
 

 

 
Abstract—We find in our data that an alarming number of viable 

deceased donor kidneys are discarded every year in the US, while 
waitlisted candidates are dying every day. We observe as many as 85% 
of transplanted organs are refused at least once for a patient that scored 
higher on the match list. There are hundreds of clinical variables 
involved in making a clinical transplant decision and there is rarely an 
ideal match. Decision makers exhibit an optimism bias where they may 
refuse an organ offer assuming a better match is imminent. We propose 
a semi-parametric Cox proportional hazard model, augmented by an 
accelerated failure time model based on patient-specific suitable organ 
supply and demand to estimate a time-to-next-offer. Performance is 
assessed with Cox-Snell residuals and decision curve analysis, 
demonstrating improved decision support for up to a 5-year outlook. 
Providing clinical decision-makers with quantitative evidence of likely 
patient outcomes (e.g., time to next offer and the mortality associated 
with waiting) may improve decisions and reduce optimism bias, thus 
reducing discarded organs and matching more patients on the waitlist. 
 

Keywords—Decision science, KDPI, optimism bias, organ 
transplant.  

I. INTRODUCTION 

IDNEY transplantation remains the best treatment choice 
for patients with end stage kidney disease (ESKD) as well 

as the most cost-effective therapy option for candidates [1]. 
However, the transplant decision maker must assess whether 
the candidate will receive a better offer in the near future [2]. 
Despite performing roughly 24,700 kidney transplants in 2020, 
less than one percent of all kidney offers were accepted. This 
often results in organs being accepted at other centers for 
patients with lower priority on the donation match run. 
Approximately 20-25% of viable kidneys are discarded without 
being accepted due to excessive cold ischemia that develops 
when a match cannot be identified in time [9]. Meanwhile, more 
than five thousand waitlisted patients die each year without 
receiving a transplant [9].  

Matched organs are rarely perfect and clinical decisions 
involve hundreds of variables for both donor and recipient. This 
creates a large cognitive load and inconsistency in clinical 
decisions. Different metrics are used to assist transplant centers 
with evidence-based medicine. Perhaps the most widely used 
measure of kidney quality is the kidney donor profile index 
(KDPI), which is a weighted model of ten different factors 
including both clinical and demographic parameters. Lower 
KDPI scores are associated with longer estimated function. For 
example, a KDPI of 25 means that the kidney is in the top 25th 
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percentile of all kidneys recovered each year [9]. In other 
words, the kidney is in the top 25% of kidneys one would expect 
to see. The organ procurement and transplantation network 
(OPTN) attempts to match kidneys with the highest longevity 
with patients that have the highest estimated post-transplant 
survival (EPTS) score, which is a transplant candidate specific 
score based on how long a candidate will need the organ 
compared to other candidates. An EPTS score of 80 means that 
the candidate will require the organ longer than 80% of other 
candidates on the waitlist [9]. These are only two measures used 
in the transplant decision process, which is complex and 
governed by a number of policy, regulatory, and clinical factors 
established by law (42 CFR § 121.8 - Allocation of organs). The 
final decision to transplant, however, is made by healthcare 
professionals. 

The transplant decision making process poses both a unique 
and illustrative case study for artificial intelligence (AI). The 
problem is not easily solved with improved match algorithms 
when decision makers ignore the current solution [9]. 
Ultimately, these algorithms reflect policy and policy is a 
reflection of a culture’s values. These policies must balance the 
values of optimal medical outcomes, deceased donor organ 
utilization, and equity. For example, the discard rate in the UK 
is one third smaller than that of the US [3]. The UK’s “fast 
track” scheme for marginal kidneys at risk of discard prioritizes 
organ utilization over equity and outcome to a greater degree 
than in the US resulting in higher organ utilization. The UK is 
not using a better algorithm, they are implementing medical 
data in a different way. The “match score” is less of a clinical 
“match” and more of a “sequence” dictating whose turn it is to 
receive an organ [3]. In the US, the sequence is biased towards 
equity [3]. Surgeons and transplant centers, within this context, 
must decide on what is the best decision for their patient and 
may have legitimate doubts regarding a proposed organ offer. 
While predictive survival analysis can be used to model 
mortality under different conditions, combining this score with 
a forecast of a patient specific future supply of deceased donor 
organs is more challenging and combining that with policies 
biased towards equity is even more difficult to assess.  

