Search results for: remote sensing images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1656

Search results for: remote sensing images

816 Spectroscopic and SEM Investigation of TCPP in Titanium Matrix

Authors: R.Rahimi, F.Moharrami

Abstract:

Titanium gels doped with water-soluble cationic porphyrin were synthesized by the sol–gel polymerization of Ti (OC4H9)4. In this work we investigate the spectroscopic properties along with SEM images of tetra carboxyl phenyl porphyrin when incorporated into porous matrix produced by the sol–gel technique.

Keywords: TCPP, Titanium matrix, UV/Vis spectroscopy, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
815 Evaluating the Radiation Dose Involved in Interventional Radiology Procedures

Authors: Kholood Baron

Abstract:

Radiologic interventional studies use fluoroscopy imaging guidance to perform both diagnostic and therapeutic procedures. These could result in high radiation doses being delivered to the patients and also to the radiology team. This is due to the prolonged fluoroscopy time and the large number of images taken, even when dose-minimizing techniques and modern fluoroscopic tools are applied. Hence, these procedures are part of the everyday routine of interventional radiology doctors, assistant nurses, and radiographers. Thus, it is important to estimate the radiation exposure dose they received in order to give objective advice and reduce both patient and radiology team radiation exposure dose. The aim of this study was to find out the total radiation dose reaching the radiologist and the patient during an interventional procedure, and to determine the impact of certain parameters on the patient dose. The radiation dose was measured by TLD devices (Thermoluminescent Dosimeter; radiation dosimeter device). Physicians, patients, nurses, and radiographers wore TLDs during 12 interventional radiology procedures performed in two hospitals, Mubarak and Chest Hospital. This study highlights the need for interventional radiologists to be mindful of the radiation doses received by both patients and medical staff during interventional radiology procedures. The findings emphasize the impact of factors such as fluoroscopy duration and the number of images taken on the patient dose. By raising awareness and providing insights into optimizing techniques and protective measures, this research contributes to the overall goal of reducing radiation doses and ensuring the safety of patients and medical staff.

Keywords: Dosimetry, radiation dose, interventional radiology procedures, patient radiation dose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85
814 Study on the Characteristics of the Measurement System for pH Array Sensors

Authors: Jung-Chuan Chou, Wei-Lun Hsia

Abstract:

A measurement system for pH array sensors is introduced to increase accuracy, and decrease non-ideal effects successfully. An array readout circuit reads eight potentiometric signals at the same time, and obtains an average value. The deviation value or the extreme value is counteracted and the output voltage is a relatively stable value. The errors of measuring pH buffer solutions are decreased obviously with this measurement system, and the non-ideal effects, drift and hysteresis, are lowered to 1.638mV/hr and 1.118mV, respectively. The efficiency and stability are better than single sensor. The whole sensing characteristics are improved.

Keywords: Array sensors, measurement system, non-ideal effects, pH sensor, readout circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
813 Template-Based Object Detection through Partial Shape Matching and Boundary Verification

Authors: Feng Ge, Tiecheng Liu, Song Wang, Joachim Stahl

Abstract:

This paper presents a novel template-based method to detect objects of interest from real images by shape matching. To locate a target object that has a similar shape to a given template boundary, the proposed method integrates three components: contour grouping, partial shape matching, and boundary verification. In the first component, low-level image features, including edges and corners, are grouped into a set of perceptually salient closed contours using an extended ratio-contour algorithm. In the second component, we develop a partial shape matching algorithm to identify the fractions of detected contours that partly match given template boundaries. Specifically, we represent template boundaries and detected contours using landmarks, and apply a greedy algorithm to search the matched landmark subsequences. For each matched fraction between a template and a detected contour, we estimate an affine transform that transforms the whole template into a hypothetic boundary. In the third component, we provide an efficient algorithm based on oriented edge lists to determine the target boundary from the hypothetic boundaries by checking each of them against image edges. We evaluate the proposed method on recognizing and localizing 12 template leaves in a data set of real images with clutter back-grounds, illumination variations, occlusions, and image noises. The experiments demonstrate the high performance of our proposed method1.

