Search results for: Support vector data description
8410 Profitability and Budgeting of Kenaf Cultivation and Fiber Production in Kelantan Districts
Authors: Hamdon A. Abdelrhman
Abstract:
The purpose of the analysis is estimation of viability and profitability of kenaf plant farming in Kelantan State. The monetary information was gathered through interviewing kenaf growers as well group discussion. In addition, the production statistics were collected from Kenaf factory administrative group. The monetary data were analyzed using the Precision financial Calculator. For kenaf production per hectare three scenarios of productivity were adopted, they were 15, 12 and ten; the research results exposed that, when kenaf productivity was 15 ton and the agronomist received financial supports from kenaf administration, the margin profit reached up to 37% which is almost dual profitability that is expected without government support. The financial analysis explains that, the adopted scenarios of the productivity are feasible when Benefit Cost Ratio (BCR) was used as financial indicator. Nonetheless, the kenaf productivity of 15 ton is the superlative viable among the others and payback period is 5 years which equals to middle period time to return the invested amount back. The study concluded that for the farmer to increase the productivity of kenaf per hectare the well farming practices as well as continuously farmers financial support are highly needed.
Keywords: Margin profit, farming practices, financial analysis, kenaf cultivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4878409 Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks
Authors: Kasthurirangan Gopalakrishnan, Siddhartha Khaitan, Anshu Manik
Abstract:
Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.
Keywords: Artificial neural networks, cluster analysis, Kohonen maps, wine recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21238408 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.
Keywords: Big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21438407 Virtual E-Medic: A Cloud Based Medical Aid
Authors: Madiajagan Muthaiyan, Neha Goel, Deepti Sunder Prakash
Abstract:
This paper discusses about an intelligent system to be installed in ambulances providing professional support to the paramedics on board. A video conferencing device over mobile 4G services enables specialists virtually attending the patient being transferred to the hospital. The data centre holds detailed databases on the patients past medical history and hospitals with the specialists. It also hosts various software modules that compute the shortest traffic –less path to the closest hospital with the required facilities, on inputting the symptoms of the patient, on a real time basis.Keywords: 4G mobile services, cloud computing, data centre, intelligent system, optimization, real time traffic reporting, SaaS, video conferencing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18748406 Decision Support for the Selection of Electric Power Plants Generated from Renewable Sources
Authors: Aumnad Phdungsilp, Teeradej Wuttipornpun
Abstract:
Decision support based upon risk analysis into comparison of the electricity generation from different renewable energy technologies can provide information about their effects on the environment and society. The aim of this paper is to develop the assessment framework regarding risks to health and environment, and the society-s benefits of the electric power plant generation from different renewable sources. The multicriteria framework to multiattribute risk analysis technique and the decision analysis interview technique are applied in order to support the decisionmaking process for the implementing renewable energy projects to the Bangkok case study. Having analyses the local conditions and appropriate technologies, five renewable power plants are postulated as options. As this work demonstrates, the analysis can provide a tool to aid decision-makers for achieving targets related to promote sustainable energy system.Keywords: Analytic Hierarchy Process, Bangkok, MultiattributeRisk Analysis, Renewable Energy Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19488405 A Dual Method for Solving General Convex Quadratic Programs
Authors: Belkacem Brahmi, Mohand Ouamer Bibi
Abstract:
In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method on randomly generated problems.
Keywords: Convex quadratic programming, dual support methods, active set methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18948404 An Agent-Based Approach to Vehicle Routing Problem
Authors: Dariusz Barbucha, Piotr Jedrzejowicz
Abstract:
The paper proposes and validates a new method of solving instances of the vehicle routing problem (VRP). The approach is based on a multiple agent system paradigm. The paper contains the VRP formulation, an overview of the multiple agent environment used and a description of the proposed implementation. The approach is validated experimentally. The experiment plan and the discussion of experiment results follow.