Decision making in this high-pressure environment is very 
heterogeneous [4] and influenced by factors beyond organ 
quality [5]-[8]. Centers that decline organs typically do so 
because they expect a better offer for their patient that often 
does not appear. This optimism bias in clinical decision making 
is well supported in the literature [9]-[11]. Husain et al [11] 
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suggest a risk-aversion bias stemming from the Hippocratic 
oath of “do no harm” in fact leads to refusal decisions that 
negatively affect patient survival and outcomes. The data 
suggest that this phenomenon is steadily increasing over time 
[3], [5], [12]-[16].  

The United Network for Organ Sharing (UNOS) has 
conducted several behavioral studies that demonstrate changes 
in the presentation of clinical data can significantly affect organ 
acceptance decisions [4], [9], [13]. For example, McCulloh et 
al. [9] demonstrate that providing an empirically based “Time 
to Better Offer (TTBO)” in months along with a mortality 
estimate of “probability of death before better offer” can 
increase consistency in clinical decisions, improve decision 
confidence, and may eliminate optimism bias. Their study used 
anonymized data, systematically altered to measure the effects 
on clinical decision making. The actual calculation of TTBO 
and associated mortality is more challenging. 

Predicting TTBO and the associated mortality risk of waiting 
until a better organ is offered is composed of two sub-problems, 
namely TTBO and the mortality risk of remaining on the 
waitlist. The dependent variables, Time to a Better Offer and 
waitlist mortality, for these mathematical models are a time-to-
event data point containing right-censored observations. A 
right-censored observation occurs when a subject leaves the 
study before an event occurs, which could be due to death or 
removal from the waitlist for a number of other personal or 
clinical reasons. Right censored survival analysis is typically 
modeled with a product limit estimator [17], [18] given as, 

 

𝑆 𝑡  ∏ 1:         (1) 

 
where S(t) is the survival function, di is the number of deaths 
and ni is the number of individuals to survive up to time ti. The 
product limit estimator, however, does not consider other 
clinical determinants of health to model patient-specific 
outcomes. 

A proportional hazards model improves on the survival 
function allowing the effects of covariates to improve survival 
estimation [19]. The proportional hazards model is given as,  

 

𝑆 𝑡  ∏ 1
∑:       (2) 

 
where Θ is a model of covariates that change the hazard 
function over time. 

An alternative to the proportional hazards model is the 
accelerated failure time model [20]. While the proportional 
hazard model is semi-parametric and treats covariates as a 
relative hazard weight or multiplier, the accelerated failure time 
model accelerates the hazard using a fully parametric model 
such as a probability distribution. Kay and Kinnersley [20] 
argue that this model is more explainable in terms of a treatment 
(e.g. transplant offer) affecting life expectancy. The 
performance of the accelerated failure time model is dependent 
upon the choice and fit of the underlying parametric probability 
distribution. 

Measuring the performance of time-to-event hazard models 

in a clinical setting can also be problematic. The Akaike 
information criterion (AIC), concordance index, and Brier score 
do not provide any information for assessing whether the model 
is useful in practice. A common approach for model goodness-
of-fit is visual inspection of residuals. For hazard models, 
however, Cox-Snell residuals provide a more generalized 
approach for non-linear and autoregressive time-series models 
[21]. A problem with Cox-Snell residuals, however, is that the 
evidence of fit is not necessarily close for small sample size, 
such as the more extreme data points with long time until next 
offer. For evaluation of donor offer survival models, however, 
the Cox-Snell is more appropriate than other goodness-of-fit 
approaches. 

This paper does not directly investigate medical decision-
making surrounding kidney transplant offer acceptance. The 
literature is clear that there exists bias, uncertainty, and lack of 
consensus on proper organ offer acceptance decisions. The 
literature further demonstrates that decision making can be 
uniformly improved by providing clinical decision makers with 
reliable estimation of the time it will take to receive an 
equivalent or better offer and an estimate of patient survival 
likelihood without transplant [9]. To address this problem, this 
paper proposes a machine-learning model to provide needed 
estimates and enhance evidence-based medical decisions. 
Specifically, we propose a “Time-To-Next-Offer” (TTNO) 
model using Organ Procurement Transplantation Network 
(OPTN) data that feed into model for estimating patient survival 
without transplant using OPTN data. Finally, we propose a 
goodness-of-fit approach bounded by a realistic clinical 
decision outlook. 

