Search results for: missing data
7461 Secure Block-Based Video Authentication with Localization and Self-Recovery
Authors: Ammar M. Hassan, Ayoub Al-Hamadi, Yassin M. Y. Hasan, Mohamed A. A. Wahab, Bernd Michaelis
Abstract:
Because of the great advance in multimedia technology, digital multimedia is vulnerable to malicious manipulations. In this paper, a public key self-recovery block-based video authentication technique is proposed which can not only precisely localize the alteration detection but also recover the missing data with high reliability. In the proposed block-based technique, multiple description coding MDC is used to generate two codes (two descriptions) for each block. Although one block code (one description) is enough to rebuild the altered block, the altered block is rebuilt with better quality by the two block descriptions. So using MDC increases the ratability of recovering data. A block signature is computed using a cryptographic hash function and a doubly linked chain is utilized to embed the block signature copies and the block descriptions into the LSBs of distant blocks and the block itself. The doubly linked chain scheme gives the proposed technique the capability to thwart vector quantization attacks. In our proposed technique , anyone can check the authenticity of a given video using the public key. The experimental results show that the proposed technique is reliable for detecting, localizing and recovering the alterations.Keywords: Authentication, hash function, multiple descriptioncoding, public key encryption, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19407460 Government Initiatives: The Missing Key for E-commerce Growth in KSA
Authors: R. AlGhamdi, S. Drew, S. Alkhalaf
Abstract:
This paper explores the issues that influence online retailing in Saudi Arabia. Retailers in Saudi Arabia have been reserved in their adoption of electronically delivered aspects of their business. Despite the fact that Saudi Arabia has the largest and fastest growth of ICT marketplaces in the Arab region, e-commerce activities are not progressing at the same speed. Only very few Saudi companies, mostly medium and large companies from the manufacturing sector, are involved in e-commerce implementation. Based on qualitative data collected by conducting interviews with 16 retailers and 16 potential customers in Saudi Arabia, several factors influencing online retailing diffusion in Saudi Arabia are identified. However, government support comes the highest and most influencing factor for online retailing growth as identified by both parties; retailers and potential customers in Saudi Arabia.
Keywords: government support, key factor, online retailing growth, Saudi Arabia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18507459 Evaluation of Two Earliness Cotton Genotypes in Three Ecological Regions
Authors: Gholamhossein Hosseini
Abstract:
Two earliness cotton genotypes I and II, which had been developed by hybridization and backcross methods between sindise-80 as an early maturing gene parent and two other lines i.e. Red leaf and Bulgare-557 as a second parent, are subjected to different environmental conditions. The early maturing genotypes with coded names of I and II were compared with four native cotton cultivars in randomized complete block design (RCBD) with four replications in three ecological regions of Iran from 2016-2017. Two early maturing genotypes along with four native cultivars viz. Varamin, Oltan, Sahel and Arya were planted in Agricultural Research Station of Varamin, Moghan and Kashmar for evaluation. Earliness data were collected for six treatments during two years in the three regions except missing data for the second year of Kashmar. Therefore, missed data were estimated and imputed. For testing the homogeneity of error variances, each experiment at a given location or year is analyzed separately using Hartley and Bartlett’s Chi-square tests and both tests confirmed homogeneity of variance. Combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects were compared with Duncan’s multiple range tests. Finally combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects are compared with Duncan’s multiple range tests.