Keywords: Object detection, shape matching, contour grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
812 A Support System to Consult Remote another Doctor on Assessment and/or Medical Treatment Plan when a Doctor has a Patient not in His/Her Major

Authors: T. Gotoh, T. Takayama, M. Ishiki, T. Ikeda

Abstract:

Recently, majors of doctors are divided into terribly lots of detailed areas. However, it is actually not a rare case that a doctor has a patient who is not in his/her major. He/She must judge an assessment and make a medical treatment plan for this patient. According to our investigation, conventional approaches such as image diagnosis cooperation are insufficient. This paper proposes an 'Assessment / Medical Treatment Plan Consulting System'. We have implemented a pilot system based on our proposition. Its effectiveness is clarified by an evaluation.

Keywords: Application, computational intelligence and telecommunications, medicine, intelligent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
811 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: Classification, fuzzy, inspection system, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
810 A New High Speed Neural Model for Fast Character Recognition Using Cross Correlation and Matrix Decomposition

Authors: Hazem M. El-Bakry

Abstract:

Neural processors have shown good results for detecting a certain character in a given input matrix. In this paper, a new idead to speed up the operation of neural processors for character detection is presented. Such processors are designed based on cross correlation in the frequency domain between the input matrix and the weights of neural networks. This approach is developed to reduce the computation steps required by these faster neural networks for the searching process. The principle of divide and conquer strategy is applied through image decomposition. Each image is divided into small in size sub-images and then each one is tested separately by using a single faster neural processor. Furthermore, faster character detection is obtained by using parallel processing techniques to test the resulting sub-images at the same time using the same number of faster neural networks. In contrast to using only faster neural processors, the speed up ratio is increased with the size of the input image when using faster neural processors and image decomposition. Moreover, the problem of local subimage normalization in the frequency domain is solved. The effect of image normalization on the speed up ratio of character detection is discussed. Simulation results show that local subimage normalization through weight normalization is faster than subimage normalization in the spatial domain. The overall speed up ratio of the detection process is increased as the normalization of weights is done off line.

Keywords: Fast Character Detection, Neural Processors, Cross Correlation, Image Normalization, Parallel Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
809 An Advanced Stereo Vision Based Obstacle Detection with a Robust Shadow Removal Technique

Authors: Saeid Fazli, Hajar Mohammadi D., Payman Moallem

Abstract:

This paper presents a robust method to detect obstacles in stereo images using shadow removal technique and color information. Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. The proposed advanced method is divided into three phases, the first phase is detecting obstacles and removing shadows, the second one is matching and the last phase is depth computing. We propose a robust method for detecting obstacles in stereo images using a shadow removal technique based on color information in HIS space, at the first phase. In this paper we use Normalized Cross Correlation (NCC) function matching with a 5 × 5 window and prepare an empty matching table τ and start growing disparity components by drawing a seed s from S which is computed using canny edge detector, and adding it to τ. In this way we achieve higher performance than the previous works [2,17]. A fast stereo matching algorithm is proposed that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. The obstacle identified in phase one which appears in the disparity map of phase two enters to the third phase of depth computing. Finally, experimental results are presented to show the effectiveness of the proposed method.

Keywords: obstacle detection, stereo vision, shadowremoval, color, stereo matching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
808 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R

Authors: Jaya Mathew

Abstract:

Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.

Keywords: Predictive maintenance, machine learning, big data, cloud, on premise SQL, R.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
807 Cluster-Based Multi-Path Routing Algorithm in Wireless Sensor Networks

Authors: Si-Gwan Kim

Abstract:

Small-size and low-power sensors with sensing, signal processing and wireless communication capabilities is suitable for the wireless sensor networks. Due to the limited resources and battery constraints, complex routing algorithms used for the ad-hoc networks cannot be employed in sensor networks. In this paper, we propose node-disjoint multi-path hexagon-based routing algorithms in wireless sensor networks. We suggest the details of the algorithm and compare it with other works. Simulation results show that the proposed scheme achieves better performance in terms of efficiency and message delivery ratio.