II. METHODS 

There were several challenges in providing TTNO 
estimation. In addition to operationalizing “TTBO”, providing 
an estimate of estimated transplant survival until better offer 
requires an estimate of TTBO. The recent UNOS study 
demonstrating the utility in providing estimates of future offers 
in conjunction with mortality risk to decision makers used a 
“time-to-better-offer” (TTBO) in notional offers [9]. The term 
“better” was not fully defined for the study. This introduces 
complexity in the measure itself. A “better” offer could mean 
an increase of 1 point in KDPI, an increase in 20 points, or some 
percentage increase. There may be additional clinical factors 
affecting transplant decisions.  

For this paper, we modify TTBO to TTNO, where we model 
the estimated time until a kidney with some quality score, k, or 
better is achieved. Our empirical runs use KDPI for k with 
KDPI ≤ 30 and KDPI ≤ 50. We define estimated transplant 
survival as median time to “TTBO”. Hence, we define M as 
median estimated TTNO, where the survival function of TTNO 
is S(M) = 0.5, which then will be used in the survival function 
assessing estimated survival without transplant at the specified 
time t (depicted in Fig. 1). This effectively decomposes a 
complex problem into two tractable sub-problems. 

We evaluated several models for TTNO estimation. As stated 
earlier, the semi-parametric proportional hazard model, while 
allowing for patient-specific clinical variables, does not have a 
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good way of modeling arrival times for organs with a particular 
quality score, in this case KDPI ≤ 30 and KDPI ≤ 50. Thus, all 
TTNO models use an accelerated failure time model. These 
models require parametric probability distributions fit to the 
data. We investigate the Exponential, Weibull, Lognormal, and 
Loglogistic distributions under best-fit conditions for 
estimating both the KDPI ≤ 30 and KDPI ≤ 50 conditions.  

Patient mortality while on the waitlist is modeled with a 
proportional hazards model based on prior literature [22]. The 
existent parameters needed to be re-evaluated because the 
model was over a decade old. Given clinical improvements in 
dialysis survival [23] and transplant [24], we suspected there 
was potential for clinical concept data drift [25].  

Data for model estimation were obtained from the OPTN 
database and are available upon request. Specifically, we use 
the kidney-pancreas (KidPan), KidPan Waitlist History (WLH), 
and Potential Transplant Recipient (PTR) data. The source data 
are patient-centric and not specifically collected for this study. 
It was therefore converted to a model-ready dataset with 
separate cohorts for TTNO and mortality.  

The TTNO data cohort are constructed from the KidPan 
WLH, PTR, and inactive times files. The KidPan WLH 
contains records of all changes to a patient’s waitlisting status. 
Status changes can include offer, death, or removal for some 
other reason such as illness, injury, or personal reasons. For 
reasonable scope, candidates with a status change between 
January 1, 2016 and January 1, 2020 were included in the data 
cohort. The PTR data contain offer histories of all kidney 
transplant candidates, including geographic and biological 
predictors of time to offer such as: Blood Type, Calculated 
Panel-Reactive Antibody  (CPRA), Number of Human 
Leukocyte Antigen (HLA) Mismatches, Dialysis Time, 
Sequence Number, Organ Procurement Organization (OPO) 
and Transplant Center. Reference variables are defined as the 
values of the predictor variables at the time of the last offer of 
interest. Wait time is defined as the time between events of 
interest (i.e. offers). Observations are uncensored if the 
candidate received an offer meeting the KDPI threshold of 
interest, k. They are censored if the candidate died, accepted an 
offer that was not less than the KDPI threshold, or if the study 
ended before a qualifying offer was received. 

The waitlist mortality model was constructed from the 
KidPan and KidPan WLH sources. For the waitlist mortality 
model, candidates with a status change between January 1, 2010 
and January 1, 2020 were included. The Kidpan File contains 
case histories of all kidney transplant candidates, including 
biological predictors of candidate mortality such as: Age, Body 
Mass Index (BMI), CPRA, Prior transplant history, Diabetes 
status, Polycystic Status, Albumin levels. Observations with 
dialysis dates before January 1, 1980 were excluded. Age 
values were between 18 and 70 years. BMI values were 
restricted to those between 7.5 and 50. Data were randomly split 
into testing and training data sets for model fit and evaluation. 
Wait time is defined as the time from waitlisting to the 
candidate’s death date, transplant date, or the end of the study, 
whichever is earliest. Observations are uncensored if the 
candidate died awaiting a transplant; they are censored if the 

candidate received a transplant, or if they were alive at the end 
of the study.  

