Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide

Authors: Mandana Amiri, Sima Nouhi, Yashar Azizan-Kalandaragh

Abstract:

Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H2O2. The presented electrode can be employed as sensing element for hydrogen peroxide.

Keywords: Electrochemical sensor, electrodeposition, hydrogen peroxide, silver nanostructures.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1127850

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105

References:


[1] Tokonami, Sh.; Yamamoto, Y.; Shiigi, H.; Nagaoka, T. Synthesis and bioanalytical applications of specific-shaped metallic nanostructures: A review. Anal. Chim. Acta. 2012, 716, 76.
[2] Shokuhi-Rad, A.; Mirabi, A.; Binaian, E.; Tayebi, H. A Review on Glucose and Hydrogen Peroxide Biosensor Based on Modified Electrode Included Silver Nanoparticles. Int. J. Electrochem. Sci. 2011, 6, 3671.
[3] Choi, O.; Kanjun-Deng, K.; Kim, N.J.; Ross-Jr, L.; Y-Surampalli, R.; Hu, Zh. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008, 42, 3066.
[4] Lv, Y.; Liu, H.; Wang, Zh.; Liu, Sh.; Hao, L.; Sang, Y.; Liu, D.; Wang, J.; Boughton, R.I. Silver nanoparticle-decorated porous ceramic composite for water treatment. J. Membr. Sci. 2009, 331, 50.
[5] Caro, C.; Castillo, P.M.; Klippstein, R.; Pozo, D.; Zaderenko, A.P. Silver Nanoparticles: Sensing and Imaging Applications, 2010, Silver Nanoparticles, David Pozo Perez (Ed.), ISBN: 978-953-307-028-5, InTech.
[6] Deng, J.; Du, J.; Wang, Y.; Tu, Y.; Di, J. Synthesis of ultrathin silver shell on gold core for reducing substrate effect of LSPR sensor. Electrochem. Commun. 2011, 13, 1517.
[7] Ping, H.; Zhang, M.; Li, H.; Li, Sh.; Chen, Q.; Sun, Ch.; Zhang, T. Visual detection of melamine in raw milk by label-free silver nanoparticles. Food Control. 2012, 23, 191.
[8] Jin, X.; Lu, J.; Xia, Y.; Liu, P.; Tong, H. Ultra-thin silver electrodes for high density pulse batteries. J. Power Sources. 2001, 102, 124.
[9] Kalfagiannis, N.; Karagiannidis, P.G.; Pitsalidis, C.; Panagiotopoulos, N.T.; Gravalidis, C.; Kassavetis, S.; Patsalas, P.; Logothetidis, S. Plasmonic silver nanoparticles for improved organic solar cells. Sol. Energy Mater. Sol. Cells. 2012, 104, 165.
[10] Lu, Y.; Chen, W. Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction. J. Power Sources. 2012, 197, 107.
[11] Yang, X.; Li, L.; Yan, F. Polypyrrole/silver composite nanotubes for gas sensors. Sens. Actuators, B. 2010, 145, 495.
[12] Qin, X.; Wang, H.; Miao, Zh.; Wang, X.; Fang, Y.; Chen, Q.; Shao, X. Synthesis of silver nanowires and their applications in the electrochemical detection of halide. Talanta. 2011, 84, 673.
[13] Wen, T.; Qu, F.; Li, N.B.; Luo, H.Q. Polyethyleneimine-capped silver nanoclusters as a fluorescence probe for sensitive detection of hydrogen peroxide and glucose. Anal. Chim. Acta. 2012, 749, 56.
[14] Wang, G.L.; Zhua, X.Y.; Jiao, H.J.; Dong, Y.M.; Li, Z.J. Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosens. Bioelectron. 2012, 31, 337.
[15] Huang. Q.; Zhu, X. Rapid and large-scale synthesis of pitaya-like silver nanostructures as highly efficient surface-enhanced Raman scattering substrates. Talanta. 2013, 105, 117.
[16] Tolaymat, T.M.; El Badawy, A.M.; Genaidy, A.; G. Scheckel, K.; Luxton, T.P.; Suidan, M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ. 2010, 408, 999.
[17] Gorokhovskii, V. M. Silver Electrodes in Voltammetric Methods. J. Anal. Chem. 2003, 58, 198.
[18] Tashkhourian, J.; Hormozi Nezhad, M.R.; Khodavesi, J.; Javadi, S. Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid. J. Electroanal. Chem. 2009, 633, 85.
[19] Yu, A.; Wang, Q.; Yong, J.; Mahon, P. J.; Malherbe, F.; Wang, F.; Zhang, H.; Wang, J. Silver nanoparticle–carbon nanotube hybrid films: Preparation and electrochemical sensing. Electrochim. Acta . 2012, 74, 111.
[20] Miao, Y.E.; He. S.; Zhong, Y.; Yang, Zh.; Tjiu, W.W.; Liu,T. A novel hydrogen peroxide sensor based on Ag/SnO2 composite nanotubes by electrospinning. Electrochim. Acta. 2013, 99, 117.
[21] Tashkhourian, J.; Hormozi-Nezhad, M.R.; Khodaveisi, J.; Dashti, R. Localized surface plasmon resonance sensor for simultaneous kinetic determination of peroxyacetic acid and hydrogen peroxide. Anal. Chim. Acta. 2013, 762, 87.
[22] Mahmoudian, M.R.; Alias, Y.; Basirun, W.J.; Ebadi, M. Preparation of ultra-thin polypyrrole nanosheets decorated with Ag nanoparticles and their application in hydrogen peroxide detection. Electrochim. Acta. 2012, 72, 46.
[23] Qian, L.; Yang, X. Dendrimers as “controllers” for modulation of electrodeposited silver nanostructures. Colloid Surf., A. 2008, 317, 528.
[24] Sharma, D.K.; Ott, A., O’Mullane, A.P.; Bhargava, S.K. The facile formation of silver dendritic structures in the absence of surfactants and their electrochemical and SERS properties. Colloid Surf., A. 2011, 386, 98.
[25] Casella, I.G.; Ritorti, M. Electrodeposition of silver particles from alkaline aqueous solutions and their electrocatalytic activity for the reduction of nitrate, bromate and chlorite ions. Electrochim. Acta. 2010, 55, 6462.
[26] Zhou, Y.; Yin, H.; Meng, X.; Xu, Zh.; Fu, Y.; Ai, Sh. Direct electrochemistry of sarcosine oxidase on graphene, chitosan and silver nanoparticles modified glassy carbon electrode and its biosensing for hydrogen peroxide. Electrochim. Acta. 2012, 71, 294.
[27] Giovanni, M.; Pumera, M. Size Dependant Electrochemical Behavior of Silver Nanoparticles with Sizes of 10, 20, 40, 80 and 107 nm. Electroanalysis. 2012, 24, 615.