Keywords: multi-agent systems, population-based methods, vehiclerouting problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22458403 The Functionality and Usage of CRM Systems
Authors: Michael Torggler
Abstract:
Modern information and communication technologies offer a variety of support options for the efficient handling of customer relationships. CRM systems have been developed, which are designed to support the processes in the areas of marketing, sales and service. Along with technological progress, CRM systems are constantly changing, i.e. the systems are continually enhanced by new functions. However, not all functions are suitable for every company because of different frameworks and business processes. In this context the question arises whether or not CRM systems are widely used in Austrian companies and which business processes are most frequently supported by CRM systems. This paper aims to shed light on the popularity of CRM systems in Austrian companies in general and the use of different functions to support their daily business. First of all, the paper provides a theoretical overview of the structure of modern CRM systems and proposes a categorization of currently available software functionality for collaborative, operational and analytical CRM processes, which provides the theoretical background for the empirical study. Apart from these theoretical considerations, the paper presents the empirical results of a field survey on the use of CRM systems in Austrian companies and analyzes its findings.Keywords: CRM systems, CRM system adoption, CRM system diffusion, CRM functionality, Market study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40498402 Family Functionality in Mexican Children with Congenital and Non-Congenital Deafness
Authors: D. Estrella, A. Silva, R. Zapata, H. Rubio
Abstract:
A total of 100 primary caregivers (mothers, fathers, grandparents) with at least one child or grandchild with a diagnosis of congenital bilateral profound deafness were assessed in order to evaluate the functionality of families with a deaf member, who was evaluated by specialists in audiology, molecular biology, genetics and psychology. After confirmation of the clinical diagnosis, DNA from the patients and parents were analyzed in search of the 35delG deletion of the GJB2 gene to determine who possessed the mutation. All primary caregivers were provided psychological support, regardless of whether or not they had the mutation, and prior and subsequent, the family APGAR test was applied. All parents, grandparents were informed of the results of the genetic analysis during the psychological intervention. The family APGAR, after psychological and genetic counseling, showed that 14% perceived their families as functional, 62% moderately functional and 24% dysfunctional. This shows the importance of psychological support in family functionality that has a direct impact on the quality of life of these families.
Keywords: Deafness, psychological support, family, adaptation to disability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9768401 The Bent and Hyper-Bent Properties of a Class of Boolean Functions
Authors: Yu Lou, Chunming Tang, Yanfeng Qi, Maozhi Xu
Abstract:
This paper considers the bent and hyper-bent properties of a class of Boolean functions. For one case, we present a detailed description for them to be hyper-bent functions, and give a necessary condition for them to be bent functions for another case.
Keywords: Boolean functions, bent functions, hyper-bent functions, character sums.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12308400 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations
Authors: K. Noah, F.-S. Lien
Abstract:
In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.
Keywords: Compressible lattice Boltzmann metho-, large eddy simulation, turbulent jet flows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9538399 Development of A Jacobean Model for A 4-Axes Indigenously Developed SCARA System
Authors: T.C.Manjunath, C. Ardil
Abstract:
This paper deals with the development of a Jacobean model for a 4-axes indigenously developed scara robot arm in the laboratory. This model is used to study the relation between the velocities and the forces in the robot while it is doing the pick and place operation.
Keywords: SCARA, Jacobean, Tool Configuration Vector, Computer Control , Visual Basic , Interfacing , Drivers,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32618398 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis
Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya
Abstract:
In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.Keywords: Cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9778397 Structural and Electronic Characterization of Supported Ni and Au Catalysts used in Environment Protection Determined by XRD,XAS and XPS methods
Authors: N. Aldea, V. Rednic, F. Matei, Tiandou Hu, M. Neumann
Abstract:
The nickel and gold nanoclusters as supported catalysts were analyzed by XAS, XRD and XPS in order to determine their local, global and electronic structure. The present study has pointed out a strong deformation of the local structure of the metal, due to its interaction with oxide supports. The average particle size, the mean squares of the microstrain, the particle size distribution and microstrain functions of the supported Ni and Au catalysts were determined by XRD method using Generalized Fermi Function for the X-ray line profiles approximation. Based on EXAFS analysis we consider that the local structure of the investigated systems is strongly distorted concerning the atomic number pairs. Metal-support interaction is confirmed by the shape changes of the probability densities of electron transitions: Ni K edge (1s → continuum and 2p), Au LIII-edge (2p3/2 → continuum, 6s, 6d5/2 and 6d3/2). XPS investigations confirm the metal-support interaction at their interface.Keywords: local and global structure, metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorptionspectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17798396 Development of Precise Ephemeris Generation Module for Thaichote Satellite Operations
Authors: Manop Aorpimai, Ponthep Navakitkanok
Abstract:
In this paper, the development of the ephemeris generation module used for the Thaichote satellite operations is presented. It is a vital part of the flight dynamics system, which comprises, the orbit determination, orbit propagation, event prediction and station-keeping maneouvre modules. In the generation of the spacecraft ephemeris data, the estimated orbital state vector from the orbit determination module is used as an initial condition. The equations of motion are then integrated forward in time to predict the satellite states. The higher geopotential harmonics, as well as other disturbing forces, are taken into account to resemble the environment in low-earth orbit. Using a highly accurate numerical integrator based on the Burlish-Stoer algorithm the ephemeris data can be generated for long-term predictions, by using a relatively small computation burden and short calculation time. Some events occurring during the prediction course that are related to the mission operations, such as the satellite’s rise/set viewed from the ground station, Earth and Moon eclipses, the drift in groundtrack as well as the drift in the local solar time of the orbital plane are all detected and reported. When combined with other modules to form a flight dynamics system, this application is aimed to be applied for the Thaichote satellite and successive Thailand’s Earth-observation missions.
