemes to Model Public Health Services
Authors: Sotirios Raptis
Abstract:
Bayesian reasoning (BR) or Linear (Auto) Regression (AR/LR) can predict different sources of data using priors or other data, and can link social service demands in cohorts, while their consideration in isolation (self-prediction) may lead to service misuse ignoring the context. The paper advocates that BR with Binomial (BD), or Normal (ND) models or raw data (.D) as probabilistic updates can be compared to AR/LR to link services in Scotland and reduce cost by sharing healthcare (HC) resources. Clustering, cross-correlation, along with BR, LR, AR can better predict demand. Insurance companies and policymakers can link such services, and examples include those offered to the elderly, and low-income people, smoking-related services linked to mental health services, or epidemiological weight in children. 22 service packs are used that are published by Public Health Services (PHS) Scotland and Scottish Government (SG) from 1981 to 2019, broken into 110 year series (factors), joined using LR, AR, BR. The Primary component analysis found 11 significant factors, while C-Means (CM) clustering gave five major clusters.
Keywords: Bayesian probability, cohorts, data frames, regression, services, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239465 Study on Damage Tolerance Behavior of Integrally Stiffened Panel and Conventional Stiffened Panel
Authors: M. Adeel
Abstract:
The damage tolerance behavior of integrally and conventional stiffened panel is investigated based on the fracture mechanics and finite element analysis. The load bearing capability and crack growth characteristic of both types of the stiffened panels having same configuration subjected to distributed tensile load is examined in this paper. A fourteen-stringer stiffened panel is analyzed for a central skin crack propagating towards the adjacent stringers. Stress intensity factors and fatigue crack propagation rates of both types of the stiffened panels are then compared. The analysis results show that integral stiffening causes higher stress intensity factor than conventional stiffened panel as the crack tip passes through the stringer and the integrally stiffened panel has less load bearing capability than the riveted stiffened panel.Keywords: Conventional Stiffened Structure, Damage Tolerance, Finite Element Analysis, Integrally Stiffened Structure, Stress Intensity Factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29179464 Advanced Deployable/Retractable Solar Panel System for Satellite Applications
Authors: Zane Brough, Claudio Paoloni
Abstract:
Modern low earth orbit (LEO) satellites that require multi-mission flexibility are highly likely to be repositioned between different operational orbits. While executing this process the satellite may experience high levels of vibration and environmental hazards, exposing the deployed solar panel to dangerous stress levels, fatigue and space debris, hence it is desirable to retract the solar array before satellite repositioning to avoid damage or failure.
A novel concept of deployable/retractable hybrid solar array systemcomposed of both rigid and flexible solar panels arranged within a petal formation, aimed to provide a greater power to volume ratio while dramatically reducing mass and cost is proposed.
Keywords: Deployable Solar Panel, Satellite, Retractable Solar Panel, Hybrid Solar Panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46749463 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model
Authors: Chaudhuri Manoj Kumar Swain, Susmita Das
Abstract:
This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.
Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7069462 Numerical Simulation of a Solar Photovoltaic Panel Cooled by a Forced Air System
Authors: D. Nebbali, R. Nebbali, A. Ouibrahim
Abstract:
This study focuses on the cooling of a photovoltaic panel (PV). Indeed, the cooling improves the conversion capacity of this one and maintains, under extreme conditions of air temperature, the panel temperature at an appreciable level which avoids the altering. To do this, a fan provides forced circulation of air. Because the fan is supplied by the panel, it is necessary to determine the optimum operating point that unites efficiency of the PV with the consumption of the fan. For this matter, numerical simulations are performed at varying mass flow rates of air, under two extreme air temperatures (50°C, 25°C) and a fixed solar radiation (1000W.m2) in a case of no wind.
Keywords: Energy conversion, efficiency, balance energy, solar cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24799461 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.
Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16019460 Extended Least Squares LS–SVM
Authors: József Valyon, Gábor Horváth
Abstract:
Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they eliminate certain crucial questions involved by neural network construction. The main drawback of standard SVM is its high computational complexity, therefore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. In this paper we present an extended view of the Least Squares Support Vector Regression (LS–SVR), which enables us to develop new formulations and algorithms to this regression technique. Based on manipulating the linear equation set -which embodies all information about the regression in the learning process- some new methods are introduced to simplify the formulations, speed up the calculations and/or provide better results.Keywords: Function estimation, Least–Squares Support VectorMachines, Regression, System Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20099459 Ensembling Adaptively Constructed Polynomial Regression Models
Authors: Gints Jekabsons
Abstract:
The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.Keywords: Basis function construction, heuristic search, modelensembles, polynomial regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16739458 Hierarchically Modeling Cognition and Behavioral Problems of an Under-Represented Group
Authors: Zhidong Zhang, Zhi-Chao Zhang
Abstract:
This study examined the mental health and behavioral problems in early adolescence with the instrument of Achenbach System of Empirically Based Assessment (ASEBA). The purpose of the study was stratified sampling method was used to collect data from 1975 participants. Multiple regression models and hierarchical regression models were applied to examine the relations between the background variables and internalizing problems, and the ones between students’ performance and internalizing problems. The results indicated that several background variables as predictors could significantly predict the anxious/depressed problem; reading and social study scores could significantly predict the anxious/depressed problem. However the class as a hierarchical macro factor did not indicate the significant effect. In brief, the majority of these models represented that the background variables, behaviors and academic performance were significantly related to the anxious/depressed problem.Keywords: Behavioral problems, anxious/depression problems, empirical-based assessment, hierarchical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17599457 Low-Cost Eco-Friendly Building Material: A Case Study in Ethiopia
Authors: W. Z. Taffese
Abstract:
This work presents a low-cost and eco-friendly building material named Agrostone panel. Africa-s urban population is growing at an annual rate of 2.8% and 62% of its population will live in urban areas by 2050. As a consequence, many of the least urbanized and least developed African countries- will face serious challenges in providing affordable housing to the urban dwellers. Since the cost of building materials accounts for the largest proportion of the overall construction cost, innovating low-cost building material is vital. Agrostone panel is used in housing projects in Ethiopia. It uses raw materials of agricultural/industrial wastes and/or natural minerals as a filler, magnesium-based chemicals as a binder and fiberglass as reinforcement. Agrostone panel reduces the cost of wall construction by 50% compared with the conventional building materials. The pros and cons of Agrostone panel as well as the use of other waste materials as a raw material to make the panel more sustainable, low-cost and better properties are discussed.Keywords: Agrostone Panel, Low-cost and sustainable Building Materials, Agro-waste for construction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98079456 Statistical (Radio) Path Loss Modelling: For RF Propagations within localized Indoor and Outdoor Environments of the Academic Building of INTI University College (Laureate International Universities)
Authors: Emmanuel O.O. Ojakominor, Tian F. Lai
Abstract:
A handful of propagation textbooks that discuss radio frequency (RF) propagation models merely list out the models and perhaps discuss them rather briefly; this may well be frustrating for the potential first time modeller who's got no idea on how these models could have been derived. This paper fundamentally provides an overture in modelling the radio channel. Explicitly, for the modelling practice discussed here, signal strength field measurements had to be conducted beforehand (this was done at 469 MHz); to be precise, this paper primarily concerns empirically/statistically modelling the radio channel, and thus provides results obtained from empirically modelling the environments in question. This paper, on the whole, proposes three propagation models, corresponding to three experimented environments. Perceptibly, the models have been derived by way of making the most use of statistical measures. Generally speaking, the first two models were derived via simple linear regression analysis, whereas the third have been originated using multiple regression analysis (with five various predictors). Additionally, as implied by the title of this paper, both indoor and outdoor environments have been experimented; however, (somewhat) two of the environments are neither entirely indoor nor entirely outdoor. The other environment, however, is completely indoor.
Keywords: RF propagation, radio channel modelling, statistical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24339455 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland
Authors: Alireza Ansariyar, Safieh Laaly
Abstract:
Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates Connected and Autonomous Vehicles (CAVs) fuel consumption and air pollutants including Carbon Monoxide (CO), Particulate Matter (PM), and Nitrogen Oxides (NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.
Keywords: Connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4619454 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22119453 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: Adaptive sampling, batch bulk methyl methacrylate polymerization, large margin nearest neighbor regression, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14009452 Data Annotation Models and Annotation Query Language
Authors: Neerja Bhatnagar, Benjoe A. Juliano, Renee S. Renner
Abstract:
This paper presents data annotation models at five levels of granularity (database, relation, column, tuple, and cell) of relational data to address the problem of unsuitability of most relational databases to express annotations. These models do not require any structural and schematic changes to the underlying database. These models are also flexible, extensible, customizable, database-neutral, and platform-independent. This paper also presents an SQL-like query language, named Annotation Query Language (AnQL), to query annotation documents. AnQL is simple to understand and exploits the already-existent wide knowledge and skill set of SQL.Keywords: annotation query language, data annotations, data annotation models, semantic data annotations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23559451 Internet Purchases in European Union Countries: Multiple Linear Regression Approach
Authors: Ksenija Dumičić, Anita Čeh Časni, Irena Palić
Abstract:
This paper examines economic and Information and Communication Technology (ICT) development influence on recently increasing Internet purchases by individuals for European Union member states. After a growing trend for Internet purchases in EU27 was noticed, all possible regression analysis was applied using nine independent variables in 2011. Finally, two linear regression models were studied in detail. Conducted simple linear regression analysis confirmed the research hypothesis that the Internet purchases in analyzed EU countries is positively correlated with statistically significant variable Gross Domestic Product per capita (GDPpc). Also, analyzed multiple linear regression model with four regressors, showing ICT development level, indicates that ICT development is crucial for explaining the Internet purchases by individuals, confirming the research hypothesis.
Keywords: European Union, Internet purchases, multiple linear regression model, outlier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29559450 Empirical Roughness Progression Models of Heavy Duty Rural Pavements
Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed
Abstract:
Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.
Keywords: Roughness progression, empirical model, pavement performance, heavy duty pavement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8029449 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.
Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10759448 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.
