Search results for: marker-controlled watershed segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 392

Search results for: marker-controlled watershed segmentation

332 Component-based Segmentation of Words from Handwritten Arabic Text

Authors: Jawad H AlKhateeb, Jianmin Jiang, Jinchang Ren, Stan S Ipson

Abstract:

Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words segmentation. Meanwhile, an improved projection based method is also employed for baseline detection. The proposed method has been successfully tested on IFN/ENIT database consisting of 26459 Arabic words handwritten by 411 different writers, and the results were promising and very encouraging in more accurate detection of the baseline and segmentation of words for further recognition.

Keywords: Arabic OCR, off-line recognition, Baseline estimation, Word segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
331 Automated Segmentation of ECG Signals using Piecewise Derivative Dynamic Time Warping

Authors: Ali Zifan, Mohammad Hassan Moradi, Sohrab Saberi, Farzad Towhidkhah

Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG-s. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna-s two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna-s method.

Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise DerivativeDynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
330 Image Segmentation Using the K-means Algorithm for Texture Features

Authors: Wan-Ting Lin, Chuen-Horng Lin, Tsung-Ho Wu, Yung-Kuan Chan

Abstract:

This study aims to segment objects using the K-means algorithm for texture features. Firstly, the algorithm transforms color images into gray images. This paper describes a novel technique for the extraction of texture features in an image. Then, in a group of similar features, objects and backgrounds are differentiated by using the K-means algorithm. Finally, this paper proposes a new object segmentation algorithm using the morphological technique. The experiments described include the segmentation of single and multiple objects featured in this paper. The region of an object can be accurately segmented out. The results can help to perform image retrieval and analyze features of an object, as are shown in this paper.

Keywords: k-mean, multiple objects, segmentation, texturefeatures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821
329 Automated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping

Authors: Ali Zifan, Sohrab Saberi, Mohammad Hassan Moradi, Farzad Towhidkhah

Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG's. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna's two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna's method.

Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise Derivative Dynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392
328 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: Coupled Markov random field, environment, object-based analysis, Polarimetric SAR images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
327 Sequential Partitioning Brainbow Image Segmentation Using Bayesian

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate crosstalk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds, since biological information is inherently included inside the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: Brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
326 Hot-Spot Blob Merging for Real-Time Image Segmentation

Authors: K. Kraus, M. Uiberacker, O. Martikainen, R. Reda

Abstract:

One of the major, difficult tasks in automated video surveillance is the segmentation of relevant objects in the scene. Current implementations often yield inconsistent results on average from frame to frame when trying to differentiate partly occluding objects. This paper presents an efficient block-based segmentation algorithm which is capable of separating partly occluding objects and detecting shadows. It has been proven to perform in real time with a maximum duration of 47.48 ms per frame (for 8x8 blocks on a 720x576 image) with a true positive rate of 89.2%. The flexible structure of the algorithm enables adaptations and improvements with little effort. Most of the parameters correspond to relative differences between quantities extracted from the image and should therefore not depend on scene and lighting conditions. Thus presenting a performance oriented segmentation algorithm which is applicable in all critical real time scenarios.

Keywords: Image segmentation, Model-based, Region growing, Blob Analysis, Occlusion, Shadow detection, Intelligent videosurveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
325 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
324 An Efficient Segmentation Method Based on Local Entropy Characteristics of Iris Biometrics

Authors: Ali Shojaee Bakhtiari, Ali Asghar Beheshti Shirazi, Amir Sepasi Zahmati

Abstract:

An efficient iris segmentation method based on analyzing the local entropy characteristic of the iris image, is proposed in this paper and the strength and weaknesses of the method are analyzed for practical purposes. The method shows special strength in providing designers with an adequate degree of freedom in choosing the proper sections of the iris for their application purposes.

Keywords: Iris segmentation, entropy, biocryptosystem, biometric identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
323 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries

Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammadhossein Sedaaghi

Abstract:

Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy CMeans (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic CMeans (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.