Keywords: Flight Dynamics System, Orbit Propagation, Satellite Ephemeris, Thailand’s Earth Observation Satellite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30408395 Aircraft Selection Using Multiple Criteria Decision Making Analysis Method with Different Data Normalization Techniques
Authors: C. Ardil
Abstract:
This paper presents an original application of multiple criteria decision making analysis theory to the evaluation of aircraft selection problem. The selection of an optimal, efficient and reliable fleet, network and operations planning policy is one of the most important factors in aircraft selection problem. Given that decision making in aircraft selection involves the consideration of a number of opposite criteria and possible solutions, such a selection can be considered as a multiple criteria decision making analysis problem. This study presents a new integrated approach to decision making by considering the multiple criteria utility theory and the maximal regret minimization theory methods as well as aircraft technical, economical, and environmental aspects. Multiple criteria decision making analysis method uses different normalization techniques to allow criteria to be aggregated with qualitative and quantitative data of the decision problem. Therefore, selecting a suitable normalization technique for the model is also a challenge to provide data aggregation for the aircraft selection problem. To compare the impact of different normalization techniques on the decision problem, the vector, linear (sum), linear (max), and linear (max-min) data normalization techniques were identified to evaluate aircraft selection problem. As a logical implication of the proposed approach, it enhances the decision making process through enabling the decision maker to: (i) use higher level knowledge regarding the selection of criteria weights and the proposed technique, (ii) estimate the ranking of an alternative, under different data normalization techniques and integrated criteria weights after a posteriori analysis of the final rankings of alternatives. A set of commercial passenger aircraft were considered in order to illustrate the proposed approach. The obtained results of the proposed approach were compared using Spearman's rho tests. An analysis of the final rank stability with respect to the changes in criteria weights was also performed so as to assess the sensitivity of the alternative rankings obtained by the application of different data normalization techniques and the proposed approach.
Keywords: Normalization Techniques, Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5878394 Is the use of Social Networking Sites Correlated with Internet Addiction? Facebook Use among Taiwanese College Students
Authors: Sen-Chi Yu, Wei-Hsin Hsu, Min-Ning Yu, Hao-Yi Hsu
Abstract:
The aim of this study was to investigate the correlation between Facebook involvement and internet addiction. We sampled 577 university students in Taiwan and administered a survey of Facebook usage, Facebook involvement scale (FIS), and internet addiction scale. The FIS comprises three factors (salience, emotional support, and amusement). Results showed that the Facebook involvement scale had good reliability and validity. The correlation between Facebook involvement and internet addiction was measured at .395. This means that a higher degree of Facebook involvement indicates a greater degree of psychological dependency on the internet, and a greater propensity towards social withdrawal and other negative psychological consequences associated with internet addiction. Besides, the correlations between three factors of FIS (salience, emotional support, and amusement) and internet addiction ranged from .313-372, indicating that these neither of these factors (salience, emotional support, and amusement) is more effective than the others in predicting internet dependency.Keywords: Social networking sites, Facebook, Facebook Involvement, Internet Addiction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24868393 Semantic Enhanced Social Media Sentiments for Stock Market Prediction
Authors: K. Nirmala Devi, V. Murali Bhaskaran
Abstract:
Traditional document representation for classification follows Bag of Words (BoW) approach to represent the term weights. The conventional method uses the Vector Space Model (VSM) to exploit the statistical information of terms in the documents and they fail to address the semantic information as well as order of the terms present in the documents. Although, the phrase based approach follows the order of the terms present in the documents rather than semantics behind the word. Therefore, a semantic concept based approach is used in this paper for enhancing the semantics by incorporating the ontology information. In this paper a novel method is proposed to forecast the intraday stock market price directional movement based on the sentiments from Twitter and money control news articles. The stock market forecasting is a very difficult and highly complicated task because it is affected by many factors such as economic conditions, political events and investor’s sentiment etc. The stock market series are generally dynamic, nonparametric, noisy and chaotic by nature. The sentiment analysis along with wisdom of crowds can automatically compute the collective intelligence of future performance in many areas like stock market, box office sales and election outcomes. The proposed method utilizes collective sentiments for stock market to predict the stock price directional movements. The collective sentiments in the above social media have powerful prediction on the stock price directional movements as up/down by using Granger Causality test.
