Search results for: Modeling and Simulation
4933 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media
Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled
Abstract:
This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.
Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7834932 Simulation Modeling and Analysis of In-Plant Logistics at a Cement Manufacturing Plant in India
Authors: Sachin Kamble, Shradha Gawankar
Abstract:
This paper presents the findings of successful implementation of Business Process Reengineering (BPR) of cement dispatch activities in a cement manufacturing plant located in India. Simulation model was developed for the purpose of identifying and analyzing the areas for improvement. The company was facing a problem of low throughput rate and subsequent forced stoppages of the plant leading to a high production loss of 15000MT per month. It was found from the study that the present systems and procedures related to the in-plant logistics plant required significant changes. The major recommendations included process improvement at the entry gate, reducing the cycle time at the security gate and installation of an additional weigh bridge. This paper demonstrates how BPR can be implemented for improving the in-plant logistics process. Various recommendations helped the plant to increase its throughput by 14%.Keywords: Business process reengineering, simulation modeling, in-plant logistics, distribution process, cement industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22904931 Modeling the Effects of Type and Intensity of Selective Logging on Forests of the Amazon
Authors: Theodore N.S. Karfakis, Anna Andrade, Carolina Volkmer-Castilho, Dennis R. Valle, Eric Arets, Paul van Gardingen
Abstract:
The aim of the work presented here was to either use existing forest dynamic simulation models or calibrate a new one both within the SYMFOR framework with the purpose of examining changes in stand level basal area and functional composition in response to selective logging considering trees > 10 cm d.b.h for two areas of undisturbed Amazonian non flooded tropical forest in Brazil and one in Peru. Model biological realism was evaluated for forest in the undisturbed and selectively logged state and it was concluded that forest dynamics were realistically represented. Results of the logging simulation experiments showed that in relation to undisturbed forest simulation subject to no form of harvesting intervention there was a significant amount of change over a 90 year simulation period that was positively proportional to the intensity of logging. Areas which had in the dynamic equilibrium of undisturbed forest a greater proportion of a specific ecological guild of trees known as the light hardwoods (LHW’s) seemed to respond more favorably in terms of less deviation but only within a specific range of baseline forest composition beyond which compositional diversity became more important. These finds are in line partially with practical management experience and partiality basic systematics theory respectively.
Keywords: Amazonbasin, ecological species guild, selective logging, simulation modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16654930 A Computational Stochastic Modeling Formalism for Biological Networks
Authors: Werner Sandmann, Verena Wolf
Abstract:
Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.
Keywords: Computational Modeling, Biological Networks, Stochastic Models, Markov Chains, Transition Class Models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15784929 Proposal of Design Method in the Semi-Acausal System Model
Authors: Junji Kaneko, Shigeyuki Haruyama, Ken Kaminishi, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty
Abstract:
This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physic fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.
Keywords: System Model, Physical Models, Empirical Models, Conservation Law, Differential Algebraic Equation, Object-Oriented.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22314928 Dynamic Modeling of Tow Flexible Link Manipulators
Authors: E. Abedi, A. Ahmadi Nadooshan, S. Salehi
Abstract:
Modeling and vibration of a flexible link manipulator with tow flexible links and rigid joints are investigated which can include an arbitrary number of flexible links. Hamilton principle and finite element approach is proposed to model the dynamics of flexible manipulators. The links are assumed to be deflection due to bending. The association between elastic displacements of links is investigated, took into account the coupling effects of elastic motion and rigid motion. Flexible links are treated as Euler-Bernoulli beams and the shear deformation is thus abandoned. The dynamic behavior due to flexibility of links is well demonstrated through numerical simulation. The rigid-body motion and elastic deformations are separated by linearizing the equations of motion around the rigid body reference path. Simulation results are shown on for both position and force trajectory tracking tasks in the presence of varying parameters and unknown dynamics remarkably well. The proposed method can be used in both dynamic simulation and controller design.Keywords: Flexible manipulator, flexible link, dynamicmodeling, end point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24794927 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices
Authors: Virendra J. Majarikar, Harikrishnan N. Unni
Abstract:
This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.