Keywords: Facial image, segmentation, PCM, FCM, skin error, facial surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
322 Adaptive Pulse Coupled Neural Network Parameters for Image Segmentation

Authors: Thejaswi H. Raya, Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

For over a decade, the Pulse Coupled Neural Network (PCNN) based algorithms have been successfully used in image interpretation applications including image segmentation. There are several versions of the PCNN based image segmentation methods, and the segmentation accuracy of all of them is very sensitive to the values of the network parameters. Most methods treat PCNN parameters like linking coefficient and primary firing threshold as global parameters, and determine them by trial-and-error. The automatic determination of appropriate values for linking coefficient, and primary firing threshold is a challenging problem and deserves further research. This paper presents a method for obtaining global as well as local values for the linking coefficient and the primary firing threshold for neurons directly from the image statistics. Extensive simulation results show that the proposed approach achieves excellent segmentation accuracy comparable to the best accuracy obtainable by trial-and-error for a variety of images.

Keywords: Automatic Selection of PCNN Parameters, Image Segmentation, Neural Networks, Pulse Coupled Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
321 Edge Segmentation of Satellite Image using Phase Congruency Model

Authors: Ahmed Zaafouri, Mounir Sayadi, Farhat Fnaiech

Abstract:

In this paper, we present a method for edge segmentation of satellite images based on 2-D Phase Congruency (PC) model. The proposed approach is composed by two steps: The contextual non linear smoothing algorithm (CNLS) is used to smooth the input images. Then, the 2D stretched Gabor filter (S-G filter) based on proposed angular variation is developed in order to avoid the multiple responses in the previous work. An assessment of our proposed method performance is provided in terms of accuracy of satellite image edge segmentation. The proposed method is compared with others known approaches.

Keywords: Edge segmentation, Phase congruency model, Satellite images, Stretched Gabor filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
320 A Local Statistics Based Region Growing Segmentation Method for Ultrasound Medical Images

Authors: Ashish Thakur, Radhey Shyam Anand

Abstract:

This paper presents the region based segmentation method for ultrasound images using local statistics. In this segmentation approach the homogeneous regions depends on the image granularity features, where the interested structures with dimensions comparable to the speckle size are to be extracted. This method uses a look up table comprising of the local statistics of every pixel, which are consisting of the homogeneity and similarity bounds according to the kernel size. The shape and size of the growing regions depend on this look up table entries. The algorithms are implemented by using connected seeded region growing procedure where each pixel is taken as seed point. The region merging after the region growing also suppresses the high frequency artifacts. The updated merged regions produce the output in formed of segmented image. This algorithm produces the results that are less sensitive to the pixel location and it also allows a segmentation of the accurate homogeneous regions.

Keywords: Local statistics, region growing, segmentation, ultrasound images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3110
319 A Model of Market Segmentation for the Customers of Mellat Bank in Iran

Authors: Nader Gharibnavaz, Hossein Yazdi

Abstract:

If organizations like Mellat Bank want to identify its customer market completely to reach its specified goals, it can segment the market to offer the product package to the right segment. Our objective is to offer a segmentation model for Iran banking market in Mellat bank view. The methodology of this project is combined by “segmentation on the basis of four part-quality variables" and “segmentation on the basis of different in means". Required data are gathered from E-Systems and researcher personal observation. Finally, the research offers the organization that at first step form a four dimensional matrix with 756 segments using four variables named value-based, behavioral, activity style, and activity level, and at the second step calculate the means of profit for every cell of matrix in two distinguished work level (levels α1:normal condition and α2: high pressure condition) and compare the segments by checking two conditions that are 1- homogeneity every segment with its sub segment and 2- heterogeneity with other segments, and so it can do the necessary segmentation process. After all, the last offer (more explained by an operational example and feedback algorithm) is to test and update the model because of dynamic environment, technology, and banking system.

Keywords: market segmentation model, banking system, Mellat bank

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3287
318 A Serial Hierarchical Support Vector Machine and 2D Feature Sets Act for Brain DTI Segmentation

Authors: Mohammad Javadi

Abstract:

Serial hierarchical support vector machine (SHSVM) is proposed to discriminate three brain tissues which are white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). SHSVM has novel classification approach by repeating the hierarchical classification on data set iteratively. It used Radial Basis Function (rbf) Kernel with different tuning to obtain accurate results. Also as the second approach, segmentation performed with DAGSVM method. In this article eight univariate features from the raw DTI data are extracted and all the possible 2D feature sets are examined within the segmentation process. SHSVM succeed to obtain DSI values higher than 0.95 accuracy for all the three tissues, which are higher than DAGSVM results.