Keywords: Cotton, combined, analysis, earliness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5717458 The Use of Software and Internet Search Engines to Develop the Encoding and Decoding Skills of a Dyslexic Learner: A Case Study
Authors: Rabih Joseph Nabhan
Abstract:
This case study explores the impact of two major computer software programs Learn to Speak English and Learn English Spelling and Pronunciation, and some Internet search engines such as Google on mending the decoding and spelling deficiency of Simon X, a dyslexic student. The improvement in decoding and spelling may result in better reading comprehension and composition writing. Some computer programs and Internet materials can help regain the missing awareness and consequently restore his self-confidence and self-esteem. In addition, this study provides a systematic plan comprising a set of activities (four computer programs and Internet materials) which address the problem from the lowest to the highest levels of phoneme and phonological awareness. Four methods of data collection (accounts, observations, published tests, and interviews) create the triangulation to validly and reliably collect data before the plan, during the plan, and after the plan. The data collected are analyzed quantitatively and qualitatively. Sometimes the analysis is either quantitative or qualitative, and some other times a combination of both. Tables and figures are utilized to provide a clear and uncomplicated illustration of some data. The improvement in the decoding, spelling, reading comprehension, and composition writing skills that occurred is proved through the use of authentic materials performed by the student under study. Such materials are a comparison between two sample passages written by the learner before and after the plan, a genuine computer chat conversation, and the scores of the academic year that followed the execution of the plan. Based on these results, the researcher recommends further studies on other Lebanese dyslexic learners using the computer to mend their language problem in order to design and make a most reliable software program that can address this disability more efficiently and successfully.
Keywords: Analysis, awareness, dyslexic, software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6457457 Structural Integrity Management for Fixed Offshore Platforms in Malaysia
Authors: Narayanan Sambu Potty , Mohammad Kabir B. Mohd Akram
Abstract:
Structural Integrity Management (SIM) is important for the protection of offshore crew, environment, business assets and company and industry reputation. API RP 2A contained guidelines for assessment of existing platforms mostly for the Gulf of Mexico (GOM). ISO 19902 SIM framework also does not specifically cater for Malaysia. There are about 200 platforms in Malaysia with 90 exceeding their design life. The Petronas Carigali Sdn Bhd (PCSB) uses the Asset Integrity Management System and the very subjective Risk based Inspection Program for these platforms. Petronas currently doesn-t have a standalone Petronas Technical Standard PTS-SIM. This study proposes a recommended practice for the SIM process for offshore structures in Malaysia, including studies by API and ISO and local elements such as the number of platforms, types of facilities, age and risk ranking. Case study on SMG-A platform in Sabah shows missing or scattered platform data and a gap in inspection history. It is to undergo a level 3 underwater inspection in year 2015.Keywords: platform, assessment, integrity, risk based inspection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72817456 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.
Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4177455 Big Data: Big Challenges to Privacy and Data Protection
Authors: Abu Bakar Munir, Siti Hajar Mohd Yasin, Firdaus Muhammad-Sukki
Abstract:
This paper seeks to analyse the benefits of big data and more importantly the challenges it pose to the subject of privacy and data protection. First, the nature of big data will be briefly deliberated before presenting the potential of big data in the present days. Afterwards, the issue of privacy and data protection is highlighted before discussing the challenges of implementing this issue in big data. In conclusion, the paper will put forward the debate on the adequacy of the existing legal framework in protecting personal data in the era of big data.
Keywords: Big data, data protection, information, privacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39297454 A 3-Year Evaluation Study on Fine Needle Aspiration Cytology and Corresponding Histology
Authors: Amjad Al Shammari, Ashraf Ibrahim, Laila Seada
Abstract:
Background and Objectives: Incidence of thyroid carcinoma has been increasing world-wide. In the present study, we evaluated diagnostic accuracy of Fine needle aspiration (FNA) and its efficiency in early detecting neoplastic lesions of thyroid gland over a 3-year period. Methods: Data have been retrieved from pathology files in King Khalid Hospital. For each patient, age, gender, FNA, site & size of nodule and final histopathologic diagnosis were recorded. Results: Study included 490 cases where 419 of them were female and 71 male. Male to female ratio was 1:6. Mean age was 43 years for males and 38 for females. Cases with confirmed histopathology were 131. In 101/131 (77.1%), concordance was found between FNA and histology. In 30/131 (22.9%), there was discrepancy in diagnosis. Total malignant cases were 43, out of which 14 (32.5%) were true positive and 29 (67.44%) were false negative. No false positive cases could be found in our series. Conclusion: FNA could diagnose benign nodules in all cases, however, in malignant cases, ultrasound findings have to be taken into consideration to avoid missing of a microcarcinoma in the contralateral lobe.
