Search results for: Graph based image segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12123

Search results for: Graph based image segmentation

12063 Image Segmentation Using the K-means Algorithm for Texture Features

Authors: Wan-Ting Lin, Chuen-Horng Lin, Tsung-Ho Wu, Yung-Kuan Chan

Abstract:

This study aims to segment objects using the K-means algorithm for texture features. Firstly, the algorithm transforms color images into gray images. This paper describes a novel technique for the extraction of texture features in an image. Then, in a group of similar features, objects and backgrounds are differentiated by using the K-means algorithm. Finally, this paper proposes a new object segmentation algorithm using the morphological technique. The experiments described include the segmentation of single and multiple objects featured in this paper. The region of an object can be accurately segmented out. The results can help to perform image retrieval and analyze features of an object, as are shown in this paper.

Keywords: k-mean, multiple objects, segmentation, texturefeatures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
12062 A New Color Image Database for Benchmarking of Automatic Face Detection and Human Skin Segmentation Techniques

Authors: Abdallah S. Abdallah, Mohamad A bou El-Nasr, A. Lynn Abbott

Abstract:

This paper presents a new color face image database for benchmarking of automatic face detection algorithms and human skin segmentation techniques. It is named the VT-AAST image database, and is divided into four parts. Part one is a set of 286 color photographs that include a total of 1027 faces in the original format given by our digital cameras, offering a wide range of difference in orientation, pose, environment, illumination, facial expression and race. Part two contains the same set in a different file format. The third part is a set of corresponding image files that contain human colored skin regions resulting from a manual segmentation procedure. The fourth part of the database has the same regions converted into grayscale. The database is available on-line for noncommercial use. In this paper, descriptions of the database development, organization, format as well as information needed for benchmarking of algorithms are depicted in detail.

Keywords: Image database, color image analysis, facedetection, skin segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
12061 Common Carotid Artery Intima Media Thickness Segmentation Survey

Authors: L. Ashok Kumar, C. Nagarajan

Abstract:

The ultrasound imaging is very popular to diagnosis the disease because of its non-invasive nature. The ultrasound imaging slowly produces low quality images due to the presence of spackle noise and wave interferences. There are several algorithms to be proposed for the segmentation of ultrasound carotid artery images but it requires a certain limit of user interaction. The pixel in an image is highly correlated so the spatial information of surrounding pixels may be considered in the process of image segmentation which improves the results further. When data is highly correlated, one pixel may belong to more than one cluster with different degree of membership. There is an important step to computerize the evaluation of arterial disease severity using segmentation of carotid artery lumen in 2D and 3D ultrasonography and in finding vulnerable atherosclerotic plaques susceptible to rupture which can cause stroke.

Keywords: IMT measurement, Image Segmentation, common carotid artery, internal and external carotid arteries, ultrasound imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
12060 One-Class Support Vector Machines for Aerial Images Segmentation

Authors: Chih-Hung Wu, Chih-Chin Lai, Chun-Yen Chen, Yan-He Chen

Abstract:

Interpretation of aerial images is an important task in various applications. Image segmentation can be viewed as the essential step for extracting information from aerial images. Among many developed segmentation methods, the technique of clustering has been extensively investigated and used. However, determining the number of clusters in an image is inherently a difficult problem, especially when a priori information on the aerial image is unavailable. This study proposes a support vector machine approach for clustering aerial images. Three cluster validity indices, distance-based index, Davies-Bouldin index, and Xie-Beni index, are utilized as quantitative measures of the quality of clustering results. Comparisons on the effectiveness of these indices and various parameters settings on the proposed methods are conducted. Experimental results are provided to illustrate the feasibility of the proposed approach.

Keywords: Aerial imaging, image segmentation, machine learning, support vector machine, cluster validity index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
12059 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images

Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara

Abstract:

Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.