Keywords: Brain segmentation, DTI, hierarchical, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
317 Volterra Filter for Color Image Segmentation

Authors: M. B. Meenavathi, K. Rajesh

Abstract:

Color image segmentation plays an important role in computer vision and image processing areas. In this paper, the features of Volterra filter are utilized for color image segmentation. The discrete Volterra filter exhibits both linear and nonlinear characteristics. The linear part smoothes the image features in uniform gray zones and is used for getting a gross representation of objects of interest. The nonlinear term compensates for the blurring due to the linear term and preserves the edges which are mainly used to distinguish the various objects. The truncated quadratic Volterra filters are mainly used for edge preserving along with Gaussian noise cancellation. In our approach, the segmentation is based on K-means clustering algorithm in HSI space. Both the hue and the intensity components are fully utilized. For hue clustering, the special cyclic property of the hue component is taken into consideration. The experimental results show that the proposed technique segments the color image while preserving significant features and removing noise effects.

Keywords: Color image segmentation, HSI space, K–means clustering, Volterra filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
316 Automatic Segmentation of Retina Vessels by Using Zhang Method

Authors: Ehsan Saghapour, Somayeh Zandian

Abstract:

Image segmentation is an important step in image processing. Major developments in medical imaging allow physicians to use potent and non-invasive methods in order to evaluate structures, performance and to diagnose human diseases. In this study, an active contour was used to extract vessel networks from color retina images. Automatic analysis of retina vessels facilitates calculation of arterial index which is required to diagnose some certain retinopathies.

Keywords: Active contour, retinal vessel segmentation, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
315 Medical Image Segmentation Using Deformable Model and Local Fitting Binary: Thoracic Aorta

Authors: B. Bagheri Nakhjavanlo, T. S. Ellis, P.Raoofi, Sh.ziari

Abstract:

This paper presents an application of level sets for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A kernel function in the level set formulation aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets, and are shown to be more effective than other approaches in coping with intensity inhomogeneities. We have applied the Courant Friedrichs Levy (CFL) condition as stability criterion for our algorithm.

Keywords: Image segmentation, Level-sets, Local fitting binary, Thoracic aorta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
314 Determination of Soil Loss by Erosion in Different Land Covers Categories and Slope Classes in Bovilla Watershed, Tirana, Albania

Authors: Valmir Baloshi, Fran Gjoka, Nehat Çollaku, Elvin Toromani

Abstract:

As a sediment production mechanism, soil erosion is the main environmental threat to the Bovilla watershed, including the decline of water quality of the Bovilla reservoir that provides drinking water to Tirana city (the capital of Albania). Therefore, an experiment with 25 erosion plots for soil erosion monitoring has been set up since June 2017. The aim was to determine the soil loss on plot and watershed scale in Bovilla watershed (Tirana region) for implementation of soil and water protection measures or payments for ecosystem services (PES) programs. The results of erosion monitoring for the period June 2017 - May 2018 showed that the highest values of surface runoff were noted in bare land of 38829.91 liters on slope of 74% and the lowest values in forest land of 12840.6 liters on slope of 64% while the highest values of soil loss were found in bare land of 595.15 t/ha on slope of 62% and lowest values in forest land of 18.99 t/ha on slope of 64%. These values are much higher than the average rate of soil loss in the European Union (2.46 ton/ha/year). In the same sloping class, the soil loss was reduced from orchard or bare land to the forest land, and in the same category of land use, the soil loss increased with increasing land slope. It is necessary to conduct chemical analyses of sediments to determine the amount of chemical elements leached out of the soil and end up in the reservoir of Bovilla. It is concluded that PES programs should be implemented for rehabilitation of sub-watersheds Ranxe, Vilez and Zall-Bastar of the Bovilla watershed with valuable conservation practices.