Keywords: Clustering, multi-path, routing protocol, sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
806 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes

Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono

Abstract:

Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is widely used for LV segmentation, but it suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is improved to achieve a fast and efficient LV segmentation. First, a robust and efficient detection based on Hough forest localizes cardiac feature points. Such feature points are used to predict the initial fitting of the LV shape model. Second, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. With the robust initialization, ASM is able to achieve more accurate segmentation. The performance of the proposed method is evaluated on a dataset of 810 cardiac ultrasound images that are mostly abnormal shapes. This proposed method is compared with several combinations of ASM and existing initialization methods. Our experiment results demonstrate that accuracy of the proposed method for feature point detection for initialization was 40% higher than the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops and thus speeds up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.

Keywords: Hough forest, active shape model, segmentation, cardiac left ventricle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
805 Novel Mobile Climbing Robot Agent for Offshore Platforms

Authors: Akbar F. Moghaddam, Magnus Lange, Omid Mirmotahari, Mats Høvin

Abstract:

To improve HSE standards, oil and gas industries are interested in using remotely controlled and autonomous robots instead of human workers on offshore platforms. In addition to earlier reason this strategy would increase potential revenue, efficient usage of work experts and even would allow operations in more remote areas. This article is the presentation of a custom climbing robot, called Walloid, designed for offshore platform topside automation. This 4 arms climbing robot with grippers is an ongoing project at University of Oslo.

Keywords: Climbing Robots, Mobile Robots, Offshore Robotics, Offshore Platforms, Automation, Inspection, Monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
804 Development of Automatic Guided Mobile Robot Using Magnetic Position Meter

Authors: Geun-Mo Kim, Young-Jae Ryoo

Abstract:

In this paper, an automatic guided mobile robot using a new magnetic position meter is described. In order to measure the lateral position of a mobile robot, a new magnetic position meter is developed. The magnetic position meter can detect the position of a magnetic wire on the center of road. A mobile robot in designed with a sensing system, a steering system and a driving system. The designed mobile robot is tested to verify the performance of automatic guidance.

Keywords: Autonomous vehicle, magnetic position meter, steering, magnet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
803 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
802 Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide

Authors: Mandana Amiri, Sima Nouhi, Yashar Azizan-Kalandaragh

Abstract:

Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H2O2. The presented electrode can be employed as sensing element for hydrogen peroxide.

Keywords: Electrochemical sensor, electrodeposition, hydrogen peroxide, silver nanostructures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108
801 Subband Adaptive Filter Exploiting Sparsity of System

Authors: Young-Seok Choi

Abstract:

This paper presents a normalized subband adaptive filtering (NSAF) algorithm to cope with the sparsity condition of an underlying system in the context of compressive sensing. By regularizing a weighted l1-norm of the filter taps estimate onto the cost function of the NSAF and utilizing a subgradient analysis, the update recursion of the l1-norm constraint NSAF is derived. Considering two distinct weighted l1-norm regularization cases, two versions of the l1-norm constraint NSAF are presented. Simulation results clearly indicate the superior performance of the proposed l1-norm constraint NSAFs comparing with the classical NSAF.

Keywords: Subband adaptive filtering, sparsity constraint, weighted l1-norm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
800 Medical Image Segmentation Based On Vigorous Smoothing and Edge Detection Ideology

Authors: Jagadish H. Pujar, Pallavi S. Gurjal, Shambhavi D. S, Kiran S. Kunnur

Abstract:

Medical image segmentation based on image smoothing followed by edge detection assumes a great degree of importance in the field of Image Processing. In this regard, this paper proposes a novel algorithm for medical image segmentation based on vigorous smoothening by identifying the type of noise and edge diction ideology which seems to be a boom in medical image diagnosis. The main objective of this algorithm is to consider a particular medical image as input and make the preprocessing to remove the noise content by employing suitable filter after identifying the type of noise and finally carrying out edge detection for image segmentation. The algorithm consists of three parts. First, identifying the type of noise present in the medical image as additive, multiplicative or impulsive by analysis of local histograms and denoising it by employing Median, Gaussian or Frost filter. Second, edge detection of the filtered medical image is carried out using Canny edge detection technique. And third part is about the segmentation of edge detected medical image by the method of Normalized Cut Eigen Vectors. The method is validated through experiments on real images. The proposed algorithm has been simulated on MATLAB platform. The results obtained by the simulation shows that the proposed algorithm is very effective which can deal with low quality or marginal vague images which has high spatial redundancy, low contrast and biggish noise, and has a potential of certain practical use of medical image diagnosis.

Keywords: Image Segmentation, Image smoothing, Edge Detection, Impulsive noise, Gaussian noise, Median filter, Canny edge, Eigen values, Eigen vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
799 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: Cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977
798 Exploiting Self-Adaptive Replication Management on Decentralized Tuple Space

Authors: Xing Jiankuan, Qin Zheng, Zhang Jinxue

Abstract:

Decentralized Tuple Space (DTS) implements tuple space model among a series of decentralized hosts and provides the logical global shared tuple repository. Replication has been introduced to promote performance problem incurred by remote tuple access. In this paper, we propose a replication approach of DTS allowing replication policies self-adapting. The accesses from users or other nodes are monitored and collected to contribute the decision making. The replication policy may be changed if the better performance is expected. The experiments show that this approach suitably adjusts the replication policies, which brings negligible overhead.

Keywords: Decentralization, Replication Management, SelfAdaption, Tuple Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
797 Performance Analysis of Chrominance Red and Chrominance Blue in JPEG

Authors: Mamta Garg

Abstract:

While compressing text files is useful, compressing still image files is almost a necessity. A typical image takes up much more storage than a typical text message and without compression images would be extremely clumsy to store and distribute. The amount of information required to store pictures on modern computers is quite large in relation to the amount of bandwidth commonly available to transmit them over the Internet and applications. Image compression addresses the problem of reducing the amount of data required to represent a digital image. Performance of any image compression method can be evaluated by measuring the root-mean-square-error & peak signal to noise ratio. The method of image compression that will be analyzed in this paper is based on the lossy JPEG image compression technique, the most popular compression technique for color images. JPEG compression is able to greatly reduce file size with minimal image degradation by throwing away the least “important" information. In JPEG, both color components are downsampled simultaneously, but in this paper we will compare the results when the compression is done by downsampling the single chroma part. In this paper we will demonstrate more compression ratio is achieved when the chrominance blue is downsampled as compared to downsampling the chrominance red in JPEG compression. But the peak signal to noise ratio is more when the chrominance red is downsampled as compared to downsampling the chrominance blue in JPEG compression. In particular we will use the hats.jpg as a demonstration of JPEG compression using low pass filter and demonstrate that the image is compressed with barely any visual differences with both methods.

Keywords: JPEG, Discrete Cosine Transform, Quantization, Color Space Conversion, Image Compression, Peak Signal to Noise Ratio & Compression Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
796 An Optimal Unsupervised Satellite image Segmentation Approach Based on Pearson System and k-Means Clustering Algorithm Initialization

Authors: Ahmed Rekik, Mourad Zribi, Ahmed Ben Hamida, Mohamed Benjelloun

Abstract:

This paper presents an optimal and unsupervised satellite image segmentation approach based on Pearson system and k-Means Clustering Algorithm Initialization. Such method could be considered as original by the fact that it utilised K-Means clustering algorithm for an optimal initialisation of image class number on one hand and it exploited Pearson system for an optimal statistical distributions- affectation of each considered class on the other hand. Satellite image exploitation requires the use of different approaches, especially those founded on the unsupervised statistical segmentation principle. Such approaches necessitate definition of several parameters like image class number, class variables- estimation and generalised mixture distributions. Use of statistical images- attributes assured convincing and promoting results under the condition of having an optimal initialisation step with appropriated statistical distributions- affectation. Pearson system associated with a k-means clustering algorithm and Stochastic Expectation-Maximization 'SEM' algorithm could be adapted to such problem. For each image-s class, Pearson system attributes one distribution type according to different parameters and especially the Skewness 'β1' and the kurtosis 'β2'. The different adapted algorithms, K-Means clustering algorithm, SEM algorithm and Pearson system algorithm, are then applied to satellite image segmentation problem. Efficiency of those combined algorithms was firstly validated with the Mean Quadratic Error 'MQE' evaluation, and secondly with visual inspection along several comparisons of these unsupervised images- segmentation.