Keywords: Piecewise, Bayesian, reversible jump MCMC, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16689447 The Leaves of a Tree
Authors: Zhu Jiaming, Yu Mengna
Abstract:
In this article, models based on quantitative analysis, physical geometry and regression analysis are established, by using analytic hierarchy process analysis, fuzzy cluster analysis, fuzzy photographic and data fitting. The reasons of various leaf shapes among different species and the differences between the leaf shapes on same tree have been solved by using software, such as Eviews, VB and Matlab. We also successfully estimate the leaf mass of a tree and the correlation with the tree profile.Keywords: Leaf shape; Mass; Fuzzy cluster; Regression analysis; Eviews; Matlab
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15969446 Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models
Authors: Viriyavudh Sim, WooYoung Jung
Abstract:
Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration.
Keywords: Wind fragility, glass window, high rise apartment, Monte Carlo Simulation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12219445 Combining Bagging and Additive Regression
Authors: Sotiris B. Kotsiantis
Abstract:
Bagging and boosting are among the most popular re-sampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noise-free data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using an averaging methodology of bagging and boosting ensembles with 10 sub-learners in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-learners on standard benchmark datasets and the proposed ensemble gave better accuracy.
Keywords: Regressors, statistical learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16409444 Defect Cause Modeling with Decision Tree and Regression Analysis
Authors: B. Bakır, İ. Batmaz, F. A. Güntürkün, İ. A. İpekçi, G. Köksal, N. E. Özdemirel
Abstract:
The main aim of this study is to identify the most influential variables that cause defects on the items produced by a casting company located in Turkey. To this end, one of the items produced by the company with high defective percentage rates is selected. Two approaches-the regression analysis and decision treesare used to model the relationship between process parameters and defect types. Although logistic regression models failed, decision tree model gives meaningful results. Based on these results, it can be claimed that the decision tree approach is a promising technique for determining the most important process variables.Keywords: Casting industry, decision tree algorithm C5.0, logistic regression, quality improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25189443 Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories
Authors: Arkady Bolotin
Abstract:
Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.
Keywords: Categorization, Uncertain medical categories, Binomial regression model, Fuzzy dependent variable, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15599442 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring
Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek
Abstract:
In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17809441 Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading
Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali
Abstract:
Experimental and analytical studies were accomplished to examine the structural behavior of precast foamed concrete sandwich panel (PFCSP) under vertical in-plane shear load. PFCSP full-scale specimens with total number of six were developed with varying heights to study an important parameter slenderness ratio (H/t). The production technique of PFCSP and the procedure of test setup were described. The results obtained from the experimental tests were analysed in the context of in-plane shear strength capacity, load-deflection profile, load-strain relationship, slenderness ratio, shear cracking patterns and mode of failure. Analytical study of finite element analysis was implemented and the theoretical calculations of the ultimate in-plane shear strengths using the adopted ACI318 equation for reinforced concrete wall were determined aimed at predicting the in-plane shear strength of PFCSP. The decrease in slenderness ratio from 24 to 14 showed an increase of 26.51% and 21.91% on the ultimate in-plane shear strength capacity as obtained experimentally and in FEA models, respectively. The experimental test results, FEA models data and theoretical calculation values were compared and provided a significant agreement with high degree of accuracy. Therefore, on the basis of the results obtained, PFCSP wall has the potential use as an alternative to the conventional load-bearing wall system.Keywords: Deflection profiles, foamed concrete, load-strain relationships, precast foamed concrete sandwich panel, slenderness ratio, vertical in-plane shear strength capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26479440 Buckling Resistance of Basalt Fiber Reinforced Polymer Infill Panel Subjected to Elevated Temperatures
Authors: Viriyavudh Sim, Woo Young Jung
Abstract:
Performance of Basalt Fiber Reinforced Polymer (BFRP) sandwich infill panel system under diagonal compression was studied by means of numerical analysis. Furthermore, the variation of temperature was considered to affect the mechanical properties of BFRP, since their composition was based on polymeric material. Moreover, commercial finite element analysis platform ABAQUS was used to model and analyze this infill panel system. Consequently, results of the analyses show that the overall performance of BFRP panel had a 15% increase compared to that of GFRP infill panel system. However, the variation of buckling load in terms of temperature for the BFRP system showed a more sensitive nature compared to those of GFRP system.
Keywords: Basalt Fiber Reinforced Polymer, Buckling performance, numerical simulation, temperature dependent materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11509439 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: Model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10029438 Estimation Model of Dry Docking Duration Using Data Mining
Authors: Isti Surjandari, Riara Novita
Abstract:
Maintenance is one of the most important activities in the shipyard industry. However, sometimes it is not supported by adequate services from the shipyard, where inaccuracy in estimating the duration of the ship maintenance is still common. This makes estimation of ship maintenance duration is crucial. This study uses Data Mining approach, i.e., CART (Classification and Regression Tree) to estimate the duration of ship maintenance that is limited to dock works or which is known as dry docking. By using the volume of dock works as an input to estimate the maintenance duration, 4 classes of dry docking duration were obtained with different linear model and job criteria for each class. These linear models can then be used to estimate the duration of dry docking based on job criteria.
Keywords: Classification and regression tree (CART), data mining, dry docking, maintenance duration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433