Keywords: Ocular diseases, retinal fundus image, optic disc detection and segmentation, fully convolutional network, overlap measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
12058 Region Segmentation based on Gaussian Dirichlet Process Mixture Model and its Application to 3D Geometric Stricture Detection

Authors: Jonghyun Park, Soonyoung Park, Sanggyun Kim, Wanhyun Cho, Sunworl Kim

Abstract:

In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. So, It is important to segment ROI (region of interest) from input scenes as a preprocessing step for geometric stricture detection in 3D scene. In this paper, we propose a method for segmenting ROI based on tensor voting and Dirichlet process mixture model. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting and Dirichlet process mixture model to a image segmentation. The tensor voting is used based on the fact that homogeneous region in an image are usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. The proposed approach is a novel nonparametric Bayesian segmentation method using Gaussian Dirichlet process mixture model to automatically segment various natural scenes. Finally, our method can label regions of the input image into coarse categories: “ground", “sky", and “vertical" for 3D application. The experimental results show that our method successfully segments coarse regions in many complex natural scene images for 3D.

Keywords: Region segmentation, tensor voting, image-based 3D, geometric structure, Gaussian Dirichlet process mixture model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
12057 Segmentation of Images through Clustering to Extract Color Features: An Application forImage Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

This paper deals with the application for contentbased image retrieval to extract color feature from natural images stored in the image database by segmenting the image through clustering. We employ a class of nonparametric techniques in which the data points are regarded as samples from an unknown probability density. Explicit computation of the density is avoided by using the mean shift procedure, a robust clustering technique, which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters. A non-parametric technique for the recovery of significant image features is presented and segmentation module is developed using the mean shift algorithm to segment each image. In these algorithms, the only user set parameter is the resolution of the analysis and either gray level or color images are accepted as inputs. Extensive experimental results illustrate excellent performance.

Keywords: Segmentation, Clustering, Image Retrieval, Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
12056 Unsupervised Segmentation by Hidden Markov Chain with Bi-dimensional Observed Process

Authors: Abdelali Joumad, Abdelaziz Nasroallah

Abstract:

In unsupervised segmentation context, we propose a bi-dimensional hidden Markov chain model (X,Y) that we adapt to the image segmentation problem. The bi-dimensional observed process Y = (Y 1, Y 2) is such that Y 1 represents the noisy image and Y 2 represents a noisy supplementary information on the image, for example a noisy proportion of pixels of the same type in a neighborhood of the current pixel. The proposed model can be seen as a competitive alternative to the Hilbert-Peano scan. We propose a bayesian algorithm to estimate parameters of the considered model. The performance of this algorithm is globally favorable, compared to the bi-dimensional EM algorithm through numerical and visual data.

Keywords: Image segmentation, Hidden Markov chain with a bi-dimensional observed process, Peano-Hilbert scan, Bayesian approach, MCMC methods, Bi-dimensional EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
12055 Fast Segmentation for the Piecewise Smooth Mumford-Shah Functional

Authors: Yingjie Zhang

Abstract:

This paper is concerned with an improved algorithm based on the piecewise-smooth Mumford and Shah (MS) functional for an efficient and reliable segmentation. In order to speed up convergence, an additional force, at each time step, is introduced further to drive the evolution of the curves instead of only driven by the extensions of the complementary functions u + and u - . In our scheme, furthermore, the piecewise-constant MS functional is integrated to generate the extra force based on a temporary image that is dynamically created by computing the union of u + and u - during segmenting. Therefore, some drawbacks of the original algorithm, such as smaller objects generated by noise and local minimal problem also are eliminated or improved. The resulting algorithm has been implemented in Matlab and Visual Cµ, and demonstrated efficiently by several cases.