Model goodness-of-fit was assessed with a visual inspection 
of the Cox-Snell (CS) residual plot. Cox-Snell Residuals are a 
transformation of the survival probability of each observation 
given as, 

 

𝑟  ln 𝑆 𝑡          (3) 
 
In a well-fitting model, the CS residuals should fall along a 

45-degree diagonal on the cumulative hazard vs. time plot. 
Residual plots are inspected for the cumulative hazard against 
different predictive factors to identify potential leverage and 
bias in addition to goodness of fit. We considered martingale 
and deviance residuals, which have consistent findings for these 
data, however, the CS residual plots are more intuitive for right-
censored survival data. 

The relative performance of TTNO models using different 
probability distributions and k-values is compared using a 
concordance index. The concordance index is used in a similar 
manner as the coefficient of determination R2, used in linear 
regression, however, the concordance index accounts for the 
right-censored data in survival analysis. Brentnall and Cuzick 
[26] review concordance indices for right-censored data and 
proportional hazards models. The concordance index measures 
how well a biomarker, or in our case k predicts the time to an 
event, deceased donor organ offer. 

Another important consideration is ensuring equity in model 
performance, where they perform well for all people. Top-line 
accuracy metrics are validated for many subgroups across blood 
type, level of immune sensitization (CPRA), and level of donor-
candidate genetic compatibility (HLA mismatch), among other 
factors.  

Although performance metrics (e.g., concordance index) are 
important to selecting the optimal model, these metrics do not 
answer the question: Is this model potentially useful in practice? 
This requires assessing how a model informed strategy 
compares to current practice. Known as a net benefit analysis 
[27], we compare the ability of the proposed model to an 
approximation of current practice (rejecting all organ offers in 
hopes of obtaining a better one) and hypothetical strategy of 
always accepting the current organ offer. While the accepting 
all offers is illustrative, we argue rejecting all organ offers is an 
acceptable comparator because, in practice, less than one 
percent of all organ offers are accepted.  

III. RESULTS 

The best fit TTNO accelerated failure time model used a 
loglogistic distribution and model variables shown in Table I. 
The loglogistic distribution achieved a concordance index as 
high as 0.710. The next best fitting distribution was the Weibull 
with a concordance index as high as 0.660. The exponential 
distribution is a special case of the Weibull, yet had a 
concordance index well below 0.600, as did the lognormal. The 
TTNO model is given as, 

 
Ο  𝑓 Ν, Η, Δ, Β, Χ, Ε, Τ, Γ        (4) 
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TABLE I 
TTNO MODEL FACTORS 

Variable 
Name 

Variable Description Data Type 

Ν Sequence number, converted to bins Factor  
(11 levels)

Η Number of HLA mismatches Factor  
(6 levels)

Δ Whole number of dialysis years at last offer Integer 

Β Simplified Blood Type Factor  
(4 levels)

Χ Candidate CPRA at match run, converted to 
bins 

Factor  
(17 levels)

Ε Candidate Expected Post-Transplant Survival Float (0-1) 

Τ Candidate transplant center at match run Factor  
(248 level)

Γ 
Boolean flag indicating if data represents 

KAS250 allocation policy era 
0 (old era) or 1 
(KAS250 era)

 
TABLE II 

WAITLIST MORTALITY MODEL FACTORS 

Variable 
Name 

Variable Description Data Type 

𝛼 Candidate Age in decades Integer 

𝜅 Kidney-only transplant type Integer 

𝜓 Kidney-pancreas transplant type Integer 

𝛿 Whether candidate is diabetic Integer 

𝜔 Whether candidate was on dialysis at waitlisting Float 

𝜌 End stage renal disease Float 

𝛽 Candidate BMI Float 

𝜇 1 if candidate BMI is missing; 0 otherwise Integer 

𝜙 1 if candidate is polycystic; 0 otherwise Integer 

𝜏 1 if candidate has had a previous transplant; 0 
otherwise 

Integer 

𝜆 Year candidate was placed on the waiting list Integer 

𝜒 Candidate Albumin level at waitlisting Float 

𝜃 Albumin slope change Float 

𝜋 Log of the number of years candidate had been 
on dialysis at waitlisting 

Float 

𝜉 CPRA at waitlisting, divided into bins Factor (3 levels) 

 

CS residuals plot cumulative hazard over time for all 
predictive factors. For expository purpose, Figs. 1-4 show 
different blood types A, B, O, AB, respectively. These plots are 
consistent with other predictive factors. The gray points 
indicate observed CS residuals. The blue line indicates the 
average cumulative hazard under the TTNO model with light 
blue shading depicting a 95% confidence interval. The red line 
indicates the average CS residual. 