Keywords: COMSOL, electrokinetic, electroosmotic, microfluidics, zeta potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12084926 Simulation Modeling of Manufacturing Systems for the Serial Route and the Parallel One
Authors: Tadeusz Witkowski, Paweł Antczak, Arkadiusz Antczak
Abstract:
In the paper we discuss the influence of the route flexibility degree, the open rate of operations and the production type coefficient on makespan. The flexible job-open shop scheduling problem FJOSP (an extension of the classical job shop scheduling) is analyzed. For the analysis of the production process we used a hybrid heuristic of the GRASP (greedy randomized adaptive search procedure) with simulated annealing algorithm. Experiments with different levels of factors have been considered and compared. The GRASP+SA algorithm has been tested and illustrated with results for the serial route and the parallel one.Keywords: Makespan, open shop, route flexibility, serial and parallel route, simulation modeling, type of production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18144925 Modeling of Flood Mitigation Structures for Sarawak River Sub-basin Using Info Works River Simulation (RS)
Authors: Rosmina Bustami, Charles Bong, Darrien Mah, Afnie Hamzah, Marina Patrick
Abstract:
The distressing flood scenarios that occur in recent years at the surrounding areas of Sarawak River have left damages of properties and indirectly caused disruptions of productive activities. This study is meant to reconstruct a 100-year flood event that took place in this river basin. Sarawak River Subbasin was chosen and modeled using the one-dimensional hydrodynamic modeling approach using InfoWorks River Simulation (RS), in combination with Geographical Information System (GIS). This produces the hydraulic response of the river and its floodplains in extreme flooding conditions. With different parameters introduced to the model, correlations of observed and simulated data are between 79% – 87%. Using the best calibrated model, flood mitigation structures are imposed along the sub-basin. Analysis is done based on the model simulation results. Result shows that the proposed retention ponds constructed along the sub-basin provide the most efficient reduction of flood by 34.18%.Keywords: Flood, Flood mitigation structure, InfoWorks RS, Retention pond, Sarawak River sub-basin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27154924 A Short Reflection on the Strengths and Weaknesses of Simulation Optimization
Authors: P. Vazan, P. Tanuska
Abstract:
The paper provides the basic overview of simulation optimization. The procedure of its practical using is demonstrated on the real example in simulator Witness. The simulation optimization is presented as a good tool for solving many problems in real praxis especially in production systems. The authors also characterize their own experiences and they mention the strengths and weakness of simulation optimization.
Keywords: discrete event simulation, simulation optimization, Witness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25984923 Forward Simulation of a Parallel Hybrid Vehicle and Fuzzy Controller Design for Driving/Regenerative Propose
Authors: Peyman Naderi, Ali Farhadi, S. Mohammad Taghi Bathaee
Abstract:
One of the best ways for achievement of conventional vehicle changing to hybrid case is trustworthy simulation result and using of driving realities. For this object, in this paper, at first sevendegree- of-freedom dynamical model of vehicle will be shown. Then by using of statically model of engine, gear box, clutch, differential, electrical machine and battery, the hybrid automobile modeling will be down and forward simulation of vehicle for pedals to wheels power transformation will be obtained. Then by design of a fuzzy controller and using the proper rule base, fuel economy and regenerative braking will be marked. Finally a series of MATLAB/SIMULINK simulation results will be proved the effectiveness of proposed structure.Keywords: Hybrid, Driving, Fuzzy, Regeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14724922 Modeling, Simulation and Monitoring of Nuclear Reactor Using Directed Graph and Bond Graph
Authors: A. Badoud, M. Khemliche, S. Latreche
Abstract:
The main objective developed in this paper is to find a graphic technique for modeling, simulation and diagnosis of the industrial systems. This importance is much apparent when it is about a complex system such as the nuclear reactor with pressurized water of several form with various several non-linearity and time scales. In this case the analytical approach is heavy and does not give a fast idea on the evolution of the system. The tool Bond Graph enabled us to transform the analytical model into graphic model and the software of simulation SYMBOLS 2000 specific to the Bond Graphs made it possible to validate and have the results given by the technical specifications. We introduce the analysis of the problem involved in the faults localization and identification in the complex industrial processes. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new diagnosis approaches to the complex system control. The industrial systems became increasingly complex with the faults diagnosis procedures in the physical systems prove to become very complex as soon as the systems considered are not elementary any more. Indeed, in front of this complexity, we chose to make recourse to Fault Detection and Isolation method (FDI) by the analysis of the problem of its control and to conceive a reliable system of diagnosis making it possible to apprehend the complex dynamic systems spatially distributed applied to the standard pressurized water nuclear reactor.Keywords: Bond Graph, Modeling, Simulation, Monitoring, Analytical Redundancy Relations, Pressurized Water Reactor, Directed Graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19774921 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador
Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego
Abstract:
In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.