Keywords: Unsupervised classification, Pearson system, Satellite image, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
795 Implementation of IEEE 802.15.4 Packet Analyzer

Authors: Sung Jun Ban, Hyeonwoo Cho, ChangWoo Lee, Sang Woo Kim

Abstract:

A packet analyzer is a tool for debugging sensor network systems and is convenient for developers. In this paper, we introduce a new packet analyzer based on an embedded system. The proposed packet analyzer is compatible with IEEE 802.15.4, which is suitable for the wireless communication standard for sensor networks, and is available for remote control by adopting a server-client scheme based on the Ethernet interface. To confirm the operations of the packet analyzer, we have developed two types of sensor nodes based on PIC4620 and ATmega128L microprocessors and tested the functions of the proposed packet analyzer by obtaining the packets from the sensor nodes.

Keywords: Sensor network, embedded system, packet analyzer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
794 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform

Authors: Omaima N. Ahmad AL-Allaf

Abstract:

Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.

Keywords: Image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
793 Application of Formyl-TIPPCu (II) for Temperature and Light Sensing

Authors: Dil Nawaz Khan, M. H. Sayyad, Muhammad Yaseen, Munawar Ali Munawar, Mukhtar Ali

Abstract:

Effect of temperature and light was investigated on a thin film of organic semiconductor formyl-TIPPCu(II) deposited on a glass substrate with preliminary evaporated gold electrodes. The electrical capacitance and resistance of the fabricated device were evaluated under the effect of temperature and light. The relative capacitance of the fabricated sensor increased by 4.3 times by rising temperature from 27 to 1870C, while under illumination up to 25000 lx, the capacitance of the Au/formyl-TIPPCu(II)/Au photo capacitive sensor increased continuously by 13.2 times as compared to dark conditions.

Keywords: formyl-TIPPCu(II), Organic semiconductor, Photocapacitance, Polarizability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
792 A Novel Neighborhood Defined Feature Selection on Phase Congruency Images for Recognition of Faces with Extreme Variations

Authors: Satyanadh Gundimada, Vijayan K Asari

Abstract:

A novel feature selection strategy to improve the recognition accuracy on the faces that are affected due to nonuniform illumination, partial occlusions and varying expressions is proposed in this paper. This technique is applicable especially in scenarios where the possibility of obtaining a reliable intra-class probability distribution is minimal due to fewer numbers of training samples. Phase congruency features in an image are defined as the points where the Fourier components of that image are maximally inphase. These features are invariant to brightness and contrast of the image under consideration. This property allows to achieve the goal of lighting invariant face recognition. Phase congruency maps of the training samples are generated and a novel modular feature selection strategy is implemented. Smaller sub regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are arranged in the order of increasing distance between the sub regions involved in merging. The assumption behind the proposed implementation of the region merging and arrangement strategy is that, local dependencies among the pixels are more important than global dependencies. The obtained feature sets are then arranged in the decreasing order of discriminating capability using a criterion function, which is the ratio of the between class variance to the within class variance of the sample set, in the PCA domain. The results indicate high improvement in the classification performance compared to baseline algorithms.