Keywords: Active contours, energy minimization, image segmentation, level sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
12054 Low Computational Image Compression Scheme based on Absolute Moment Block Truncation Coding

Authors: K.Somasundaram, I.Kaspar Raj

Abstract:

In this paper we have proposed three and two stage still gray scale image compressor based on BTC. In our schemes, we have employed a combination of four techniques to reduce the bit rate. They are quad tree segmentation, bit plane omission, bit plane coding using 32 visual patterns and interpolative bit plane coding. The experimental results show that the proposed schemes achieve an average bit rate of 0.46 bits per pixel (bpp) for standard gray scale images with an average PSNR value of 30.25, which is better than the results from the exiting similar methods based on BTC.

Keywords: Bit plane, Block Truncation Coding, Image compression, lossy compression, quad tree segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
12053 Evolving a Fuzzy Rule-Base for Image Segmentation

Authors: A. Borji, M. Hamidi

Abstract:

A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noise

Keywords: Comprehensive learning Particle Swarmoptimization, fuzzy classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
12052 An Efficient Segmentation Method Based on Local Entropy Characteristics of Iris Biometrics

Authors: Ali Shojaee Bakhtiari, Ali Asghar Beheshti Shirazi, Amir Sepasi Zahmati

Abstract:

An efficient iris segmentation method based on analyzing the local entropy characteristic of the iris image, is proposed in this paper and the strength and weaknesses of the method are analyzed for practical purposes. The method shows special strength in providing designers with an adequate degree of freedom in choosing the proper sections of the iris for their application purposes.

Keywords: Iris segmentation, entropy, biocryptosystem, biometric identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
12051 Image Analysis for Obturator Foramen Based on Marker-Controlled Watershed Segmentation and Zernike Moments

Authors: Seda Sahin, Emin Akata

Abstract:

Obturator Foramen is a specific structure in Pelvic bone images and recognition of it is a new concept in medical image processing. Moreover, segmentation of bone structures such as Obturator Foramen plays an essential role for clinical research in orthopedics. In this paper, we present a novel method to analyze the similarity between the substructures of the imaged region and a hand drawn template as a preprocessing step for computation of Pelvic bone rotation on hip radiographs. This method consists of integrated usage of Marker-controlled Watershed segmentation and Zernike moment feature descriptor and it is used to detect Obturator Foramen accurately. Marker-controlled Watershed segmentation is applied to separate Obturator Foramen from the background effectively. Then, Zernike moment feature descriptor is used to provide matching between binary template image and the segmented binary image for final extraction of Obturator Foramens. Finally, Pelvic bone rotation rate calculation for each hip radiograph is performed automatically to select and eliminate hip radiographs for further studies which depend on Pelvic bone angle measurements. The proposed method is tested on randomly selected 100 hip radiographs. The experimental results demonstrated that the proposed method is able to segment Obturator Foramen with 96% accuracy.

Keywords: Medical image analysis, marker-controlled watershed segmentation, segmentation of bone structures on hip radiographs, pelvic bone rotation rate, zernike moment feature descriptor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
12050 Persian/Arabic Document Segmentation Based On Pyramidal Image Structure

Authors: Seyyed Yasser Hashemi, Khalil Monfaredi

Abstract:

Automatic transformation of paper documents into electronic documents requires document segmentation at the first stage. However, some parameters restrictions such as variations in character font sizes, different text line spacing, and also not uniform document layout structures altogether have made it difficult to design a general-purpose document layout analysis algorithm for many years. Thus in most previously reported methods it is inevitable to include these parameters. This problem becomes excessively acute and severe, especially in Persian/Arabic documents. Since the Persian/Arabic scripts differ considerably from the English scripts, most of the proposed methods for the English scripts do not render good results for the Persian scripts. In this paper, we present a novel parameter-free method for segmenting the Persian/Arabic document images which also works well for English scripts. This method segments the document image into maximal homogeneous regions and identifies them as texts and non-texts based on a pyramidal image structure. In other words the proposed method is capable of document segmentation without considering the character font sizes, text line spacing, and document layout structures. This algorithm is examined for 150 Arabic/Persian and English documents and document segmentation process are done successfully for 96 percent of documents.