Keywords: Bag of Words, Collective Sentiments, Ontology, Semantic relations, Sentiments, Social media, Stock Prediction, Twitter, Vector Space Model and wisdom of crowds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28008392 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.
Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13148391 Accelerating GLA with an M-Tree
Authors: Olli Luoma, Johannes Tuikkala, Olli Nevalainen
Abstract:
In this paper, we propose a novel improvement for the generalized Lloyd Algorithm (GLA). Our algorithm makes use of an M-tree index built on the codebook which makes it possible to reduce the number of distance computations when the nearest code words are searched. Our method does not impose the use of any specific distance function, but works with any metric distance, making it more general than many other fast GLA variants. Finally, we present the positive results of our performance experiments.Keywords: Clustering, GLA, M-Tree, Vector Quantization .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15248390 Ezilla Cloud Service with Cassandra Database for Sensor Observation System
Authors: Kuo-Yang Cheng, Yi-Lun Pan, Chang-Hsing Wu, His-En Yu, Hui-Shan Chen, Weicheng Huang
Abstract:
The main mission of Ezilla is to provide a friendly interface to access the virtual machine and quickly deploy the high performance computing environment. Ezilla has been developed by Pervasive Computing Team at National Center for High-performance Computing (NCHC). Ezilla integrates the Cloud middleware, virtualization technology, and Web-based Operating System (WebOS) to form a virtual computer in distributed computing environment. In order to upgrade the dataset and speedup, we proposed the sensor observation system to deal with a huge amount of data in the Cassandra database. The sensor observation system is based on the Ezilla to store sensor raw data into distributed database. We adopt the Ezilla Cloud service to create virtual machines and login into virtual machine to deploy the sensor observation system. Integrating the sensor observation system with Ezilla is to quickly deploy experiment environment and access a huge amount of data with distributed database that support the replication mechanism to protect the data security.Keywords: Cloud, Virtualization, Cassandra, WebOS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18698389 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.
Keywords: DNA microarray, feature selection, missing data, bioinformatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27918388 Concept, Design and Implementation of Power System Component Simulator Based on Thyristor Controlled Transformer and Power Converter
Authors: B. Kędra, R. Małkowski
Abstract:
This paper presents information on Power System Component Simulator – a device designed for LINTE^2 laboratory owned by Gdansk University of Technology in Poland. In this paper, we first provide an introductory information on the Power System Component Simulator and its capabilities. Then, the concept of the unit is presented. Requirements for the unit are described as well as proposed and introduced functions are listed. Implementation details are given. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink real-time features are presented. List and description of all measurements is provided. Potential of laboratory setup modifications is evaluated. Lastly, the results of experiments performed using Power System Component Simulator are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area.