Keywords: FNA, hail, histopathology, thyroid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11817453 Life Experiences are Important Factors of Making Stronger SOC (Sense of Coherence) on the Workers in Tsukuba Research Park City (TRPC)
Authors: Shinichiro Sasahara, Yusuke Tomotsune, Yuichi Ohi, Shun Suzuki, Akihiro Seki, Junko Sakano, Yoshihiko Yamazaki, Ichiyo Matsuzaki
Abstract:
Via a large scale cross-sectional study among Japanese white color workers, the authors aimed to elucidate: (1) the distributions of Sense of Coherence (SOC), which reflect stress coping abilities, (2) the distributions of Life experience; (3) and the association between SOC and Life experience. Anonymous self-administered questionnaires were sent to 15,891 in 2001 and 21,922 in 2011 employees at educational and research institutions in Tsukuba Research Park City. A total of 5,868 (36.9%) and 9,528 (43.5%) respectively workers completed and returned the questionnaire; 5,715 and 9,515 respectively workers without missing data were analyzed. SOC scale scores differed by gender, age, and other demographic features in both study years. Among the life experiences, workers who have got over parenting or management position were higher SOC scale scores adjusted by gender and age. The life experiences that workers have got over could develop their stronger SOC in their life course.
Keywords: field study, life experience, mental health, SOC (sense of coherence)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15387452 Design of High Torque Elbow Joint for Above Elbow Prosthesis
Authors: Irfan Hussain, Adnan Masood, Javaid Iqbal, Umar S. Khan
Abstract:
Above Elbow Prosthesis is one of the most commonly amputated or missing limbs. The research is done for modelling techniques of upper limb prosthesis and design of high torque, light weight and compact in size elbow actuator. The purposed actuator consists of a DC motor, planetary gear set and a harmonic drive. The calculations show that the actuator is good enough to be used in real life powered prosthetic upper limb or rehabilitation exoskeleton.Keywords: Above Elbow prosthesis, Harmonic drive, Planetarygear set, Sagittal Plane
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27467451 Data Preprocessing for Supervised Leaning
Authors: S. B. Kotsiantis, D. Kanellopoulos, P. E. Pintelas
Abstract:
Many factors affect the success of Machine Learning (ML) on a given task. The representation and quality of the instance data is first and foremost. If there is much irrelevant and redundant information present or noisy and unreliable data, then knowledge discovery during the training phase is more difficult. It is well known that data preparation and filtering steps take considerable amount of processing time in ML problems. Data pre-processing includes data cleaning, normalization, transformation, feature extraction and selection, etc. The product of data pre-processing is the final training set. It would be nice if a single sequence of data pre-processing algorithms had the best performance for each data set but this is not happened. Thus, we present the most well know algorithms for each step of data pre-processing so that one achieves the best performance for their data set.Keywords: Data mining, feature selection, data cleaning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60927450 Applications of Big Data in Education
Authors: Faisal Kalota
Abstract:
Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.Keywords: Analytics, Big Data in Education, Hadoop, Learning Analytics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48777449 Research of Data Cleaning Methods Based on Dependency Rules
Authors: Yang Bao, Shi Wei Deng, Wang Qun Lin
Abstract:
This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSql), and gives 6 data cleaning methods based on these algorithms.Keywords: Data cleaning, dependency rules, violation data discovery, data repair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26127448 Coalescing Data Marts
Authors: N. Parimala, P. Pahwa
Abstract:
OLAP uses multidimensional structures, to provide access to data for analysis. Traditionally, OLAP operations are more focused on retrieving data from a single data mart. An exception is the drill across operator. This, however, is restricted to retrieving facts on common dimensions of the multiple data marts. Our concern is to define further operations while retrieving data from multiple data marts. Towards this, we have defined six operations which coalesce data marts. While doing so we consider the common as well as the non-common dimensions of the data marts.Keywords: Data warehouse, Dimension, OLAP, Star Schema.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15597447 Shape-Based Image Retrieval Using Shape Matrix
Abstract:
Retrieval image by shape similarity, given a template shape is particularly challenging, owning to the difficulty to derive a similarity measurement that closely conforms to the common perception of similarity by humans. In this paper, a new method for the representation and comparison of shapes is present which is based on the shape matrix and snake model. It is scaling, rotation, translation invariant. And it can retrieve the shape images with some missing or occluded parts. In the method, the deformation spent by the template to match the shape images and the matching degree is used to evaluate the similarity between them.Keywords: shape representation, shape matching, shape matrix, deformation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15127446 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model
Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis
Abstract:
In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.Keywords: Expectation-maximization (EM) algorithm, cause of failure, intensity, linear degradation path, masked data, reliability function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10757445 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity
Authors: Hoda A. Abdel Hafez
Abstract:
Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.Keywords: Mining Big Data, Big Data, Machine learning, Data Streams, Telecommunication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24807444 Designing Creative Events with Deconstructivism Approach
Authors: Maryam Memarian, Mahmood Naghizadeh
Abstract:
Deconstruction is an approach that is entirely incompatible with the traditional prevalent architecture. Considering the fact that this approach attempts to put architecture in sharp contrast with its opposite events and transpires with attending to the neglected and missing aspects of architecture and deconstructing its stable structures. It also recklessly proceeds beyond the existing frameworks and intends to create a different and more efficient prospect for space. The aim of deconstruction architecture is to satisfy both the prospective and retrospective visions as well as takes into account all tastes of the present in order to transcend time. Likewise, it ventures to fragment the facts and symbols of the past and extract new concepts from within their heart, which coincide with today’s circumstances. Since this approach is an attempt to surpass the limits of the prevalent architecture, it can be employed to design places in which creative events occur and imagination and ambition flourish. Thought-provoking artistic events can grow and mature in such places and be represented in the best way possible to all people. The concept of event proposed in the plan grows out of the interaction between space and creation. In addition to triggering surprise and high impressions, it is also considered as a bold journey into the suspended realms of the traditional conflicts in architecture such as architecture-landscape, interior-exterior, center-margin, product-process, and stability-instability. In this project, at first, through interpretive-historical research method and examining the inputs and data collection, recognition and organizing takes place. After evaluating the obtained data using deductive reasoning, the data is eventually interpreted. Given the fact that the research topic is in its infancy and there is not a similar case in Iran with limited number of corresponding instances across the world, the selected topic helps to shed lights on the unrevealed and neglected parts in architecture. Similarly, criticizing, investigating and comparing specific and highly prized cases in other countries with the project under study can serve as an introduction into this architecture style.
Keywords: Creativity, deconstruction, event.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19017443 Inverse Heat Conduction Analysis of Cooling on Run Out Tables
Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi
Abstract:
In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.
Keywords: Inverse Analysis, Function Specification, Neural Net Works, Particle Swarm, Run Out Table.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16997442 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.
Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727441 Concept for Planning Sustainable Factories
Authors: T. Mersmann, P. Nyhuis
Abstract:
In the current economic climate, for many businesses it is generally no longer sufficient to pursue exclusively economic interests. Instead, integrating ecological and social goals into the corporate targets is becoming ever more important. However, the holistic integration of these new goals is missing from current factory planning approaches. This article describes the conceptual framework for a planning methodology for sustainable factories. To this end, the description of the key areas for action is followed by a description of the principal components for the systematization of sustainability for factories and their stakeholders. Finally, a conceptual framework is presented which integrates the components formulated into an established factory planning procedure.