Keywords: Persian/Arabic document, document segmentation, Pyramidal Image Structure, skew detection and correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
12049 High Resolution Images: Segmenting, Extracting Information and GIS Integration

Authors: Erick López-Ornelas

Abstract:

As the world changes more rapidly, the demand for update information for resource management, environment monitoring, planning are increasing exponentially. Integration of Remote Sensing with GIS technology will significantly promote the ability for addressing these concerns. This paper presents an alternative way of update GIS applications using image processing and high resolution images. We show a method of high-resolution image segmentation using graphs and morphological operations, where a preprocessing step (watershed operation) is required. A morphological process is then applied using the opening and closing operations. After this segmentation we can extract significant cartographic elements such as urban areas, streets or green areas. The result of this segmentation and this extraction is then used to update GIS applications. Some examples are shown using aerial photography.

Keywords: GIS, Remote Sensing, image segmentation, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
12048 Segmentation of Noisy Digital Images with Stochastic Gradient Kernel

Authors: Abhishek Neogi, Jayesh Verma, Pinaki Pratim Acharjya

Abstract:

Image segmentation and edge detection is a fundamental section in image processing. In case of noisy images Edge Detection is very less effective if we use conventional Spatial Filters like Sobel, Prewitt, LOG, Laplacian etc. To overcome this problem we have proposed the use of Stochastic Gradient Mask instead of Spatial Filters for generating gradient images. The present study has shown that the resultant images obtained by applying Stochastic Gradient Masks appear to be much clearer and sharper as per Edge detection is considered.

Keywords: Image segmentation, edge Detection, noisy images, spatialfilters, stochastic gradient kernel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
12047 Medical Image Segmentation Using Deformable Model and Local Fitting Binary: Thoracic Aorta

Authors: B. Bagheri Nakhjavanlo, T. S. Ellis, P.Raoofi, Sh.ziari

Abstract:

This paper presents an application of level sets for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A kernel function in the level set formulation aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets, and are shown to be more effective than other approaches in coping with intensity inhomogeneities. We have applied the Courant Friedrichs Levy (CFL) condition as stability criterion for our algorithm.

Keywords: Image segmentation, Level-sets, Local fitting binary, Thoracic aorta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
12046 Online Optic Disk Segmentation Using Fractals

Authors: Srinivasan Aruchamy, Partha Bhattacharjee, Goutam Sanyal

Abstract:

Optic disk segmentation plays a key role in the mass screening of individuals with diabetic retinopathy and glaucoma ailments. An efficient hardware-based algorithm for optic disk localization and segmentation would aid for developing an automated retinal image analysis system for real time applications. Herein, TMS320C6416DSK DSP board pixel intensity based fractal analysis algorithm for an automatic localization and segmentation of the optic disk is reported. The experiment has been performed on color and fluorescent angiography retinal fundus images. Initially, the images were pre-processed to reduce the noise and enhance the quality. The retinal vascular tree of the image was then extracted using canny edge detection technique. Finally, a pixel intensity based fractal analysis is performed to segment the optic disk by tracing the origin of the vascular tree. The proposed method is examined on three publicly available data sets of the retinal image and also with the data set obtained from an eye clinic. The average accuracy achieved is 96.2%. To the best of the knowledge, this is the first work reporting the use of TMS320C6416DSK DSP board and pixel intensity based fractal analysis algorithm for an automatic localization and segmentation of the optic disk. This will pave the way for developing devices for detection of retinal diseases in the future.

Keywords: Color retinal fundus images, Diabetic retinopathy, Fluorescein angiography retinal fundus images, Fractal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
12045 Medical Image Edge Detection Based on Neuro-Fuzzy Approach

Authors: J. Mehena, M. C. Adhikary

Abstract:

Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images.