Ideal CS residuals should follow a diagonal 45-degree line. 
The TTNO model CS residuals follow this ideal pattern, 
demonstrating good fit, for the first 150-200 days, but exhibit a 
diminishing hazard for longer TTNO time estimates which is 
consistent across all plots. This observed bias and increased 
variance is likely due to leverage due to fewer data points at 
extreme TTNO estimates. A good example of this is the contrast 
between the rarest blood type, AB, in Fig. 4 with more common 
blood types A, B, and O.  

This introduces an interesting question of practicality. Fig. 5 
displays the waitlist mortality probability along the y-axis and 
the TTNO estimate along the x-axis, where the heat map 

indicates the volume of patients. The vast majority of patients 
have relatively high survival likelihood until next offer and 
TTNO under 250 days, where model fit is good. It is also 
possible that decision makers will be more discouraged by 
higher TTNO estimates and more likely accept the offer for any 
time greater than ~150 days and accuracy beyond this estimate 
is of little practical use. 

The best fit waitlist mortality model follows a proportional 
hazards model with factors listed in Table II and given as,  

 
Ψ 𝛼 𝜅𝛿 𝜓𝛿 𝜔 𝜌𝜅𝛿 𝜌𝜓𝛿 𝛽 𝜇 𝜙 𝜏
𝜆 𝜒 𝜃 𝜋 𝛼𝜅𝛿 𝛼𝜓𝛿 𝜒𝜓𝛿 𝛽𝜅𝛿 𝜉𝜓𝛿  (5) 

IV. DISCUSSION 

Decisions surrounding kidney transplant are complex and 
high pressure. Transplant decision makers must make the best 
decision for their patients. It is important to recognize, however, 
the optimism bias that exists in humans and the demonstrated 
ability of evidence-based medicine to improve outcomes. 
Providing decision makers reliable TTNO and mortality 
estimates have been shown to reduce, if not eliminate optimism 
bias, resulting in better decisions for the patient. The paper 
offers a viable TTNO model to deliver improved evidence-
based decision for kidney transplantation. It is also important to 
recognize and respect organs from deceased donors, which are 
being discarded at alarming rates. Improving the speed and 
quality of decisions not only affects kidney patients but makes 
better utilization of the donated organs. 

The proposed TTNO and mortality model provides a well-
supported estimate to inform transplant decision makers. The 
model performs best for the first ~150 days, when refusals are 
most likely. This solution offers a responsible, human-in-the-
loop, approach, where people are still make the life-and-death 
decisions, but informed by a mathematical model that can better 
aggregate at-scale supply-demand data and reduce the cognitive 
load and uncertainty in the present-day situation. 

There are two scenarios for caution. One is that the model 
may predict very short TTNO for very sick patients. The other 
is that the model may predict patients survive too long. These 
scenarios, while they occur with very low likelihood, may 
discourage a decision maker from accepting an organ, when 
that may be in the best global interests. Ultimately, most offers 
occur within two years and very few offers are likely to fall 
within the danger zone.  

There is also a potential for data drift due to allocation 
changes, improvements in dialysis, advances that increase 
patient survivability, and cultural shifts as more decision-
makers adopt evidence-based practices. Potential revisions to 
regulations governing organ match lists and donation priorities 
will also affect underlying model data. It will be important that 
any implementation tune machine learning models periodically. 
For this reason, we have intentionally omitted model 
coefficients from the paper. 
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Fig. 1 TTNO CS Residual for A Blood Type 
 

 

Fig. 2 TTNO CS Residual for B Blood Type 
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Fig. 3 TTNO CS Residual for O Blood Type 
 

 

Fig. 4 TTNO CS Residual for AB Blood Type 
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Fig. 5 TTNO Estimate vs Waitlist Survival Likelihood 
 

Doctors make better decisions when equipped with estimates 
of waiting list mortality and TTNO. A pilot study implemented 
at six transplant centers across the OPTN demonstrated 
increased offer acceptance consistent with the behavioral study 
conducted by McCulloh et al. [9]. OPTN will implement the 
TTNO measure nation-wide in December 2022 which is likely 
to result in an additional 5,000 successful transplantations with 
the adoption of the proposed TTNO [28]. The proposed models 
indicate that they can improve upon current clinical practice. 
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