Keywords: Power converter, Simulink real-time, MATLAB, load, tap controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7958387 RDFGraph: New Data Modeling Tool for Semantic Web
Authors: Daniel Siahaan, Aditya Prapanca
Abstract:
The emerging Semantic Web has been attracted many researchers and developers. New applications have been developed on top of Semantic Web and many supporting tools introduced to improve its software development process. Metadata modeling is one of development process where supporting tools exists. The existing tools are lack of readability and easiness for a domain knowledge expert to graphically models a problem in semantic model. In this paper, a metadata modeling tool called RDFGraph is proposed. This tool is meant to solve those problems. RDFGraph is also designed to work with modern database management systems that support RDF and to improve the performance of the query execution process. The testing result shows that the rules used in RDFGraph follows the W3C standard and the graphical model produced in this tool is properly translated and correct.Keywords: CASE tool, data modeling, semantic web
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20908386 A 24-Bit, 8.1-MS/s D/A Converter for Audio Baseband Channel Applications
Authors: N. Ben Ameur, M. Loulou
Abstract:
This paper study the high-level modelling and design of delta-sigma (ΔΣ) noise shapers for audio Digital-to-Analog Converter (DAC) so as to eliminate the in-band Signal-to-Noise- Ratio (SNR) degradation that accompany one channel mismatch in audio signal. The converter combines a cascaded digital signal interpolation, a noise-shaping single loop delta-sigma modulator with a 5-bit quantizer resolution in the final stage. To reduce sensitivity of Digital-to-Analog Converter (DAC) nonlinearities of the last stage, a high pass second order Data Weighted Averaging (R2DWA) is introduced. This paper presents a MATLAB description modelling approach of the proposed DAC architecture with low distortion and swing suppression integrator designs. The ΔΣ Modulator design can be configured as a 3rd-order and allows 24-bit PCM at sampling rate of 64 kHz for Digital Video Disc (DVD) audio application. The modeling approach provides 139.38 dB of dynamic range for a 32 kHz signal band at -1.6 dBFS input signal level.Keywords: DVD-audio, DAC, Interpolator and Interpolation Filter, Single-Loop ΔΣ Modulation, R2DWA, Clock Jitter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26238385 Reading Strategy Awareness of English Major Students
Authors: Hsin-Yi Lien
Abstract:
The study explored the role of metacognition in foreign language anxiety on a sample of 411 Taiwanese students of English as a Foreign Language. The reading strategy inventory was employed to evaluate the tertiary learners’ level of metacognitive awareness and a semi-structured background questionnaire was also used to examine the learners’ perceptions of their English proficiency and satisfaction of their current English learning. In addition, gender and academic level differences in employment of reading strategies were investigated. The results showed the frequency of reading strategy use increase slightly along with academic years and males and females actually employ different reading strategies. The EFL tertiary learners in the present study utilized cognitive strategies more frequently than metacognitive strategies or support strategies. Male students use metacognitive strategy more often while female students use cognitive and support strategy more frequently.
Keywords: Cognitive strategy, gender differences, metacognitive strategy, support strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34278384 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images
Authors: Mehrnoosh Omati, Mahmod Reza Sahebi
Abstract:
The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.
Keywords: Coupled Markov random field, environment, object-based analysis, Polarimetric SAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8638383 Simulation and 40 Years of Object-Oriented Programming
Authors: Eugene Kindler
Abstract:
2007 is a jubilee year: in 1967, programming language SIMULA 67 was presented, which contained all aspects of what was later called object-oriented programming. The present paper contains a description of the development unto the objectoriented programming, the role of simulation in this development and other tools that appeared in SIMULA 67 and that are nowadays called super-object-oriented programming.
Keywords: Simulation, super-object-oriented programming, object-oriented programming, SIMULA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13158382 Design of a Pneumonia Ontology for Diagnosis Decision Support System
Authors: Sabrina Azzi, Michal Iglewski, Véronique Nabelsi
Abstract:
Diagnosis error problem is frequent and one of the most important safety problems today. One of the main objectives of our work is to propose an ontological representation that takes into account the diagnostic criteria in order to improve the diagnostic. We choose pneumonia disease since it is one of the frequent diseases affected by diagnosis errors and have harmful effects on patients. To achieve our aim, we use a semi-automated method to integrate diverse knowledge sources that include publically available pneumonia disease guidelines from international repositories, biomedical ontologies and electronic health records. We follow the principles of the Open Biomedical Ontologies (OBO) Foundry. The resulting ontology covers symptoms and signs, all the types of pneumonia, antecedents, pathogens, and diagnostic testing. The first evaluation results show that most of the terms are covered by the ontology. This work is still in progress and represents a first and major step toward a development of a diagnosis decision support system for pneumonia.
Keywords: Clinical decision support system, diagnostic errors, ontology, pneumonia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8828381 Identification of Spam Keywords Using Hierarchical Category in C2C E-commerce
Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park
Abstract:
Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like ebay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C E-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C E-commerce.
Keywords: Spam Keyword, E-commerce, keyword features, spam filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508