Keywords: Hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7794920 Analysis of Target Location Estimation in High Performance Radar System
Authors: Jin-Hyeok Kim, Won-Chul Choi, Seung-Ri Jin, Dong-Jo Park
Abstract:
In this paper, an analysis of a target location estimation system using the best linear unbiased estimator (BLUE) for high performance radar systems is presented. In synthetic environments, we are here concerned with three key elements of radar system modeling, which makes radar systems operates accurately in strategic situation in virtual ground. Radar Cross Section (RCS) modeling is used to determine the actual amount of electromagnetic waves that are reflected from a tactical object. Pattern Propagation Factor (PPF) is an attenuation coefficient of the radar equation that contains the reflection from the surface of the earth, the diffraction, the refraction and scattering by the atmospheric environment. Clutter is the unwanted echoes of electronic systems. For the data fusion of output results from radar detection in synthetic environment, BLUE is used and compared with the mean values of each simulation results. Simulation results demonstrate the performance of the radar system.Keywords: Best linear unbiased estimator (BLUE) , data fusion, radar system modeling, target location estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20844919 Simulating and Forecasting Qualitative Marcoeconomic Models Using Rule-Based Fuzzy Cognitive Maps
Authors: Spiros Mazarakis, George Matzavinos, Peter P. Groumpos
Abstract:
Economic models are complex dynamic systems with a lot of uncertainties and fuzzy data. Conventional modeling approaches using well known methods and techniques cannot provide realistic and satisfactory answers to today-s challenging economic problems. Qualitative modeling using fuzzy logic and intelligent system theories can be used to model macroeconomic models. Fuzzy Cognitive maps (FCM) is a new method been used to model the dynamic behavior of complex systems. For the first time FCMs and the Mamdani Model of Intelligent control is used to model macroeconomic models. This new model is referred as the Mamdani Rule-Based Fuzzy Cognitive Map (MBFCM) and provides the academic and research community with a new promising integrated advanced computational model. A new economic model is developed for a qualitative approach to Macroeconomic modeling. Fuzzy Controllers for such models are designed. Simulation results for an economic scenario are provided and extensively discussed
Keywords: Macroeconomic Models, Mamdani Rule Based- FCMs(MBFCMs), Qualitative and Dynamics System, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19004918 Kinetic Theory Based CFD Modeling of Particulate Flows in Horizontal Pipes
Authors: Pandaba Patro, Brundaban Patro
Abstract:
The numerical simulation of fully developed gas–solid flow in a horizontal pipe is done using the eulerian-eulerian approach, also known as two fluids modeling as both phases are treated as continuum and inter-penetrating continua. The solid phase stresses are modeled using kinetic theory of granular flow (KTGF). The computed results for velocity profiles and pressure drop are compared with the experimental data. We observe that the convection and diffusion terms in the granular temperature cannot be neglected in gas solid flow simulation along a horizontal pipe. The particle-wall collision and lift also play important role in eulerian modeling. We also investigated the effect of flow parameters like gas velocity, particle properties and particle loading on pressure drop prediction in different pipe diameters. Pressure drop increases with gas velocity and particle loading. The gas velocity has the same effect ((proportional toU2 ) as single phase flow on pressure drop prediction. With respect to particle diameter, pressure drop first increases, reaches a peak and then decreases. The peak is a strong function of pipe bore.
Keywords: CFD, Eulerian modeling, gas solid flow, KTGF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31754917 Hybrid Modeling and Optimal Control of a Two-Tank System as a Switched System
Authors: H. Mahboubi, B. Moshiri, A. Khaki Seddigh
Abstract:
In the past decade, because of wide applications of hybrid systems, many researchers have considered modeling and control of these systems. Since switching systems constitute an important class of hybrid systems, in this paper a method for optimal control of linear switching systems is described. The method is also applied on the two-tank system which is a much appropriate system to analyze different modeling and control techniques of hybrid systems. Simulation results show that, in this method, the goals of control and also problem constraints can be satisfied by an appropriate selection of cost function.Keywords: Hybrid systems, optimal control, switched systems, two-tank system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22374916 A Rapid and Cost-Effective Approach to Manufacturing Modeling Platform for Fused Deposition Modeling
Authors: Chil-Chyuan Kuo, Chen-Hsuan Tsai
Abstract:
This study presents a cost-effective approach for rapid fabricating modeling platforms utilized in fused deposition modeling system. A small-batch production of modeling platforms about 20 pieces can be obtained economically through silicone rubber mold using vacuum casting without applying the plastic injection molding. The air venting systems is crucial for fabricating modeling platform using vacuum casting. Modeling platforms fabricated can be used for building rapid prototyping model after sandblasting. This study offers industrial value because it has both time-effectiveness and cost-effectiveness.