Keywords: Factory Planning, Stakeholder, Systematization, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17847440 Comparative Analysis of Diverse Collection of Big Data Analytics Tools
Authors: S. Vidhya, S. Sarumathi, N. Shanthi
Abstract:
Over the past era, there have been a lot of efforts and studies are carried out in growing proficient tools for performing various tasks in big data. Recently big data have gotten a lot of publicity for their good reasons. Due to the large and complex collection of datasets it is difficult to process on traditional data processing applications. This concern turns to be further mandatory for producing various tools in big data. Moreover, the main aim of big data analytics is to utilize the advanced analytic techniques besides very huge, different datasets which contain diverse sizes from terabytes to zettabytes and diverse types such as structured or unstructured and batch or streaming. Big data is useful for data sets where their size or type is away from the capability of traditional relational databases for capturing, managing and processing the data with low-latency. Thus the out coming challenges tend to the occurrence of powerful big data tools. In this survey, a various collection of big data tools are illustrated and also compared with the salient features.
Keywords: Big data, Big data analytics, Business analytics, Data analysis, Data visualization, Data discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37757439 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.
Keywords: Tifinagh character recognition, Neural networks, Local cost computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12867438 Multi-labeled Data Expressed by a Set of Labels
Authors: Tetsuya Furukawa, Masahiro Kuzunishi
Abstract:
Collected data must be organized to be utilized efficiently, and hierarchical classification of data is efficient approach to organize data. When data is classified to multiple categories or annotated with a set of labels, users request multi-labeled data by giving a set of labels. There are several interpretations of the data expressed by a set of labels. This paper discusses which data is expressed by a set of labels by introducing orders for sets of labels and shows that there are four types of orders, which are characterized by whether the labels of expressed data includes every label of the given set of labels within the range of the set. Desirable properties of the orders, data is also expressed by the higher set of labels and different sets of labels express different data, are discussed for the orders.
Keywords: Classification Hierarchies, Multi-labeled Data, Multiple Classificaiton, Orders of Sets of Labels
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13047437 A Fast and Robust Protocol for Reconstruction and Re-Enactment of Historical Sites
Authors: S. I. Abu Alasal, M. M. Esbeih, E. R. Fayyad, R. S. Gharaibeh, M. Z. Ali, A. A. Freewan, M. M. Jamhawi
Abstract:
This research proposes a novel reconstruction protocol for restoring missing surfaces and low-quality edges and shapes in photos of artifacts at historical sites. The protocol starts with the extraction of a cloud of points. This extraction process is based on four subordinate algorithms, which differ in the robustness and amount of resultant. Moreover, they use different -but complementary- accuracy to some related features and to the way they build a quality mesh. The performance of our proposed protocol is compared with other state-of-the-art algorithms and toolkits. The statistical analysis shows that our algorithm significantly outperforms its rivals in the resultant quality of its object files used to reconstruct the desired model.