Keywords: Edge detection, neuro-fuzzy, image segmentation, artificial image, object recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
12044 On the EM Algorithm and Bootstrap Approach Combination for Improving Satellite Image Fusion

Authors: Tijani Delleji, Mourad Zribi, Ahmed Ben Hamida

Abstract:

This paper discusses EM algorithm and Bootstrap approach combination applied for the improvement of the satellite image fusion process. This novel satellite image fusion method based on estimation theory EM algorithm and reinforced by Bootstrap approach was successfully implemented and tested. The sensor images are firstly split by a Bayesian segmentation method to determine a joint region map for the fused image. Then, we use the EM algorithm in conjunction with the Bootstrap approach to develop the bootstrap EM fusion algorithm, hence producing the fused targeted image. We proposed in this research to estimate the statistical parameters from some iterative equations of the EM algorithm relying on a reference of representative Bootstrap samples of images. Sizes of those samples are determined from a new criterion called 'hybrid criterion'. Consequently, the obtained results of our work show that using the Bootstrap EM (BEM) in image fusion improve performances of estimated parameters which involve amelioration of the fused image quality; and reduce the computing time during the fusion process.

Keywords: Satellite image fusion, Bayesian segmentation, Bootstrap approach, EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
12043 One Dimensional Object Segmentation and Statistical Features of an Image for Texture Image Recognition System

Authors: Nang Thwe Thwe Oo

Abstract:

Traditional object segmentation methods are time consuming and computationally difficult. In this paper, onedimensional object detection along the secant lines is applied. Statistical features of texture images are computed for the recognition process. Example matrices of these features and formulae for calculation of similarities between two feature patterns are expressed. And experiments are also carried out using these features.

Keywords: 1-D object segmentation, secant lines, objectoccurrence(frequency) matrix, contiguity matrix, statistical features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
12042 A Fuzzy Tumor Volume Estimation Approach Based On Fuzzy Segmentation of MR Images

Authors: Sara A.Yones, Ahmed S. Moussa

Abstract:

Quantitative measurements of tumor in general and tumor volume in particular, become more realistic with the use of Magnetic Resonance imaging, especially when the tumor morphological changes become irregular and difficult to assess by clinical examination. However, tumor volume estimation strongly depends on the image segmentation, which is fuzzy by nature. In this paper a fuzzy approach is presented for tumor volume segmentation based on the fuzzy connectedness algorithm. The fuzzy affinity matrix resulting from segmentation is then used to estimate a fuzzy volume based on a certainty parameter, an Alpha Cut, defined by the user. The proposed method was shown to highly affect treatment decisions. A statistical analysis was performed in this study to validate the results based on a manual method for volume estimation and the importance of using the Alpha Cut is further explained.

Keywords: Alpha Cut, Fuzzy Connectedness, Magnetic Resonance Imaging, Tumor volume estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353
12041 Efficient Filtering of Graph Based Data Using Graph Partitioning

Authors: Nileshkumar Vaishnav, Aditya Tatu

Abstract:

An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.

Keywords: Graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
12040 Segmentation of Breast Lesions in Ultrasound Images Using Spatial Fuzzy Clustering and Structure Tensors

Authors: Yan Xu, Toshihiro Nishimura

Abstract:

Segmentation in ultrasound images is challenging due to the interference from speckle noise and fuzziness of boundaries. In this paper, a segmentation scheme using fuzzy c-means (FCM) clustering incorporating both intensity and texture information of images is proposed to extract breast lesions in ultrasound images. Firstly, the nonlinear structure tensor, which can facilitate to refine the edges detected by intensity, is used to extract speckle texture. And then, a spatial FCM clustering is applied on the image feature space for segmentation. In the experiments with simulated and clinical ultrasound images, the spatial FCM clustering with both intensity and texture information gets more accurate results than the conventional FCM or spatial FCM without texture information.