Keywords: Vacuum casting, fused deposition modeling, modeling platform, sandblasting, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24194915 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials
Authors: S. Bennoud, M. Zergoug
Abstract:
The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models.
The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces.
The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations.
In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.
Keywords: Eddy current, Finite element method, Non destructive testing, Numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31414914 Modeling UWSN Simulators – A Taxonomy
Authors: Christhu Raj, Rajeev Sukumaran
Abstract:
In this research article of modeling Underwater Wireless Sensor Network Simulators, we provide a comprehensive overview of the various currently available simulators used in UWSN modeling. In this work, we compare their working environment, software platform, simulation language, key features, limitations and corresponding applications. Based on extensive experimentation and performance analysis, we provide their efficiency for specific applications. We have also provided guidelines for developing protocols in different layers of the protocol stack, and finally these parameters are also compared and tabulated. This analysis is significant for researchers and designers to find the right simulator for their research activities.Keywords: Underwater Wireless Sensor networks (UWSN), SUNSET, NS2, OPNET, WOSS, DESERT, RECORDS, Aqua- Sim, Aqua- Net Mate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31114913 Using Gaussian Process in Wind Power Forecasting
Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui
Abstract:
The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.Keywords: Forecasting, Gaussian process, modeling, wind power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17874912 Modeling and Simulation of Position Estimation of Switched Reluctance Motor with Artificial Neural Networks
Authors: Oguz Ustun, Erdal Bekiroglu
Abstract:
In the present study, position estimation of switched reluctance motor (SRM) has been achieved on the basis of the artificial neural networks (ANNs). The ANNs can estimate the rotor position without using an extra rotor position sensor by measuring the phase flux linkages and phase currents. Flux linkage-phase current-rotor position data set and supervised backpropagation learning algorithm are used in training of the ANN based position estimator. A 4-phase SRM have been used to verify the accuracy and feasibility of the proposed position estimator. Simulation results show that the proposed position estimator gives precise and accurate position estimations for both under the low and high level reference speeds of the SRM
Keywords: Artificial neural networks, modeling andsimulation, position observer, switched reluctance motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20614911 Analysis of a Secondary Autothermal Reformer Using a Thermodynamic POX Model
Authors: Akbar Zamaniyan, Alireza Behroozsarand, Hadi Ebrahimi
Abstract:
Partial oxidation (POX) of light hydrocarbons (e.g. methane) is occurred in the first part of the autothermal reformer (ATR). The results of the detailed modeling of the reformer based on the thermodynamic model of the POX and 1D heterogeneous catalytic model for the fixed bed section are considered here. According to the results, the overall performance of the ATR can be improved by changing the important feed parameters.Keywords: Autothermal Reformer, Partial Oxidation, Mathematical Modeling, Process Simulation, Syngas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22074910 Simulation of Non-Crimp 3D Orthogonal Carbon Fabric Composite for Aerospace Applications Using Finite Element Method
Authors: Sh. Minapoor, S. Ajeli, M. Javadi Toghchi
Abstract:
Non-crimp 3D orthogonal fabric composite is one of the textile-based composite materials that are rapidly developing light-weight engineering materials. The present paper focuses on geometric and micromechanical modeling of non-crimp 3D orthogonal carbon fabric and composites reinforced with it for aerospace applications. In this research meso-finite element (FE) modeling employs for stress analysis in different load conditions. Since mechanical testing of expensive textile carbon composites with specific application isn't affordable, simulation composite in a virtual environment is a helpful way to investigate its mechanical properties in different conditions.Keywords: 3D orthogonal woven composite, Aerospace applications, Finite element method, Mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30594909 Optimizing Voltage Parameter of Deep Brain Stimulation for Parkinsonian Patients by Modeling
Authors: M. Sadeghi, A.H. Jafari, S.M.P. Firoozabadi
Abstract:
Deep Brain Stimulation or DBS is the second solution for Parkinson's Disease. Its three parameters are: frequency, pulse width and voltage. They must be optimized to achieve successful treatment. Nowadays it is done clinically by neurologists and there is not certain numerical method to detect them. The aim of this research is to introduce simulation and modeling of Parkinson's Disease treatment as a computational procedure to select optimum voltage. We recorded finger tremor signals of some Parkinsonian patients under DBS treatment at constant frequency and pulse width but variable voltages; then, we adapted a new model to fit these data. The optimum voltages obtained by data fitting results were the same as neurologists- commented voltages, which means modeling can be used as an engineering method to select optimum stimulation voltages.Keywords: modeling, Deep Brain Stimulation, Parkinson'sdisease, tremor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17834908 Augmenting Use Case View for Modeling