Keywords: ANOVA, Bovilla, land cover, slope, soil loss, watershed management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
313 Featured based Segmentation of Color Textured Images using GLCM and Markov Random Field Model

Authors: Dipti Patra, Mridula J

Abstract:

In this paper, we propose a new image segmentation approach for colour textured images. The proposed method for image segmentation consists of two stages. In the first stage, textural features using gray level co-occurrence matrix(GLCM) are computed for regions of interest (ROI) considered for each class. ROI acts as ground truth for the classes. Ohta model (I1, I2, I3) is the colour model used for segmentation. Statistical mean feature at certain inter pixel distance (IPD) of I2 component was considered to be the optimized textural feature for further segmentation. In the second stage, the feature matrix obtained is assumed to be the degraded version of the image labels and modeled as Markov Random Field (MRF) model to model the unknown image labels. The labels are estimated through maximum a posteriori (MAP) estimation criterion using ICM algorithm. The performance of the proposed approach is compared with that of the existing schemes, JSEG and another scheme which uses GLCM and MRF in RGB colour space. The proposed method is found to be outperforming the existing ones in terms of segmentation accuracy with acceptable rate of convergence. The results are validated with synthetic and real textured images.

Keywords: Texture Image Segmentation, Gray Level Cooccurrence Matrix, Markov Random Field Model, Ohta colour space, ICM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
312 Application of Fuzzy Neural Network for Image Tumor Description

Authors: Nahla Ibraheem Jabbar, Monica Mehrotra

Abstract:

This paper used a fuzzy kohonen neural network for medical image segmentation. Image segmentation plays a important role in the many of medical imaging applications by automating or facilitating the diagnostic. The paper analyses the tumor by extraction of the features of (area, entropy, means and standard deviation).These measurements gives a description for a tumor.

Keywords: FCM, features extraction, medical image processing, neural network, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
311 Automatically Driven Vector for Guidewire Segmentation in 2D and Biplane Fluoroscopy

Authors: Simon Lessard, Pascal Bigras, Caroline Lau, Daniel Roy, Gilles Soulez, Jacques A. de Guise

Abstract:

The segmentation of endovascular tools in fluoroscopy images can be accurately performed automatically or by minimum user intervention, using known modern techniques. It has been proven in literature, but no clinical implementation exists so far because the computational time requirements of such technology have not yet been met. A classical segmentation scheme is composed of edge enhancement filtering, line detection, and segmentation. A new method is presented that consists of a vector that propagates in the image to track an edge as it advances. The filtering is performed progressively in the projected path of the vector, whose orientation allows for oriented edge detection, and a minimal image area is globally filtered. Such an algorithm is rapidly computed and can be implemented in real-time applications. It was tested on medical fluoroscopy images from an endovascular cerebral intervention. Ex- periments showed that the 2D tracking was limited to guidewires without intersection crosspoints, while the 3D implementation was able to cope with such planar difficulties.

Keywords: Edge detection, Line Enhancement, Segmentation, Fluoroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
310 One Dimensional Object Segmentation and Statistical Features of an Image for Texture Image Recognition System

Authors: Nang Thwe Thwe Oo

Abstract:

Traditional object segmentation methods are time consuming and computationally difficult. In this paper, onedimensional object detection along the secant lines is applied. Statistical features of texture images are computed for the recognition process. Example matrices of these features and formulae for calculation of similarities between two feature patterns are expressed. And experiments are also carried out using these features.

Keywords: 1-D object segmentation, secant lines, objectoccurrence(frequency) matrix, contiguity matrix, statistical features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
309 Color Image Segmentation using Adaptive Spatial Gaussian Mixture Model

Authors: M.Sujaritha, S. Annadurai

Abstract:

An adaptive spatial Gaussian mixture model is proposed for clustering based color image segmentation. A new clustering objective function which incorporates the spatial information is introduced in the Bayesian framework. The weighting parameter for controlling the importance of spatial information is made adaptive to the image content to augment the smoothness towards piecewisehomogeneous region and diminish the edge-blurring effect and hence the name adaptive spatial finite mixture model. The proposed approach is compared with the spatially variant finite mixture model for pixel labeling. The experimental results with synthetic and Berkeley dataset demonstrate that the proposed method is effective in improving the segmentation and it can be employed in different practical image content understanding applications.