Keywords: fuzzy c-means, spatial information, structure tensor, ultrasound image segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
12039 A New Ridge Orientation based Method of Computation for Feature Extraction from Fingerprint Images

Authors: Jayadevan R., Jayant V. Kulkarni, Suresh N. Mali, Hemant K. Abhyankar

Abstract:

An important step in studying the statistics of fingerprint minutia features is to reliably extract minutia features from the fingerprint images. A new reliable method of computation for minutiae feature extraction from fingerprint images is presented. A fingerprint image is treated as a textured image. An orientation flow field of the ridges is computed for the fingerprint image. To accurately locate ridges, a new ridge orientation based computation method is proposed. After ridge segmentation a new method of computation is proposed for smoothing the ridges. The ridge skeleton image is obtained and then smoothed using morphological operators to detect the features. A post processing stage eliminates a large number of false features from the detected set of minutiae features. The detected features are observed to be reliable and accurate.

Keywords: Minutia, orientation field, ridge segmentation, textured image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
12038 Region-Based Image Fusion with Artificial Neural Network

Authors: Shuo-Li Hsu, Peng-Wei Gau, I-Lin Wu, Jyh-Horng Jeng

Abstract:

For most image fusion algorithms separate relationship by pixels in the image and treat them more or less independently. In addition, they have to be adjusted different parameters in different time or weather. In this paper, we propose a region–based image fusion which combines aspects of feature and pixel-level fusion method to replace only by pixel. The basic idea is to segment far infrared image only and to add information of each region from segmented image to visual image respectively. Then we determine different fused parameters according different region. At last, we adopt artificial neural network to deal with the problems of different time or weather, because the relationship between fused parameters and image features are nonlinear. It render the fused parameters can be produce automatically according different states. The experimental results present the method we proposed indeed have good adaptive capacity with automatic determined fused parameters. And the architecture can be used for lots of applications.

Keywords: Image fusion, Region-based fusion, Segmentation, Neural network, Multi-sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
12037 A Self Configuring System for Object Recognition in Color Images

Authors: Michela Lecca

Abstract:

System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a highly user-friendly tool.

Keywords: Automatic object recognition, clustering, content based image retrieval system, image segmentation, region adjacency graph, region grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
12036 Segmentation of Lungs from CT Scan Images for Early Diagnosis of Lung Cancer

Authors: Nisar Ahmed Memon, Anwar Majid Mirza, S.A.M. Gilani

Abstract:

Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. The CAD (Computer Aided Diagnosis ) of lung CT generally first segment the area of interest (lung) and then analyze the separately obtained area for nodule detection in order to diagnosis the disease. For normal lung, segmentation can be performed by making use of excellent contrast between air and surrounding tissues. However this approach fails when lung is affected by high density pathology. Dense pathologies are present in approximately a fifth of clinical scans, and for computer analysis such as detection and quantification of abnormal areas it is vital that the entire and perfectly lung part of the image is provided and no part, as present in the original image be eradicated. In this paper we have proposed a lung segmentation technique which accurately segment the lung parenchyma from lung CT Scan images. The algorithm was tested against the 25 datasets of different patients received from Ackron Univeristy, USA and AGA Khan Medical University, Karachi, Pakistan.

Keywords: Computer Aided Diagnosis, Medical ImageProcessing, Region Growing, Segmentation, Thresholding,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
12035 A Selective Markovianity Approach for Image Segmentation

Authors: A. Melouah, H. Merouani

Abstract:

A new Markovianity approach is introduced in this paper. This approach reduces the response time of classic Markov Random Fields approach. First, one region is determinated by a clustering technique. Then, this region is excluded from the study. The remaining pixel form the study zone and they are selected for a Markovianity segmentation task. With Selective Markovianity approach, segmentation process is faster than classic one.

Keywords: Markovianity, response time, segmentation, study zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
12034 Speedup Breadth-First Search by Graph Ordering

Authors: Qiuyi Lyu, Bin Gong

Abstract:

Breadth-First Search (BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improving the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes’ overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads.We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.

Keywords: Breadth-first search, BFS, graph ordering, graph algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 566