Authors: Pradip Peter Dey, Bhaskar Raj Sinha, Mohammad Amin, Hassan Badkoobehi
Abstract:
Mathematical, graphical and intuitive models are often constructed in the development process of computational systems. The Unified Modeling Language (UML) is one of the most popular modeling languages used by practicing software engineers. This paper critically examines UML models and suggests an augmented use case view with the addition of new constructs for modeling software. It also shows how a use case diagram can be enhanced. The improved modeling constructs are presented with examples for clarifying important design and implementation issues.Keywords: Software architecture, software design, Unified Modeling Language (UML), user interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19454907 Promoting Complex Systems Learning through the use of Computer Modeling
Authors: Kamel Hashem, David Mioduser
Abstract:
This paper describes part of a project about Learningby- Modeling (LbM). Studying complex systems is increasingly important in teaching and learning many science domains. Many features of complex systems make it difficult for students to develop deep understanding. Previous research indicates that involvement with modeling scientific phenomena and complex systems can play a powerful role in science learning. Some researchers argue with this view indicating that models and modeling do not contribute to understanding complexity concepts, since these increases the cognitive load on students. This study will investigate the effect of different modes of involvement in exploring scientific phenomena using computer simulation tools, on students- mental model from the perspective of structure, behavior and function. Quantitative and qualitative methods are used to report about 121 freshmen students that engaged in participatory simulations about complex phenomena, showing emergent, self-organized and decentralized patterns. Results show that LbM plays a major role in students' concept formation about complexity concepts.Keywords: Complexity, Educational technology, Learning by modeling, Mental models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15724906 E-Learning Methodology Development using Modeling
Authors: Sarma Cakula, Maija Sedleniece
Abstract:
Simulation and modeling computer programs are concerned with construction of models for analyzing different perspectives and possibilities in changing conditions environment. The paper presents theoretical justification and evaluation of qualitative e-learning development model in perspective of advancing modern technologies. There have been analyzed principles of qualitative e-learning in higher education, productivity of studying process using modern technologies, different kind of methods and future perspectives of e-learning in formal education. Theoretically grounded and practically tested model of developing e-learning methods using different technologies for different type of classroom, which can be used in professor-s decision making process to choose the most effective e-learning methods has been worked out.Keywords: E-learning, modeling, E-learning methods development, personal knowledge management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19894905 Load Modeling for Power Flow and Transient Stability Computer Studies at BAKHTAR Network
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
A method has been developed for preparing load models for power flow and stability. The load modeling (LOADMOD) computer software transforms data on load class mix, composition, and characteristics into the from required for commonly–used power flow and transient stability simulation programs. Typical default data have been developed for load composition and characteristics. This paper defines LOADMOD software and describes the dynamic and static load modeling techniques used in this software and results of initial testing for BAKHTAR power system.Keywords: Load Modelling, Static, Power Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20634904 Stability Analysis of Single Inverter Fed Two Induction Motors in Parallel
Authors: R. Gunabalan, V. Subbiah
Abstract:
This paper discusses the novel graphical approach for stability analysis of multi induction motor drive controlled by a single inverter. Stability issue arises in parallel connected induction motors under unbalanced load conditions. The two powerful globally accepted modeling and simulation software packages such as MATLAB and LabVIEW are selected to perform the stability analysis. The stability investigation is performed for different load conditions and difference in stator and rotor resistances among the two motors. It is very simple and effective than the techniques presented to obtain the stability of the parallel connected induction motor drive under unbalanced load conditions. Approximate transfer functions are considered to model the induction motors, load dynamics, speed controllers and inverter. Simulink library tools are utilized to model the entire drive scheme in MATLAB. Stability study is discussed in LabVIEW using control design and simulation toolkits. Simulation results are illustrated for various running conditions to demonstrate the effectiveness of the transfer function method.
Keywords: Induction motor, Modeling, Stability analysis, Transfer function model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687