Keywords: Meshes, Point Clouds, Surface Reconstruction Protocols, 3D Reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20047436 Streamflow Modeling for a Small Watershed Using Limited Hydrological Data
Authors: S. Chuenchooklin
Abstract:
This research was conducted in the Pua Watershed whereas located in the Upper Nan River Basin in Nan province, Thailand. Nan River basin originated in Nan province that comprises of many tributary streams to produce as inflow to the Sirikit dam provided huge reservoir with the storage capacity of 9510 million cubic meters. The common problems of most watersheds were found i.e. shortage water supply for consumption and agriculture utilizations, deteriorate of water quality, flood and landslide including debris flow, and unstable of riverbank. The Pua Watershed is one of several small river basins that flow through the Nan River Basin. The watershed includes 404 km2 representing the Pua District, the Upper Nan Basin, or the whole Nan River Basin, of 61.5%, 18.2% or 1.2% respectively. The Pua River is a main stream producing all year streamflow supplying the Pua District and an inflow to the Upper Nan Basin. Its length approximately 56.3 kilometers with an average slope of the channel by 1.9% measured. A diversion weir namely Pua weir bound the plain and mountainous areas with a very steep slope of the riverbed to 2.9% and drainage area of 149 km2 as upstream watershed while a mild slope of the riverbed to 0.2% found in a river reach of 20.3 km downstream of this weir, which considered as a gauged basin. However, the major branch streams of the Pua River are ungauged catchments namely: Nam Kwang and Nam Koon with the drainage area of 86 and 35 km2 respectively. These upstream watersheds produce runoff through the 3-streams downstream of Pua weir, Jao weir, and Kang weir, with an averaged annual runoff of 578 million cubic meters. They were analyzed using both statistical data at Pua weir and simulated data resulted from the hydrologic modeling system (HEC–HMS) which applied for the remaining ungauged basins. Since the Kwang and Koon catchments were limited with lack of hydrological data included streamflow and rainfall. Therefore, the mathematical modeling: HEC-HMS with the Snyder-s hydrograph synthesized and transposed methods were applied for those areas using calibrated hydrological parameters from the upstream of Pua weir with continuously daily recorded of streamflow and rainfall data during 2008-2011. The results showed that the simulated daily streamflow and sum up as annual runoff in 2008, 2010, and 2011 were fitted with observed annual runoff at Pua weir using the simple linear regression with the satisfied correlation R2 of 0.64, 062, and 0.59, respectively. The sensitivity of simulation results were come from difficulty using calibrated parameters i.e. lag-time, coefficient of peak flow, initial losses, uniform loss rates, and missing some daily observed data. These calibrated parameters were used to apply for the other 2-ungauged catchments and downstream catchments simulated.
Keywords: Streamflow, hydrological model, ungauged catchments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19937435 Reasoning With Non-Binary Logics
Authors: Sylvia Encheva
Abstract:
Students in high education are presented with new terms and concepts in nearly every lecture they attend. Many of them prefer Web-based self-tests for evaluation of their concepts understanding since they can use those tests independently of tutors- working hours and thus avoid the necessity of being in a particular place at a particular time. There is a large number of multiple-choice tests in almost every subject designed to contribute to higher level learning or discover misconceptions. Every single test provides immediate feedback to a student about the outcome of that test. In some cases a supporting system displays an overall score in case a test is taken several times by a student. What we still find missing is how to secure delivering of personalized feedback to a user while taking into consideration the user-s progress. The present work is motivated to throw some light on that question.
Keywords: Clustering, rough sets, many valued logic, predictions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16947434 Capacity Flexibility within Production
Authors: Johannes Nywlt, Julian Becker, Sebastian Bertsch
Abstract:
Due to high dynamics in current markets the expectations regarding logistics increase steadily. However, the complexity and variety of products and production make it difficult to understand the interdependencies between logistical objectives and their determining factors. Therefore specific models are needed to meet this challenge. The Logistic Operating Curves Theory is such a model. With its aid the basic correlations between the logistic objectives can be described. Within this model the capacity flexibility represents an important parameter. However, a proper mathematical description for this parameter is still missing. Within this paper such a description will be developed in order to make the Logistic Operating Curves Theory more accurate.
Keywords: Capacity flexibility, Production controlling, Production logistics, Production management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20867433 The Comparison of Data Replication in Distributed Systems
Authors: Iman Zangeneh, Mostafa Moradi, Ali Mokhtarbaf
Abstract:
The necessity of ever-increasing use of distributed data in computer networks is obvious for all. One technique that is performed on the distributed data for increasing of efficiency and reliablity is data rplication. In this paper, after introducing this technique and its advantages, we will examine some dynamic data replication. We will examine their characteristies for some overus scenario and the we will propose some suggestion for their improvement.Keywords: data replication, data hiding, consistency, dynamicdata replication strategy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16357432 Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach
Authors: Helen L. Hein, Joachim Schwarte
Abstract:
As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO2 emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future.
Keywords: Aerogel-based, insulating material, early develop¬ment phase, interval arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615