Keywords: Adaptive; Spatial, Mixture model, Segmentation, Color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
308 Demographics Are Not Enough: Targeting and Segmentation of Anti-Obesity Campaigns in Mexico

Authors: D. Wrzecionkowska

Abstract:

Mass media campaigns against obesity are often designed to impact large audiences. This usually means that their audience is defined based on general demographic characteristics like age, gender, occupation etc., not taking into account psychographics like behavior, motivations, wants, etc. Using psychographics, as the base for the audience segmentation, is a common practice in case of successful campaigns, as it allows developing more relevant messages. It also serves a purpose of identifying key segments, those that generate the best return on investment. For a health campaign, that would be segments that have the best chance of being converted into healthy lifestyle at the lowest cost. This paper presents the limitations of the demographic targeting, based on the findings from the reception study of IMSS (Mexican Social Security Institute) antiobesity TV commercials and proposes mothers as the first level of segmentation, in the process of identifying the key segment for these campaigns.

Keywords: Anti-obesity campaigns, mothers, segmentation, targeting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
307 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images

Authors: F. Duarte

Abstract:

The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the acquisition of the sample images ended being very unreliable.

Keywords: Segmentation, classification, color space, skin tone, Fitzpatrick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17
306 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images

Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara

Abstract:

Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.

Keywords: Ocular diseases, retinal fundus image, optic disc detection and segmentation, fully convolutional network, overlap measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
305 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes

Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono

Abstract:

Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is widely used for LV segmentation, but it suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is improved to achieve a fast and efficient LV segmentation. First, a robust and efficient detection based on Hough forest localizes cardiac feature points. Such feature points are used to predict the initial fitting of the LV shape model. Second, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. With the robust initialization, ASM is able to achieve more accurate segmentation. The performance of the proposed method is evaluated on a dataset of 810 cardiac ultrasound images that are mostly abnormal shapes. This proposed method is compared with several combinations of ASM and existing initialization methods. Our experiment results demonstrate that accuracy of the proposed method for feature point detection for initialization was 40% higher than the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops and thus speeds up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.

Keywords: Hough forest, active shape model, segmentation, cardiac left ventricle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
304 Using Field Indices of Rill and Gully in order to Erosion Estimating and Sediment Analysis (Case Study: Menderjan Watershed in Isfahan Province, Iran)

Authors: Masoud Nasri, Sadat Feiznia, Mohammad Jafari, Hasan Ahmadi

Abstract:

Today, incorrect use of lands and land use changes, excessive grazing, no suitable using of agricultural farms, plowing on steep slopes, road construct, building construct, mine excavation etc have been caused increasing of soil erosion and sediment yield. For erosion and sediment estimation one can use statistical and empirical methods. This needs to identify land unit map and the map of effective factors. However, these empirical methods are usually time consuming and do not give accurate estimation of erosion. In this study, we applied GIS techniques to estimate erosion and sediment of Menderjan watershed at upstream Zayandehrud river in center of Iran. Erosion faces at each land unit were defined on the basis of land use, geology and land unit map using GIS. The UTM coordinates of each erosion type that showed more erosion amounts such as rills and gullies were inserted in GIS using GPS data. The frequency of erosion indicators at each land unit, land use and their sediment yield of these indices were calculated. Also using tendency analysis of sediment yield changes in watershed outlet (Menderjan hydrometric gauge station), was calculated related parameters and estimation errors. The results of this study according to implemented watershed management projects can be used for more rapid and more accurate estimation of erosion than traditional methods. These results can also be used for regional erosion assessment and can be used for remote sensing image processing.

Keywords: Erosion and sedimentation, Gully, Rill, GIS, GPS, Menderjan Watershed

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
303 Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation

Authors: Terrence Chen, Thomas S. Huang

Abstract:

In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.

Keywords: Finite Gaussian mixture model, Hidden Markov random field model, image segmentation, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102