Keywords: Discriminant analysis, intra-class probability distribution, principal component analysis, phase congruency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
791 Opponent Color and Curvelet Transform Based Image Retrieval System Using Genetic Algorithm

Authors: Yesubai Rubavathi Charles, Ravi Ramraj

Abstract:

In order to retrieve images efficiently from a large database, a unique method integrating color and texture features using genetic programming has been proposed. Opponent color histogram which gives shadow, shade, and light intensity invariant property is employed in the proposed framework for extracting color features. For texture feature extraction, fast discrete curvelet transform which captures more orientation information at different scales is incorporated to represent curved like edges. The recent scenario in the issues of image retrieval is to reduce the semantic gap between user’s preference and low level features. To address this concern, genetic algorithm combined with relevance feedback is embedded to reduce semantic gap and retrieve user’s preference images. Extensive and comparative experiments have been conducted to evaluate proposed framework for content based image retrieval on two databases, i.e., COIL-100 and Corel-1000. Experimental results clearly show that the proposed system surpassed other existing systems in terms of precision and recall. The proposed work achieves highest performance with average precision of 88.2% on COIL-100 and 76.3% on Corel, the average recall of 69.9% on COIL and 76.3% on Corel. Thus, the experimental results confirm that the proposed content based image retrieval system architecture attains better solution for image retrieval.

Keywords: Content based image retrieval, Curvelet transform, Genetic algorithm, Opponent color histogram, Relevance feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
790 Performance Monitoring of the Refrigeration System with Minimum Set of Sensors

Authors: Radek Fisera, Petr Stluka

Abstract:

This paper describes a methodology for remote performance monitoring of retail refrigeration systems. The proposed framework starts with monitoring of the whole refrigeration circuit which allows detecting deviations from expected behavior caused by various faults and degradations. The subsequent diagnostics methods drill down deeper in the equipment hierarchy to more specifically determine root causes. An important feature of the proposed concept is that it does not require any additional sensors, and thus, the performance monitoring solution can be deployed at a low installation cost. Moreover only a minimum of contextual information is required, which also substantially reduces time and cost of the deployment process.

Keywords: Condition monitoring, energy baselining, fault detection and diagnostics, commercial refrigeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880
789 Elliptical Features Extraction Using Eigen Values of Covariance Matrices, Hough Transform and Raster Scan Algorithms

Authors: J. Prakash, K. Rajesh

Abstract:

In this paper, we introduce a new method for elliptical object identification. The proposed method adopts a hybrid scheme which consists of Eigen values of covariance matrices, Circular Hough transform and Bresenham-s raster scan algorithms. In this approach we use the fact that the large Eigen values and small Eigen values of covariance matrices are associated with the major and minor axial lengths of the ellipse. The centre location of the ellipse can be identified using circular Hough transform (CHT). Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain a small number of nonzero elements they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of circumference pixels is identified using raster scan algorithm which uses the geometrical symmetry property. This method does not require the evaluation of tangents or curvature of edge contours, which are generally very sensitive to noise working conditions. The proposed method has the advantages of small storage, high speed and accuracy in identifying the feature. The new method has been tested on both synthetic and real images. Several experiments have been conducted on various images with considerable background noise to reveal the efficacy and robustness. Experimental results about the accuracy of the proposed method, comparisons with Hough transform and its variants and other tangential based methods are reported.

Keywords: Circular Hough transform, covariance matrix, Eigen values, ellipse detection, raster scan algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
788 Biological Data Integration using SOA

Authors: Noura Meshaan Al-Otaibi, Amin Yousef Noaman

Abstract:

Nowadays scientific data is inevitably digital and stored in a wide variety of formats in heterogeneous systems. Scientists need to access an integrated view of remote or local heterogeneous data sources with advanced data accessing, analyzing, and visualization tools. This research suggests the use of Service Oriented Architecture (SOA) to integrate biological data from different data sources. This work shows SOA will solve the problems that facing integration process and if the biologist scientists can access the biological data in easier way. There are several methods to implement SOA but web service is the most popular method. The Microsoft .Net Framework used to implement proposed architecture.

Keywords: Bioinformatics, Biological data, Data Integration, SOA and Web Services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474
787 Interactive Garments: Flexible Technologies for Textile Integration

Authors: Anupam Bhatia

Abstract:

Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.

Keywords: Ambient Intelligence, Proximity Sensors, Shape Memory Materials, Sound sensing garments, Wearable Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3278